1,025
Views
4
CrossRef citations to date
0
Altmetric
Other

Pore size matters!—a critical review on the supercapacitive charge storage enhancement of biocarbonaceous materials

, ORCID Icon, , ORCID Icon, , , & ORCID Icon show all

References

  • Zhou, Y.; Wang, C. H.; Lu, W.; Dai, L. Recent Advances in Fiber‐Shaped Supercapacitors and Lithium‐Ion Batteries. Adv. Mater. 2020, 32, 1902779. doi:10.1002/adma.201902779
  • Santos, F.; Urbina, A.; Abad, J.; López, R.; Toledo, C.; Romero, A. F. Environmental and Economical Assessment for a Sustainable Zn/Air Battery. Chemosphere 2020, 250, 126273.
  • Jaschin, P. W.; Gao, Y.; Li, Y.; Bo, S.-H. A Materials Perspective to Magnesium Ion Solid-State Electrolytes. J. Mater. Chem. A. 2020, 8, 2875–2897. doi:10.1039/C9TA11729F
  • Yu, F.; Du, L.; Zhang, G.; Su, F.; Wang, W.; Sun, S. Electrode Engineering by Atomic Layer Deposition for Sodium‐Ion Batteries: From Traditional to Advanced Batteries. Adv. Funct. Mater. 2020, 30, 1906890. doi:10.1002/adfm.201906890
  • Goodenough, J. B.; Park, K.-S. The li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. doi:10.1021/ja3091438
  • Conway, B. E. Electrochemical Supercapacitors: scientific Fundamentals and Technological Applications. 2nd ed. 1997, New York: Kluwer Academic/Plenum Publishers. 105–114.
  • Krishnan, S. G.; Harilal, M.; Arshid, N.; Jagadish, P.; Khalid, M.; Li, L. P. Rapid Microwave-Assisted Synthesis of MnCo2O4 Nanoflakes as a Cathode for Battery-Supercapacitor Hybrid. J. Energy Storage. 2021, 44, 103566. doi:10.1016/j.est.2021.103566
  • Zhao, X.; Mao, L.; Cheng, Q.; Li, J.; Liao, F.; Yang, G.; Xie, L.; Zhao, C.; Chen, L. Recent Advances in Two-Dimensional Spinel Structured co-Based Materials for High Performance Supercapacitors: A Critical Review. Chem. Eng. J. 2020, 387, 124081.
  • Egashira, M.; Matsuno, Y.; Yoshimoto, N.; Morita, M. Pseudo-Capacitance of Composite Electrode of Ruthenium Oxide with Porous Carbon in Non-Aqueous Electrolyte Containing Imidazolium Salt. J. Power Sources. 2010, 195, 3036–3040. doi:10.1016/j.jpowsour.2009.11.046
  • Hao, P.; Zhao, Z.; Li, L.; Tuan, C.-C.; Li, H.; Sang, Y.; Jiang, H.; Wong, C. P.; Liu, H. The Hybrid Nanostructure of MnCo2O4.5 Nanoneedle/Carbon Aerogel for Symmetric Supercapacitors with High Energy Density. Nanoscale. 2015, 7, 14401–14412. doi:10.1039/c5nr04421a
  • Brousse, T.; Taberna, P.-L.; Crosnier, O.; Dugas, R.; Guillemet, P.; Scudeller, Y.; Zhou, Y.; Favier, F.; Bélanger, D.; Simon, P. Long-Term Cycling Behavior of Asymmetric Activated Carbon/MnO2 Aqueous Electrochemical Supercapacitor. J. Power Sources. 2007, 173, 633–641. doi:10.1016/j.jpowsour.2007.04.074
  • Vidhyadharan, B.; Misnon, I. I.; Aziz, R. A.; Padmasree, K. P.; Yusoff, M. M.; Jose, R. Superior Supercapacitive Performance in Electrospun Copper Oxide Nanowire Electrodes. J. Mater. Chem. A. 2014, 2, 6578–6588. doi:10.1039/C3TA15304E
  • Harilal, M.; Krishnan, S. G.; Vijayan, B. L.; Venkatashamy Reddy, M.; Adams, S.; Barron, A. R.; Yusoff, M. M.; Jose, R. Continuous Nanobelts of Nickel Oxide–Cobalt Oxide Hybrid with Improved Capacitive Charge Storage Properties. Mater. Des. 2017, 122, 376–384. doi:10.1016/j.matdes.2017.03.024
  • Wu, Y.; Chen, H.; Lu, Y.; Yang, J.; Zhu, X.; Zheng, Y.; Lou, G.; Wu, Y.; Wu, Q.; Shen, Z.; Pan, Z. Rational Design of Cobalt-Nickel Double Hydroxides for Flexible Asymmetric Supercapacitor with Improved Electrochemical Performance. J. Colloid Interface Sci. 2021, 581, 455–464. doi:10.1016/j.jcis.2020.08.013
  • Li, M.; Addad, A.; Roussel, P.; Szunerits, S.; Boukherroub, R. High Performance Flexible Hybrid Supercapacitors Based on Nickel Hydroxide Deposited on Copper Oxide Supported by Copper Foam for a Sunlight-Powered Rechargeable Energy Storage System. J. Colloid Interface Sci. 2020, 579, 520–530. doi:10.1016/j.jcis.2020.06.092
  • El-Hout, S. I.; Mohamed, S. G.; Gaber, A.; Attia, S. Y.; Shawky, A.; El-Sheikh, S. M. High Electrochemical Performance of rGO Anchored CuS Nanospheres for Supercapacitor Applications. J. Energy Storage 2020, 34, 102001.
