635
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Rolling Contact Fatigue Behavior of Thermal-Sprayed Coating: A Review

, , &

References

  • H. Fu, W. Song, E. I. Galindo-Nava, and P. E. J. Rivera-Díaz-del-Castillo, Strain-induced martensite decay in bearing steels under rolling contact fatigue: Modelling and atomic-scale characterisation, Acta Mater. 139, 163–173 (2017).
  • H. Fu, E. I. Galindo-Nava, and P. E. J. Rivera-Díaz-del-Castillo, Modelling and characterisation of stress-induced carbide precipitation in bearing steels under rolling contact fatigue, Acta Mater. 128, 176–187 (2017).
  • A. A. Walvekar and F. Sadeghi, Rolling contact fatigue of case carburized steels, Int. J. Fatigue 95, 264–281 (2017).
  • W. S. Yang, T. Zhou, W. Zhang, J. Li, Z. K. Chen, F. Chang, H. F. Zhang, and H. Zhou, Effect of one-step laser processed biomimetic coupling units' degrees on rolling contact fatigue wear resistance of train track alloy steel, Surf. Coat. Technol. 277, 181–187 (2015).
  • H. Singh, K. C. Mutyala, R. D. Evans, and G. L. Doll, An investigation of material and tribological properties of Sb2O3/Au-doped MoS2 solid lubricant films under sliding and rolling contact in different environments, Surf. Coat. Technol. 284, 281–289 (2015).
  • K. D. Bakoglidis, I. Nedelcu, S. Schmidt, G. Greczynski, P. Ehret, and L. Hultman, Rolling contact fatigue of bearing components coated with carbon nitride thin films, Tribol. Int. 98, 100–107 (2016).
  • D. A. Colombo, M. D. Echeverria, R. C. Dommarco, and J. M. Massone, Influence of TiN coating thickness on the rolling contact fatigue resistance of austempered ductile iron, Wear. 350–351, 82–88 (2016).
  • K. H. Kim, J. H. Kim, K. W. Hong, J. Y. Park, and C. B. Lee, Application of high-temperature ceramic plasma-spray coatings for a reusable melting crucible, Surf. Coat. Technol. 326, 429–435 (2017).
  • S. Kar, P. P. Bandyopadhyay, and S. Paul, High speed and precision grinding of plasma sprayed oxide ceramic coatings, Ceram. Int. 43(17), 15316–15331 (2017).
  • S. C. Jambagi, Scratch adhesion strength of plasma sprayed carbon nanotube reinforced ceramic coatings, J. Alloys Compd. 728, 126–137 (2017).
  • D. Nuruzzaman, A. Nakajima, T. Mawatari, and M. Chowdhury, Rolling contact fatigue life of thermally sprayed WC cermet coatings - A review, Recent Pat. Mech. Eng. 2, 115–129 (2009).
  • K. Simunovic, T. Saric, and G. Simunovic, Different approaches to the investigation and testing of the Ni-based self-fluxing alloy coatings—A review. Part 1: General facts, wear and corrosion investigations, Tribol. Trans. 57 (6), 955–979 (2014).
  • S. Stewart and R. Ahmed, Rolling contact fatigue of surface coatings—A review, Wear. 253 (11–12), 1132–1144 (2002).
  • H. Cui, X. Cui, H. Wang, Z. Xing, and G. Jin, Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review, Chin. J. Mech. Eng. 28 (1), 132–139 (2015).
  • B. Rajasekaran, S. Ganesh Sundara Raman, S. V. Joshi, and G. Sundararajan, Influence of detonation gun sprayed alumina coating on AA 6063 samples under cyclic loading with and without fretting, Tribol. Int. 41 (4), 315–322 (2008).
  • R. Ahmed and M. Hadfield, Mechanisms of fatigue failure in thermal spray coatings, J. Therm. Spray Technol. 11 (3), 333–349 (2002).
  • M. Fujii, A. Yoshida, J. Ma, S. Shigemura, and K. Tani, Rolling contact fatigue of alumina ceramics sprayed on steel roller under pure rolling contact condition, Tribol. Int. 39 (9), 856–862 (2006).
  • M. Fujii, J. Ma, A. Yoshida, S. Shigemura, and K. Tani, Influence of coating thickness on rolling contact fatigue of alumina ceramics thermally sprayed on steel roller, Tribol. Int. 39 (11), 1447–1453 (2006).
  • J.-j. Kang, B.-s. Xu, H.-d. Wang, and C.-b. Wang, Influence of contact stress on rolling contact fatigue of composite ceramic coatings plasma sprayed on a steel roller, Tribol. Int. 73, 47–56 (2014).
  • R. Ahmed and M. Hadfield, Experimental measurement of the residual stress field within thermally sprayed rolling elements, Wear 209 (1–2), 84–95 (1997).
  • R. Ahmed, O. Ali, N. H. Faisal, N. M. Al-Anazi, S. Al-Mutairi, F. L. Toma, L. M. Berger, A. Potthoff, and M. F. A. Goosen, Sliding wear investigation of suspension sprayed WC–Co nanocomposite coatings, Wear 322–323, 133–150 (2015).
  • R. Ahmed and M. Hadfield, Failure modes of plasma sprayed WC–15%Co coated rolling elements, Wear 230 (1), 39–55 (1999).
  • R. Ahmed and M. Hadfield, Failure modes of plasma sprayed WC-15%Co coated rolling elements, Surf. Coat. Technol. 82, 176–186 (1996).
  • L. M. Berger, K. Lipp, J. Spatzier, and J. Bretschneider, Dependence of the rolling contact fatigue of HVOF-sprayed WC–17%Co hardmetal coatings on substrate hardness, Wear 271 (9–10), 2080–2088 (2011).
  • A. Nakajima, T. Mawatari, M. Yoshida, K. Tani, and A. Nakahira, Effects of coating thickness and slip ratio on durability of thermally sprayed WC cermet coating in rolling/sliding contact, Wear 241 (2), 166–173 (2000).
  • D. Nuruzzaman, A. Nakajima, and T. Mawatari, Effects of coating thickness and slip ratio on durability of thermally sprayed WC cermet coating in rolling sliding contact, J. Mech. Eng. 36, 6 (2008).
  • R. Nieminen, P. Vuoristo, K. Niemi, T. Mantyla, and G. Barbezat, Rolling contact fatigue failure mechanisms in plasma and HVOF sprayed WC-Co coatings, Wear 212(1), 66–77 (1997).
  • S. Stewart, R. Ahmed, and T. Itsukaichi, Contact fatigue failure evaluation of post-treated WC–NiCrBSi functionally graded thermal spray coatings, Wear 257(9–10), 962–983 (2004).
  • L. M. Berger, S. Saaro, T. Naumann, M. Kasparova, and F. Zahalka, Microstructure and properties of HVOF-sprayed WC-(W,Cr)2C-Ni coatings, J. Therm. Spray Technol. 17 (3), 395–403 (2008).
  • Z. Q. Zhang, H. D. Wang, B. S. Xu, and G. S. Zhang, Characterization of microstructure and rolling contact fatigue performance of NiCrBSi/WC–Ni composite coatings prepared by plasma spraying, Surf. Coat. Technol. 261, 60–68 (2015).
  • X. C. Zhang, B. S. Xu, S. T. Tu, F. Z. Xuan, H. D. Wang, and Y. X. Wu, Fatigue resistance and failure mechanisms of plasma-sprayed CrC–NiCr cermet coatings in rolling contact, Int. J. Fatigue 31 (5), 906–915 (2009).
  • L. Guolu, X. Zhonglin, D. Tianshun, W. Haidou, L. Jinhai, and K. Jiajie, Acoustic emission investigation of rolling/sliding contact fatigue failure of NiCr–Cr3C2 coating, J. Therm. Spray Technol. 25 (7), 1365–1372 (2016).
  • S. Xuanyu and Y. Suyuan, Performance in resistance to surface fatigue for Cr 3 C 2 –25%NiCr coatings by plasma spray and CDS spray, Tribol. Lett. 16(3), 173–180 (2004).
  • Z. Y. Piao, B. S. Xu, H. D. Wang, and D. H. Wen, Characterization of Fe-based alloy coating deposited by supersonic plasma spraying, Fusion Eng. Design. 88(11), 2933–2938 (2013).
  • L. Guo-Lu, Z. Zhi-Qiang, W. Hai-Dou, X. Bin-Shi, P. Zhong-Yu, and Z. Li-na, Acoustic emission monitoring and failure mechanism analysis of rolling contact fatigue for Fe-based alloy coating, Tribol. Int. 61, 129–137 (2013).