  • He, Y.; Zhang, X.; Wang, S.; Meng, J.; Sui, Y.; Wei, F.; Qi, J.; Meng, Q.; Ren, Y.; Zhuang, D. Rubik’s Cube-like Ni3S4/CuS2 Nanocomposite for High-Performance Supercapacitors. J. Alloy. Compd. 2020, 847, 156312. doi:10.1016/j.jallcom.2020.156312
  • Krishnan, S. G.; Harilal, M.; Yar, A.; Vijayan, B. L.; Dennis, J. O.; Yusoff, M. M.; Jose, R. Critical Influence of Reduced Graphene Oxide Mediated Binding of M (M = Mg, Mn) with Co Ions, Chemical Stability and Charge Storability Enhancements of Spinal-Type Hierarchical MCo2O4 Nanostructures. Electrochim. Acta. 2017, 243, 119–128. doi:10.1016/j.electacta.2017.05.064
  • Reddy, M. V.; Rajesh, M.; Adams, S.; Chowdari, B. V. R. Effect of Initial Reactants and Reaction Temperature on Molten Salt Synthesis of CuCo2O4 and Its Sustainable Energy Storage Properties. ACS Sustain. Chem. Eng. 2016, 4, 3076–3086.
  • Zhang, X.; Wang, J.; Ji, X.; Sui, Y.; Wei, F.; Qi, J.; Meng, Q.; Ren, Y.; He, Y. Nickel/Cobalt Bimetallic Metal-Organic Frameworks Ultrathin Nanosheets with Enhanced Performance for Supercapacitors. J. Alloy. Compd. 2020, 825, 154069. doi:10.1016/j.jallcom.2020.154069
  • Zhang, X.; Qu, N.; Yang, S.; Lei, D.; Liu, A.; Zhou, Q. Cobalt Induced Growth of Hollow MOF Spheres for High Performance Supercapacitors. Mater. Chem. Front 2020, 5, 482–491. doi:10.1039/D0QM00597E
  • Brousse, T.; Bélanger, D.; Long, J. W. To Be or Not to Be Pseudocapacitive? J. Electrochem. Soc. 2015, 162, A5185–A5189. doi:10.1149/2.0201505jes
  • Simon, P.; Gogotsi, Y.; Dunn, B. Materials Science. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210–1211. doi:10.1126/science.1249625
  • Gogotsi, Y.; Penner, R. M. Energy Storage in Nanomaterials – Capacitive, Pseudocapacitive, or Battery-like? ACS Nano. 2018, 12, 2081–2083. doi:10.1021/acsnano.8b01914
  • Wang, Q.; Yan, J.; Fan, Z. Carbon Materials for High Volumetric Performance Supercapacitors: Design, Progress, Challenges and Opportunities. Energy Environ. Sci. 2016, 9, 729–762. doi:10.1039/C5EE03109E
  • González-García, P. Activated Carbon from Lignocellulosics Precursors: A Review of the Synthesis Methods, Characterization Techniques and Applications. Renew. Sust. Energ. Rev. 2018, 82, 1393–1414. doi:10.1016/j.rser.2017.04.117
  • Salunkhe, R. R.; Kaneti, Y. V.; Kim, J.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications . Acc. Chem. Res. 2016, 49, 2796–2806. doi:10.1021/acs.accounts.6b00460
  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. [Database] doi:10.1038/nmat2297
  • Li, Y.; Roy, S.; Ben, T.; Xu, S.; Qiu, S. Micropore Engineering of Carbonized Porous Aromatic Framework (PAF-1) for Supercapacitors Application. Phys. Chem. Chem. Phys. 2014, 16, 12909–12917. doi:10.1039/c4cp00550c
  • Wang, J.; Luo, X.; Young, C.; Kim, J.; Kaneti, Y. V.; You, J.; Kang, Y.-M.; Yamauchi, Y.; Wu, K. C. W. A Glucose-Assisted Hydrothermal Reaction for Directly Transforming Metal–Organic Frameworks into Hollow Carbonaceous Materials. Chem. Mater. 2018, 30, 4401–4408. doi:10.1021/acs.chemmater.8b01792
  • Young, C.; Kim, J.; Kaneti, Y. V.; Yamauchi, Y. One-Step Synthetic Strategy of Hybrid Materials from Bimetallic Metal–Organic Frameworks for Supercapacitor Applications. ACS Appl. Energy Mater. 2018, 1, 2007–2015. doi:10.1021/acsaem.8b00103
  • Pokharel, J.; Gurung, A.; Baniya, A.; He, W.; Chen, K.; Pathak, R.; Lamsal, B. S.; Ghimire, N.; Zhou, Y. MOF-Derived Hierarchical Carbon Network as an Extremely-High-Performance Supercapacitor Electrode. Electrochim. Acta. 2021, 394, 139058. doi:10.1016/j.electacta.2021.139058
  • Salunkhe, R. R.; Young, C.; Tang, J.; Takei, T.; Ide, Y.; Kobayashi, N.; Yamauchi, Y. A High-Performance Supercapacitor Cell Based on ZIF-8-Derived Nanoporous Carbon Using an Organic Electrolyte. Chem. Commun. 2016, 52, 4764–4767. doi:10.1039/C6CC00413J
  • Xu, D.; Ding, Q.; Li, J.; Chen, H.; Pan, Y.; Liu, J. A Sheet-like MOF-Derived Phosphorus-Doped Porous Carbons for Supercapacitor Electrode Materials. Inorganic Chem. Commun 2020, 119, 108141. doi:10.1016/j.inoche.2020.108141
  • Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal-Organic Framework. ACS Nano. 2015, 9, 6288–6296. doi:10.1021/acsnano.5b01790
  • Clark, J. H.; Farmer, T. J.; Herrero-Davila, L.; Sherwood, J. Circular Economy Design Considerations for Research and Process Development in the Chemical Sciences. Green Chem. 2016, 18, 3914–3934. doi:10.1039/C6GC00501B
  • Sherwood, J. The Significance of Biomass in a Circular Economy. Bioresour. Technol 2020, 300, 122755. doi:10.1016/j.biortech.2020.122755
  • Wassei, J. K.; Kaner, R. B. Graphene, a Promising Transparent Conductor. Mater. Today 2010, 13, 52–59. doi:10.1016/S1369-7021(10)70034-1
  • Dou, X.; Hasa, I.; Hekmatfar, M.; Diemant, T.; Behm, R. J.; Buchholz, D.; Passerini, S. Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries. ChemSusChem 2017, 10, 2668–2676. doi:10.1002/cssc.201700628
  • Pal, B.; Krishnan, S. G.; Vijayan, B. L.; Harilal, M.; Yang, C.-C.; Ezema, F. I.; Yusoff, M. M.; Jose, R. In Situ Encapsulation of Tin Oxide and Cobalt Oxide Composite in Porous Carbon for High-Performance Energy Storage Applications. J. Electroanal. Chem. 2018, 817, 217–225. doi:10.1016/j.jelechem.2018.04.019
  • Ochai-Ejeh, F. O.; Bello, A.; Dangbegnon, J.; Khaleed, A. A.; Madito, M. J.; Bazegar, F.; Manyala, N. High Electrochemical Performance of Hierarchical Porous Activated Carbon Derived from Lightweight Cork (Quercus Suber). J. Mater. Sci. 2017, 52, 10600–10613. doi:10.1007/s10853-017-1205-4
  • Sarsaiya, S.; Jain, A.; Kumar Awasthi, S.; Duan, Y.; Kumar Awasthi, M.; Shi, J. Microbial Dynamics for Lignocellulosic Waste Bioconversion and Its Importance with Modern Circular Economy, Challenges and Future Perspectives. Bioresour. Technol. 2019, 291, 121905. doi:10.1016/j.biortech.2019.121905
  • Wainaina, S.; Awasthi, M. K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S. K.; Liu, T.; Duan, Y.; et al. Resource Recovery and Circular Economy from Organic Solid Waste Using Aerobic and Anaerobic Digestion Technologies. Bioresour. Technol. 2020, 301, 122778. doi:10.1016/j.biortech.2020.122778
  • Mourão, P.; Laginhas, C.; Custódio, F.; Nabais, J. V.; Carrott, P.; Carrott, M. R. Influence of Oxidation Process on the Adsorption Capacity of Activated Carbons from Lignocellulosic Precursors. Fuel Process. Technol. 2011, 92, 241–246. doi:10.1016/j.fuproc.2010.04.013
  • Birss, V.I.; Conway, B.; Wojtowicz, J. eds. The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors. 1997.