  • Z. Zhi-Qiang, L. Guo-Lu, W. Hai-Dou, X. Bin-Shi, P. Zhong-Yu, and Z. Li-na, Investigation of rolling contact fatigue damage process of the coating by acoustics emission and vibration signals, Tribol. Int. 47, 25–31 (2012).
  • S. Y. Chen, G. Z. Ma, H. D. Wang, P. F. He, M. Liu, H. J. Wang, and B. S. Xu, Comparison of solidity and fractal dimension of plasma sprayed splat with different spreading morphologies, Appl. Surf. Sci. 409, 277–284 (2017).
  • X. C. Zhang, B. S. Xu, S. T. Tu, F. Z. Xuan, H. D. Wang, and Y. X. Wu, Effect of spraying power on the microstructure and mechanical properties of supersonic plasma-sprayed Ni-based alloy coatings, Appl. Surf. Sci. 254(20), 6318–6326 (2008).
  • X. C. Zhang, B. S. Xu, Y. X. Wu, F. Z. Xuan, and S. T. Tu, Porosity, mechanical properties, residual stresses of supersonic plasma-sprayed Ni-based alloy coatings prepared at different powder feed rates, Appl. Surf. Sci. 254(13), 3879–3889 (2008).
  • G. Akdogan, T. A. Stolarski, and S. Tobe, Surface fatigue of molybdenum and Al-bronze coatings in unlubricated rolling/sliding contact, Wear 253(3–4), 319–330 (2002).
  • S. Tobe, M. Yamane, and T. A. Stolarski, Friction and wear of polytetrafluoroethylene reservoirs embedded into metallurgical coatings, Proc. Instit. Mech. Eng. J. Eng. Tribol. 219(2), 107–115 (2005).
  • T. A. Stolarski and M. Yamane, Tribological performance of PTFE–metal binary coatings in rolling/sliding contact, Tribol. Lett. 46(3), 313–327 (2012).
  • M. Yamane, T. A. Stolarski, and S. Tobe, Wear and friction mechanism of PTFE reservoirs embedded into thermal sprayed metallic coatings, Wear 263(7–12), 1364–1374 (2007).
  • G. Akdogan, T. A. Stolarski, and S. Tobe, Wear and friction mechanism of PTFE reservoirs embedded into thermal sprayed metallic coatings, J. Mater. Sci. 37(23), 5013–5019 (2002).
  • G. Akdogan, T. A. Stolarski, and S. Tobe, Wear performance of polytetrafluoroethylene-metal coatings in rolling/sliding line contact, Proc. Instit. Mech. Eng. J. Eng. Tribol. 217(2), 103–114 (2003).
  • S. Jones, T. A. Stolarski, and S. Tobe, Sliding performance of binary metal–PTFE coatings, Wear 257 (5–6), 539–554 (2004).
  • M. G. Shi, F. Miyazawa, S. Tobe, and T. A. Stolarski, The friction and wear properties of PTFE composite-thermal spray metallic binary coatings, Mater. Trans. 46 (1), 84–87 (2005).
  • M. Fujii, Application of Hard Coating into Power Transmission Machine Element-Tribology under Sliding-Rolling Contact Condition, J. Japan. Soc. Tribol. 55, 329–334 (2010).
  • R. Ahmed, Contact fatigue failure modes of HVOF coatings, Wear 253 (3–4), 473–487 (2002).
  • S. Stewart and R. Ahmed, Contact fatigue failure modes in hot isostatically pressed WC-12%Co coatings, Surf. Coat. Technol. 172 (2–3), 204–216 (2003).
  • M. Hadfield, Proceedings of the 14th International Thermal Spray Conference 1097 (1995).
  • R. Ahmed, H. Yu, S. Stewart, L. Edwards, and J. R. Santisteban, Residual strain measurements in thermal spray cermet coatings via neutron diffraction, Trans. ASME. J. Tribol. 129 (2), 411 (2007).
  • X. C. Zhang, B. S. Xu, F. Z. Xuan, Z. D. Wang, and S. T. Tu, Failure mode and fatigue mechanism of laser-remelted plasma-sprayed Ni alloy coatings in rolling contact, Surf. Coat. Technol. 205 (10), 3119–3127 (2011).