  • Conway, B. E.; Birss, V.; Wojtowicz, J. The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors. J. Power Sources 1997, 66, 1–14. doi:10.1016/S0378-7753(96)02474-3
  • Sing, K. S. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem 1985, 57, 603–619. doi:10.1351/pac198557040603
  • Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Self-Assembly of Block Copolymers towards Mesoporous Materials for Energy Storage and Conversion Systems. Chem. Soc. Rev. 2020, 49, 4681–4736. doi:10.1039/d0cs00021c
  • Vijayan, B. L.; Misnon, I. I.; Anil Kumar, G. M.; Miyajima, K.; Reddy, M. V.; Zaghib, K.; Karuppiah, C.; Yang, C.-C.; Jose, R. Facile Fabrication of Thin Metal Oxide Films on Porous Carbon for High Density Charge Storage. J Colloid Interface Sci. 2020, 562, 567–577. doi:10.1016/j.jcis.2019.11.077
  • Deng, J.; Li, M.; Wang, Y. Biomass-Derived Carbon: synthesis and Applications in Energy Storage and Conversion. Green Chem. 2016, 18, 4824–4854. doi:10.1039/C6GC01172A
  • Abioye, A. M.; Ani, F. N. Recent Development in the Production of Activated Carbon Electrodes from Agricultural Waste Biomass for Supercapacitors: A Review. Renew. Sust. Energ. Rev. 2015, 52, 1282–1293. doi:10.1016/j.rser.2015.07.129
  • Cuña, A.; Tancredi, N.; Bussi, J.; Deiana, A. C.; Sardella, M. F.; Barranco, V.; Rojo, J. M. E. Grandis as a Biocarbons Precursor for Supercapacitor Electrode Application. Waste Biomass Valor. 2014, 5, 305–313. doi:10.1007/s12649-013-9257-4
  • Ma, G.; Guo, D.; Sun, K.; Peng, H.; Yang, Q.; Zhou, X.; Zhao, X.; Lei, Z. Cotton-Based Porous Activated Carbon with a Large Specific Surface Area as an Electrode Material for High-Performance Supercapacitors. RSC Adv. 2015, 5, 64704–64710. doi:10.1039/C5RA11179J
  • Zhang, L.; Xu, L.; Zhang, Y.; Zhou, X.; Zhang, L.; Yasin, A.; Wang, L.; Zhi, K. Facile Synthesis of Bio-Based Nitrogen- and Oxygen-Doped Porous Carbon Derived from Cotton for Supercapacitors. RSC Adv. 2018, 8, 3869–3877. doi:10.1039/C7RA11475C
  • Taer, E.; Manik, S. T.; Taslim, R.; Dahlan, D.; Deraman, M. Preparation of Activated Carbon Monolith Electrodes from Sugarcane Bagasse by Physical and Physical-Chemical Activation Process for Supercapacitor Application. Adv. Mater. Res. 2014, 896, 179–182. doi:10.4028/www.scientific.net/AMR.896.179
  • Madhu, R.; Veeramani, V.; Chen, S.-M.; Veerakumar, P.; Liu, S.-B.; Miyamoto, N. Functional Porous Carbon-ZnO Nanocomposites for high-Performance Biosensors and Energy Storage Applications. Phys. Chem. Chem. Phys. 2016, 18, 16466–16475. doi:10.1039/c6cp01285j
  • Tan, Z.; Yang, J.; Liang, Y.; Zheng, M.; Hu, H.; Dong, H.; Liu, Y.; Xiao, Y. The Changing Structure by Component: Biomass-Based Porous Carbon for High-Performance Supercapacitors. J. Colloid Interface Sci. 2020, 585, 778–786. doi:10.1016/j.jcis.2020.10.058
  • Sarkar, S.; Arya, A.; Gaur, U. K.; Gaur, A. Investigations on Porous Carbon Derived from Sugarcane Bagasse as an Electrode Material for Supercapacitors. Biomass Bioenerg. 2020, 142, 105730. doi:10.1016/j.biombioe.2020.105730
  • Karthikeyan, K.; Amaresh, S.; Lee, S. N.; Sun, X.; Aravindan, V.; Lee, Y.-G.; Lee, Y. S. Construction of High-Energy-Density Supercapacitors from Pine-Cone-Derived High-Surface-Area Carbons. ChemSusChem 2014, 7, 1435–1442. doi:10.1002/cssc.201301262
  • Manyala, N.; Bello, A.; Barzegar, F.; Khaleed, A. A.; Momodu, D. Y.; Dangbegnon, J. K. Coniferous Pine Biomass: A Novel Insight into Sustainable Carbon Materials for Supercapacitors Electrode. Mater. Chem. Phys. 2016, 182, 139–147. doi:10.1016/j.matchemphys.2016.07.015
  • Barzegar, F.; Bello, A.; Dangbegnon, J. K.; Manyala, N.; Xia, X. Asymmetric Supercapacitor Based on Activated Expanded Graphite and Pinecone Tree Activated Carbon with Excellent Stability. Appl. Energy. 2017, 207, 417–426. doi:10.1016/j.apenergy.2017.05.110
  • Rajesh, M.; Manikandan, R.; Park, S.; Kim, B. C.; Cho, W.-J.; Yu, K. H.; Raj, C. J. Pinecone Biomass-Derived Activated Carbon: The Potential Electrode Material for the Development of Symmetric and Asymmetric Supercapacitors. Int. J. Energy Res. 2020, 44, 8591–8605. doi:10.1002/er.5548
  • Elmouwahidi, A.; Bailón-García, E.; Pérez-Cadenas, A. F.; Maldonado-Hódar, F. J.; Carrasco-Marín, F. Activated Carbons from KOH and H3PO4-Activation of Olive Residues and Its Application as Supercapacitor Electrodes. Electrochim. Acta. 2017, 229, 219–228. doi:10.1016/j.electacta.2017.01.152
  • Wang, R.; Wang, P.; Yan, X.; Lang, J.; Peng, C.; Xue, Q. Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and co2 Capture Performance. ACS Appl. Mater. Interfaces. 2012, 4, 5800–5806. doi:10.1021/am302077c
  • Peng, C.; Lang, J.; Xu, S.; Wang, X. Oxygen-Enriched Activated Carbons from Pomelo Peel in High Energy Density Supercapacitors. RSC Adv. 2014, 4, 54662–54667. doi:10.1039/C4RA09395J
  • Kishore, B.; Shanmughasundaram, D.; Penki, T. R.; Munichandraiah, N. Coconut Kernel-Derived Activated Carbon as Electrode Material for Electrical Double-Layer Capacitors. J. Appl. Electrochem. 2014, 44, 903–916. doi:10.1007/s10800-014-0708-9
  • Barzegar, F.; Khaleed, A. A.; Ugbo, F. U.; Oyeniran, K. O.; Momodu, D. Y.; Bello, A.; Dangbegnon, J. K.; Manyala, N. Cycling and Floating Performance of Symmetric Supercapacitor Derived from Coconut Shell Biomass. AIP Adv. 2016, 6, 115306. doi:10.1063/1.4967348
  • Thakur, A. K.; Choudhary, R. B.; Majumder, M.; Gupta, G. In-Situ Integration of Waste Coconut Shell Derived Activated Carbon/Polypyrrole/Rare Earth Metal Oxide (Eu2O3): A Novel Step towards Ultrahigh Volumetric Capacitance. Electrochim. Acta 2017, 251, 532–545. doi:10.1016/j.electacta.2017.08.159
  • Fu, Y.; Zhang, N.; Shen, Y.; Ge, X.; Chen, M. Micro-Mesoporous Carbons from Original and Pelletized Rice Husk via One-Step Catalytic Pyrolysis. Bioresour. Technol. 2018, 269, 67–73. doi:10.1016/j.biortech.2018.08.083
  • Le Van, K.; Luong Thi Thu, T. Preparation of Pore-Size Controllable Activated Carbon from Rice Husk Using Dual Activating Agent and Its Application in Supercapacitor. J. Chem 2019, 2019, 1–11. doi:10.1155/2019/4329609
  • Xue, B.; Jin, L.; Chen, Z.; Zhu, Y.; Wang, Z.; Liu, X.; Wang, X. The Template Effect of Silica in Rice Husk for Efficient Synthesis of the Activated Carbon Based Electrode Material. J. Alloy Compd 2019, 789, 777–784. doi:10.1016/j.jallcom.2019.03.012
  • Gao, Y.; Li, L.; Jin, Y.; Wang, Y.; Yuan, C.; Wei, Y.; Chen, G.; Ge, J.; Lu, H. Porous Carbon Made from Rice Husk as Electrode Material for Electrochemical Double Layer Capacitor. Appl. Energy 2015, 153, 41–47. doi:10.1016/j.apenergy.2014.12.070
  • Lebedeva, M. V.; Yeletsky, P. M.; Ayupov, A. B.; Kuznetsov, A. N.; Yakovlev, V. A.; Parmon, V. N. Micro–Mesoporous Carbons from Rice Husk as Active Materials for Supercapacitors. Mater. Renew. Sustain. Energy. 2015, 4, 20.