  • X. C. Zhang, B. S. Xu, F. Z. Xuan, S. T. Tu, H. D. Wang, and Y. X. Wu, Rolling contact fatigue behavior of plasma-sprayed CrC–NiCr cermet coatings, Wear. 265(11–12), 1875–1883 (2008).
  • Z. Y. Piao, B. S. Xu, H. D. Wang, and C. H. Pu, Influence of undercoating on rolling contact fatigue performance of Fe-based coating, Tribol. Int. 43(1–2), 252–258 (2010).
  • J.-j. Kang, B.-s. Xu, H.-d. Wang, and C.-b. Wang, Investigation of a novel rolling contact fatigue/wear competitive life test machine faced to surface coating, Tribol. Int. 66, 249–258 (2013).
  • S.-y. Chen, H.-d. Wang, G.-z. Ma, J.-j. Kang, and B.-s. Xu, Fractal properties of worn surface of Fe-based alloy coatings during rolling contact process, Appl. Surf. Sci. 364, 96–102 (2016).
  • V. Manoj, K. Manohar Shenoy, and K. Gopinath, Developmental studies on rolling contact fatigue test rig, Wear. 264(7–8), 708–718 (2008).
  • G. L. Li, Z. L. Xu, T. S. Dong, H. D. Wang, J. H. Liu, and J. J. Kang, Acoustic Emission Investigation of Rolling/Sliding Contact Fatigue Failure of NiCr-Cr3C2 Coating, J. Therm. Spray Technol. 25, 1365–1372 (2016).
  • A. Makela, P. Vuoristo, M. Lahdensuo, K. Niemi, and T. Mantyla, Rolling Contact Fatigue Testing Of Thermally Sprayed Coatings, Therm. Spray Ind. Appl. 759–763 (1994).
  • T. S. P. Chang, H. S. Cheng, and W. D. Sproul, The Influence of Coating Thickness on Lubricated Rolling-Contact Fatigue Life, Surf. Coat. Technol. 43–44, 699–708 (1990).
  • R. Ahmed and M. Hadfield, Rolling contact fatigue performance of plasma sprayed coatings, Wear 220(1), 80–91 (1998).
  • Z. Y. Piao, B. S. Xu, H. D. Wang, and C. H. Pu, Investigation of rolling contact fatigue lives of Fe-Cr alloy coatings under different loading conditions, Surf. Coat. Technol. 204, 1405–1411 (2010).
  • X. C. Zhang, B. S. Xu, F. Z. Xuan, S. T. Tu, H. D. Wang, and Y. X. Wu, Fatigue resistance of plasma-sprayed CrC–NiCr cermet coatings in rolling contact, Appl. Surf. Sci. 254(13), 3734–3744 (2008).
  • J.-j. Kang, B.-s. Xu, H.-d. Wang, and C.-b. Wang, Competing failure mechanism and life prediction of plasma sprayed composite ceramic coating in rolling–sliding contact condition, Tribol. Int. 73, 128–137 (2014).
  • R. Ahmed and M. Hadfield, Rolling contact fatigue performance of detonation gun coated elements, Tribol. Int. 30(2), 129–137 (1997).
  • N. K. Arakere, Gigacycle rolling contact fatigue of bearing steels: A review, Int. J. Fatigue 93, 238–249 (2016).
  • S. Shimizu, Weibull distribution function application to static strength and fatigue life of materials, Tribol. Trans. 55(3), 267–277 (2012).
  • A. Thakur, A. Mohanty, and S. Gangopadhyay, Comparative study of surface integrity aspects of Incoloy 825 during machining with uncoated and CVD multilayer coated inserts, Appl. Surf. Sci. 320, 829–837 (2014).
  • M. Imran, P. T. Mativenga, A. Gholinia, and P. J. Withers, Comparison of tool wear mechanisms and surface integrity for dry and wet micro-drilling of nickel-base superalloys, Int. J. Mach. Tools Manuf. 76, 49–60 (2014).
  • H. K. Rafi, G. D. J. Ram, G. Phanikumar, and K. P. Rao, Friction surfaced tool steel (H13) coatings on low carbon steel: A study on the effects of process parameters on coating characteristics and integrity, Surf. Coat. Technol. 205(1), 232–242 (2010).
  • K. Holmberg, A. Matthews, and H. Ronkainen, Coatings tribology—Contact mechanisms and surface design, Tribol. Int. 31 (1–3), 107–120 (1998).