  • Lebedeva, M. V.; Yeletsky, P. M.; Ayupov, A. B.; Kuznetsov, A. N.; Gribov, E. N.; Parmon, V. N. Rice Husk Derived Micro-Mesoporous Carbon Materials as Active Components of Supercapacitor Electrodes. Catal. Ind. 2018, 10, 173–180. doi:10.1134/S2070050418020125
  • Fu, H-h.; Chen, L.; Gao, H.; Yu, X.; Hou, J.; Wang, G.; Yu, F.; Li, H.; Fan, C.; Shi, Y-l.; Guo, X. Walnut Shell-Derived Hierarchical Porous Carbon with High Performances for Electrocatalytic Hydrogen Evolution and Symmetry Supercapacitors. Int. J. Hydrog. Energy 2020, 45, 443–451. doi:10.1016/j.ijhydene.2019.10.159
  • Xue, B.; Wang, X.; Feng, Y.; Chen, Z.; Liu, X. Self-Template Synthesis of Nitrogen-Doped Porous Carbon Derived from Rice Husks for the Fabrication of High Volumetric Performance Supercapacitors. J. Energy Storage 2020, 30, 101405. doi:10.1016/j.est.2020.101405
  • Bhattacharjya, D.; Yu, J.-S. Activated Carbon Made from Cow Dung as Electrode Material for Electrochemical Double Layer Capacitor. J. Power Sources 2014, 262, 224–231. doi:10.1016/j.jpowsour.2014.03.143
  • Jin, H.; Wang, X.; Shen, Y.; Gu, Z. A High-Performance Carbon Derived from Corn Stover via Microwave and Slow Pyrolysis for Supercapacitors. J. Anal. Appl. Pyrolysis 2014, 110, 18–23. doi:10.1016/j.jaap.2014.07.010
  • Huang, L.; Wu, Q.; Liu, S.; Yu, S.; Ragauskas, A. J. Solvent-Free Production of Carbon Materials with Developed Pore Structure from Biomass for High-Performance Supercapacitors. Ind. Crops Prod. 2020, 150, 112384. doi:10.1016/j.indcrop.2020.112384
  • Sun, G.; Qiu, L.; Zhu, M.; Kang, K.; Guo, X. Activated Carbons Prepared by Hydrothermal Pretreatment and Chemical Activation of Eucommia Ulmoides Wood for Supercapacitors Application. Ind. Crop. Prod. 2018, 125, 41–49. doi:10.1016/j.indcrop.2018.08.082
  • Mohd Nor, N. S.; M.; Deraman, R.; Omar, Awitdrus, R.; Farma, N. H.; Basri, B. N.; Mohd Dolah, N. F.; Mamat, B.; Yatim, M. N. Md Daud, Influence of Gamma Irradiation Exposure on the Performance of Supercapacitor Electrodes Made from Oil Palm Empty Fruit Bunches. Energy. 2015, 79, 183–194.
  • Soltaninejad, S.; Daik, R.; Deraman, M.; Chin, Y.; Nor, N.; Sazali, N.; Hamdan, E.; Jasni, M.; Ishak, M.; Noroozi, M. Physical and Electrochemical Characteristics of Carbon Monoliths Electrodes from Activation of Pre-Carbonized Fibers of Oil Palm Empty Fruit Bunches Added with Varying Amount of Polypyrrole. Int. J. Electrochem. Sci. 2015, 10, 10524–10542.