  • Z. Y. Piao, J. Xu, L. Z. Yin, D. H. Wen, B. S. Xu, and H. D. Wang, Surface integrity design of plasma sprayed coating for resisting contact fatigue, Mater. Chem. Phys. 179, 174–181 (2016).
  • X. C. Zhang, B. S. Xu, S. T. Tu, F. Z. Xuan, Y. K. Zhang, H. D. Wang, and Y. X. Wu, Rolling contact fatigue mechanism of a plasma-sprayed and laser-remelted Ni alloy coating, Fatigue Fract. Eng. Mater. Struct. 32, 84–96 (2009).
  • S. Stewart, R. Ahmed, and T. Itsukaichi, Rolling contact fatigue of post-treated WC–NiCrBSi thermal spray coatings, Surf. Coat. Technol. 190(2–3), 171–189 (2005).
  • A. Nakajima, D. M. Nuruzzaman, and T. Mawatari, Influence of spraying process and coating thickness on durability of WC cermet coating, J. Mech. Eng. 37, 58–61 (1970).
  • A. Nakajima, Surface Durability of WC Cermet Coating in Rolling/Sliding Contact-Effects of Substrate Material and Coating Thickness, Proc. ITC Nagasaki. 2000 (2001).
  • Z. Y. Piao, B. S. Xu, H. D. Wang, and C. H. Pu, Effects of thickness and elastic modulus on stress condition of fatigue-resistant coating under rolling contact, J. Cent. South Univ. Technol. 17(5), 899–905 (2010).
  • M. A. Guler, S. Adibnazari, and Y. Alinia, Tractive rolling contact mechanics of graded coatings, Int. J. Solids Struct. 49(6), 929–945 (2012).
  • M. A. Guler, Y. Alinia, and S. Adibnazari, On the rolling contact problem of two elastic solids with graded coatings, Int. J. Mech. Sci. 64(1), 62–81 (2012).
  • R. Ahmed, and M. Hadfield, Wear of high-velocity oxy-fuel (HVOF)-coated cones in rolling contact, Wear 203, 98–106 (1997).
  • R. Ahmed, and M. Hadfield, Influence of coating thickness and contact stress on the fatigue failure of HVOF coatings, 1009–1015 (2001).
  • X. C. Zhang, B. S. Xu, H. D. Wang, Y. X. Wu, and Y. Jiang, Effects of compositional gradient and thickness of coating on the residual stresses within the graded coating, Mater. Design. 28, 1192–1197 (2007).
  • X. C. Zhang, B. S. Xu, H. D. Wang, and Y. X. Wu, Effect of graded interlayer on the mode I edge delamination by residual stresses in multilayer coating-based systems, Appl. Surf. Sci. 254(7), 1881–1889 (2008).
  • R. Ahmed, and M. Hadfield, Wear-mapping to optimize overlay coating design in rolling sliding contacts, Tribol. Environ. Des. 2003, 59–70 (2003).
  • Z.-q. Zhang, H.-d. Wang, B.-S. Xu, and G.-s. Zhang, Investigation on influence of WC–Ni addition on rolling contact fatigue behavior of plasma sprayed Ni-based alloy coating, Tribol. Int. 90, 509–518 (2015).
  • D. M. Nuruzzaman, A. Nakajima, and T. Mawatari, Effects of substrate surface finish and substrate material on durability of thermally sprayed WC cermet coating in rolling with sliding contact, Tribol. Int. 39(7), 678–685 (2006).
  • M. A. Guler and F. Erdogan, Contact mechanics of two deformable elastic solids with graded coatings, Mech. Mater. 38(7), 633–647 (2006).
  • Y. Alinia, M. A. Guler, and S. Adibnazari, On the contact mechanics of a rolling cylinder on a graded coating. Part 1: Analytical formulation, Mech. Mater. 68, 207–216 (2014).
  • M. A. Guler, Y. Alinia, and S. Adibnazari, On the contact mechanics of a rolling cylinder on a graded coating. Part 2: Numerical results, Mech. Mater. 66, 134–159 (2013).
  • Z. Y. Piao, B. S. Xu, H. D. Wang, and D. H. Wen, Influence of surface nitriding treatment on rolling contact behavior of Fe-based plasma sprayed coating. Appl. Surf. Sci. 266, 420–425 (2013).