  • Tran Thi Dieu, H.; Charoensook, K.; Tai, H.-C.; Lin, Y.-T.; Li, Y.-Y. Preparation of Activated Carbon Derived from Oil Palm Empty Fruit Bunches and Its Modification by Nitrogen Doping for Supercapacitors. J. Porous Mater 2020, 28, 9–18. doi:10.1007/s10934-020-00957-2
  • Luo, Q.-P.; Huang, L.; Gao, X.; Cheng, Y.; Yao, B.; Hu, Z.; Wan, J.; Xiao, X.; Zhou, J. Activated Carbon Derived from Melaleuca Barks for Outstanding High-Rate Supercapacitors. Nanotechnology 2015, 26, 304004. doi:10.1088/0957-4484/26/30/304004
  • Chang, J.; Gao, Z.; Wang, X.; Wu, D.; Xu, F.; Wang, X.; Guo, Y.; Jiang, K. Activated Porous Carbon Prepared from Paulownia Flower for High Performance Supercapacitor Electrodes. Electrochim. Acta. 2015, 157, 290–298. doi:10.1016/j.electacta.2014.12.169
  • Liu, Z.; Zhu, Z.; Dai, J.; Yan, Y. Waste Biomass Based-Activated Carbons Derived from Soybean Pods as Electrode Materials for High-Performance Supercapacitors. ChemistrySelect. 2018, 3, 5726–5732. doi:10.1002/slct.201800609
  • Teng, Y.; Liu, E.; Ding, R.; Liu, K.; Liu, R.; Wang, L.; Yang, Z.; Jiang, H. Bean Dregs-Based Activated Carbon/Copper Ion Supercapacitors. Electrochim. Acta. 2016, 194, 394–404. doi:10.1016/j.electacta.2016.01.227
  • Chung, H.-Y.; Pan, G.-T.; Hong, Z.-Y.; Hsu, C.-T.; Chong, S.; Yang, T. C.-K.; Huang, C.-M. Biomass-Derived Porous Carbons Derived from Soybean Residues for High Performance Solid State Supercapacitors. Molecules. 2020, 25, 4050–4050. doi:10.3390/molecules25184050
  • Guo, Z.; Kong, X.; Wu, X.; Xing, W.; Zhou, J.; Zhao, Y.; Zhuo, S. Heteroatom-Doped Hierarchical Porous Carbon via Molten-Salt Method for Supercapacitors. Electrochim. Acta. 2020, 360, 137022. doi:10.1016/j.electacta.2020.137022
  • Jain, A.; Tripathi, S. K. Converting Eucalyptus Leaves into Mesoporous Carbon for Its Application in Quasi Solid-State Supercapacitors. J. Solid State Electrochem. 2013, 17, 2545–2550. doi:10.1007/s10008-013-2140-1
  • Subramani, K.; Sudhan, N.; Karnan, M.; Sathish, M. Orange Peel Derived Activated Carbon for Fabrication of High-Energy and High-Rate Supercapacitors. ChemistrySelect 2017, 2, 11384–11392. doi:10.1002/slct.201701857
  • Ahmed, S.; Rafat, M.; Ahmed, A. Nitrogen Doped Activated Carbon Derived from Orange Peel for Supercapacitor Application. Adv. Nat. Sci.: Nanosci. 2018, 9, 035008.
  • Yang, L.; Yang, Y.; Wang, S.; Guan, X.; Guan, X.; Wang, G. Multi-Heteroatom-Doped Carbon Materials for Solid-State Hybrid Supercapacitors with a Superhigh Cycling Performance. Energy Fuels. 2020, 34, 5032–5043. doi:10.1021/acs.energyfuels.9b04505
  • Nasir, S.; Hussein, M. Z.; Zainal, Z.; Yusof, N. A.; Zobir, M.; Afif, S. Electrochemical Energy Storage Potentials of Waste Biomass: oil Palm Leaf-and Palm Kernel Shell-Derived Activated Carbons. Energies 2018, 11, 3410. doi:10.3390/en11123410
  • Misnon, I. I.; Zain, N. K. M.; Jose, R. Conversion of Oil Palm Kernel Shell Biomass to Activated Carbon for Supercapacitor Electrode Application. Waste Biomass Valor. 2019, 10, 1731–1740. doi:10.1007/s12649-018-0196-y
  • Xu, M.; Li, D.; Yan, Y.; Guo, T.; Pang, H.; Xue, H. Porous High Specific Surface Area-Activated Carbon with co-Doping N, S and P for High-Performance Supercapacitors. RSC Adv. 2017, 7, 43780–43788. doi:10.1039/C7RA07945A
  • Misnon, I. I.; Zain, N. K. M.; Aziz, R. A.; Vidyadharan, B.; Jose, R. Electrochemical Properties of Carbon from Oil Palm Kernel Shell for High Performance Supercapacitors. Electrochim. Acta 2015, 174, 78–86. doi:10.1016/j.electacta.2015.05.163
  • Taer, E.; Taslim, R.; Putri, A.; Apriwandi, A.; Agustino, A. Activated Carbon Electrode Made from Coconut Husk Waste for Supercapacitor Application. Int. J. Electrochem. Sci. 2018, 13, 12072–12084. doi:10.20964/2018.12.19