  • C. Li, X. Zhang, Y. Chen, J. Carr, S. Jacques, J. Behnsen, M. di Michiel, P. Xiao, and R. Cernik, Understanding the residual stress distribution through the thickness of atmosphere plasma sprayed (APS) thermal barrier coatings (TBCs) by high energy synchrotron XRD; digital image correlation (DIC) and image based modelling, Acta Mater. 132, 1–12 (2017).
  • V. Katranidis, S. Gu, T. R. Reina, E. Alpay, B. Allcock, and S. Kamnis, Experimental study of high velocity oxy-fuel sprayed WC-17Co coatings applied on complex geometries. Part B: Influence of kinematic spray parameters on microstructure, phase composition and decarburization of the coatings, Surf. Coat. Technol. 328, 499–512 (2017).
  • X. C. Zhang, B. S. Xu, H. D. Wang, and Y. X. Wu, An analytical model for predicting thermal residual stresses in multilayer coating systems, Thin Solid Films. 488(1–2), 274–282 (2005).
  • A. G. M. Pukasiewicz, H. E. de Boer, G. B. Sucharski, R. F. Vaz, and L. A. J. Procopiak, The influence of HVOF spraying parameters on the microstructure, residual stress and cavitation resistance of FeMnCrSi coatings, Surf. Coat Technol. 327, 158–166 (2017).
  • M. Elhoriny, M. Wenzelburger, A. Killinger, and R. Gadow, Finite element simulation of residual stress development in thermally sprayed coatings, J. Therm. Spray Technol. 26(4), 735–744 (2017).
  • R. Ahmed, M. Hadfield, and S. Tobe, Residual stress analysis in thermal spray coated rolling elements, Thermal Spray: Practical Solutions for Engineering Problems, 875–883 (1996).
  • R. Nieminen, P. Vuoristo, K. Niemi, and T. Mantyla, Rolling contact fatigue characteristics of thermal sprayed tungsten carbide coatings, Adv. Therm. Spray Sci. Technol., 651–657 (1995).
  • Z. Y. Piao, B. S. Xu, H. D. Wang, and D. H. Wen, Influence of surface roughness on rolling contact fatigue behavior of Fe-Cr alloy coatings, J. Mater. Eng. Perform. 22(3), 767–773 (2013).
  • S.-y. Chen, G.-z. Ma, H.-d. Wang, J.-j. Kang, B.-s. Xu, H.-j. Wang, and M. Liu, Investigation of competing failure mechanism and life of plasma sprayed Fe-based alloy coating under rolling–sliding contact condition, Tribol. Int. 101, 25–32 (2016).
  • H. Hertz, On the contact of elastic solids. J. Reine Angew. Math. 92, 156–171 (1882).
  • X. C. Zhang, F. Z. Xuan, J. S. Xu, S. T. Tu, and B. S. Xu, Stress-dependent fatigue mechanisms of CrC-NiCr coatings in rolling contact, Fatigue Fract. Eng. Mater. Struct. 34, 438–447 (2011).
  • J. Zhou, B. S. Xu, H. D. Wang, Z. G. Xing, L. N. Zhu, and S. Y. Chen, Investigation of stress of Fe–Cr alloy coating under rolling contact, Surf. Eng. 31 (10), 789–795 (2015).
  • Z.-q. Zhang, H.-D. Wang, B.-s. Xu, and G.-s. Zhang, Influence of loading levels on RCF life and failure mode of Ni-based alloy and WC–Ni ceramic composite coatings, Int. J. Fatigue 74, 30–37 (2015).
  • M. Yoshida, Durability and Tribological Properties of Thermally Sprayed WC Cermet Coating in Rolling/Sliding Contact, Proceedings of ITSC’95.
  • B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156(3775), 636–638 (1967).
  • M. A. Guler and F. Erdogan, Contact mechanics of graded coatings, Int. J. Solids Struct. 41(14), 3865–3889 (2004).
  • M. A. Guler and F. Erdogan, The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings, Int. J. Mech. Sci. 49(2), 161–182 (2007).
  • S. Way, Pitting due to rolling contact, ASME J. Appl. Mech. 2, A49 (1935).
  • Z. Y. Piao, B. S. Xu, and H. D. Wang, Investigation of spalling mechanism of the thermal sprayed coating under rolling contact by FIB-SEM, Eng. Failure Anal. 25, 106–111 (2012).
  • A. Nakajima, D. M. Nuruzzaman, T. Mawatari, and M. Yoshida, A separation of experimental study on coatings failure signal responses under rolling contact, Daffodil Int. Uni. J. Sci. Technol. 50, 537–545 (2005).
  • Z. Y. Piao, B. S. Xu, H. D. Wang, and C. H. Pu, Tribol. Int. 44, 1304–1308 (2011).
  • G. L. Li, Z. Q. Zhang, H. D. Wang, B. S. Xu, Z. Y. Piao, and L. N. Zhu, Fretting damage modeling of liner-bearing interaction by combined finite element – Discrete element method, Tribol. Int. 61, 19–137 (2013).
  • A. W. Warren and Y. B. Guo, Acoustic emission monitoring for rolling contact fatigue of superfinished ground surfaces, Int. J. Fatigue 29 (4), 603–614 (2007).
  • J. M. Miguel, J. M. Guilemany, B. G. Mellor, and Y. M. Xu, Acoustic emission study on WC–Co thermal sprayed coatings, Mater. Sci. Eng. A. 352 (1–2), 55–63 (2003).
  • Z. Y. Piao, B. S. Xu, H. D. Wang, and C. H. Pu, Investigation of fatigue failure prediction of Fe–Cr alloy coatings under rolling contact based on acoustic emission technique, Appl. Surf. Sci. 257 (7), 2581–2586 (2011).
  • Z. Y. Piao, B. S. Xu, H. D. Wang, and D. H. Wen, Investigation of acoustic emission source of Fe-based sprayed coating under rolling contact, Int. J. Fatigue 47, 184–188 (2013).
  • J. Xu, Z.-y. Zhou, and Z.-y. Piao, Accumulated damage process of thermal sprayed coating under rolling contact by acoustic emission technique, Front. Mech. Eng. 11 (3), 227–232 (2016).
  • S. Ahmadian, A. Browning, and E. H. Jordan, Three-dimensional X-ray micro-computed tomography of cracks in a furnace cycled air plasma sprayed thermal barrier coating, Scr. Mater. 97, 13–16 (2015).
  • F. Sondej, A. Bück, K. Koslowsky, P. Bachmann, M. Jacob, and E. Tsotsas, Investigation of coating layer morphology by micro-computed X-ray tomography, Powder Technol. 273, 165–175 (2015).
  • Z. Y. Piao, Z. Y. Zhou, J. Xu, and H. D. Wang, Use of X-ray computed tomography to investigate rolling contact cracks in plasma sprayed Fe–Cr–B–Si coating, Tribol. Lett. 67(1), 8 (2019).
  • B. Y. Sarma and W. M. Mayuram, Some studies on life prediction of thermal sprayed coatings under rolling contact conditions, J. Tribol. Trans. ASME. 122(3), 503–510 (1999).
  • G. Lundberg, Dynamic Capacity of Roller Bearings, Acta. Polytechnica. 7 (1947).
  • T. E. Tallian, Simplified contact fatigue life prediction model—Part II: New model, Trans. ASME J. Tribol. 114(2), 214–220 (1992).
  • J. Farley, L. C. Wrobel, and K. Mao, Low cycle fatigue simulation and fatigue life prediction of multilayer coated surfaces, Wear 269(9–10), 639–646 (2010).
  • J. Farley, L. C. Wrobel, and K. Mao, Performance evaluation of multilayer thin film coatings under mixed rolling–sliding dry contact conditions, Wear 268(1–2), 269–276 (2010).
  • X. Lin, G. Chen, and X. Du, Establishment of accident risk early-warning macroscopic model on ventilation, gas, dust and fire in coal mine, Procedia Eng. 45, 53–58 (2012).
  • S. Gupta, D. S. Singh, and A. Ray, Statistical pattern analysis of ultrasonic signals for fatigue damage detection in mechanical structures, NDT E Int. 41, 491–500 (2008).
  • Y. Zhou, K. Dong, H. Zhengliang, J. Wang, and Y. Yang, Fault Detection Based on Acoustic Emission–Early Agglomeration Recognition System in Fluidized Bed Reactor, Ind. Eng. Chem. Res. 50, 8476–8484 (2011).
  • P. Zhong-Yu, X. Bin-Shi, W. Hai-Dou, and W. Dong-Hui, Investigation of RCF failure prewarning of Fe-based coating by online monitoring, Tribol. Int. 72, 156–160 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.