  • Goodman, P. A.; Li, H.; Gao, Y.; Lu, Y.; Stenger-Smith, J.; Redepenning, J. Preparation and Characterization of High Surface Area, High Porosity Carbon Monoliths from Pyrolyzed Bovine Bone and Their Performance as Supercapacitor Electrodes. Carbon 2013, 55, 291–298. doi:10.1016/j.carbon.2012.12.066
  • Huang, W.; Zhang, H.; Huang, Y.; Wang, W.; Wei, S. Hierarchical Porous Carbon Obtained from Animal Bone and Evaluation in Electric Double-Layer Capacitors. Carbon 2011, 49, 838–843. doi:10.1016/j.carbon.2010.10.025
  • Boukmouche, N.; Azzouz, N.; Bouchama, L.; Chopart, J. P.; Bouznit, Y. Activated Carbon Derived from Marine Posidonia Oceanica for Electric Energy Storage. Arab. J. Chem 2014, 7, 347–354. doi:10.1016/j.arabjc.2012.12.010
  • Han, J.; Jeong, S.-Y.; Lee, J. H.; Choi, J. W.; Lee, J.-W.; Roh, K. C. Structural and Electrochemical Characteristics of Activated Carbon Derived from Lignin-Rich Residue. ACS Sustain. Chem. Eng. 2019, 7, 2471–2482. doi:10.1021/acssuschemeng.8b05351
  • Du, X.; Zhao, W.; Ma, S.; Ma, M.; Qi, T.; Wang, Y.; Hua, C. Effect of ZnCl2 Impregnation Concentration on the Microstructure and Electrical Performance of Ramie-Based Activated Carbon Hollow Fiber. Ionics 2016, 22, 545–553. doi:10.1007/s11581-015-1571-3
  • Sun, Z.; Liao, J.; Sun, B.; He, M.; Pan, X.; Zhu, J.; Shi, C.; Jiang, Y. Nitrogen Self-Doped Porous Carbon Materials Derived from a New Biomass Source for Highly Stable Supercapacitors. Int. J. Electrochem. Sci. 2017, 12, 12084–12097. doi:10.20964/2017.12.400
  • Wang, K.; Zhao, N.; Lei, S.; Yan, R.; Tian, X.; Wang, J.; Song, Y.; Xu, D.; Guo, Q.; Liu, L. Promising Biomass-Based Activated Carbons Derived from Willow Catkins for High Performance Supercapacitors. Electrochim. Acta 2015, 166, 1–11. doi:10.1016/j.electacta.2015.03.048
  • Wang, K.; Song, Y.; Yan, R.; Zhao, N.; Tian, X.; Li, X.; Guo, Q.; Liu, Z. High Capacitive Performance of Hollow Activated Carbon Fibers Derived from Willow Catkins. Appl. Surf. Sci 2017, 394, 569–577. doi:10.1016/j.apsusc.2016.10.161
  • Jiang, M.; Zhang, J.; Xing, L.; Zhou, J.; Cui, H.; Si, W.; Zhuo, S. KOH-Activated Porous Carbons Derived from Chestnut Shell with Superior Capacitive Performance. Chin. J. Chem. 2016, 34, 1093–1102. doi:10.1002/cjoc.201600320
  • Ahmed, S.; Parvaz, M.; Johari, R.; Rafat, M. Studies on Activated Carbon Derived from Neem (Azadirachta indica) Bio-Waste, and Its Application as Supercapacitor Electrode. Mater. Res. Express 2018, 5, 045601. doi:10.1088/2053-1591/aab924
  • Ahmed, S.; Ahmed, A.; Rafat, M. Nitrogen Doped Activated Carbon from Pea Skin for High Performance Supercapacitor. Mater. Res. Express 2018, 5, 045508. doi:10.1088/2053-1591/aabbe7
  • Li, J.; Ren, Z.; Ren, Y.; Zhao, L.; Wang, S.; Yu, J. Activated Carbon with Micrometer-Scale Channels Prepared from Luffa Sponge Fibers and Their Application for Supercapacitors. RSC Adv 2014, 4, 35789–35796. doi:10.1039/C4RA04073B
  • Yang, X.; Li, M.; Guo, N.; Yan, M.; Yang, R.; Wang, F. Functionalized Porous Carbon with Appropriate Pore Size Distribution and Open Hole Texture Prepared by H2O2 and EDTA-2Na Treatment of Loofa Sponge and Its Excellent Performance for Supercapacitors. RSC Adv. 2016, 6, 4365–4376. doi:10.1039/C5RA24055G
  • Su, X.-L.; Chen, J.-R.; Zheng, G.-P.; Yang, J.-H.; Guan, X.-X.; Liu, P.; Zheng, X.-C. Three-Dimensional Porous Activated Carbon Derived from Loofah Sponge Biomass for Supercapacitor Applications. Appl. Surf. Sci 2018, 436, 327–336. doi:10.1016/j.apsusc.2017.11.249
  • Sun, K.; Li, J.; Peng, H.; Feng, E.; Ma, G.; Lei, Z. Promising Nitrogen-Doped Porous Nanosheets Carbon Derived from Pomegranate Husk as Advanced Electrode Materials for Supercapacitors. Ionics 2017, 23, 985–996. doi:10.1007/s11581-016-1897-5
  • Sim, C.-K.; Majid, S. R.; Mahmood, N. Z. Electrochemical Performance of Activated Carbon Derived from Treated Food-Waste. Int. J. Electrochem. Sci 2015, 10, e10172.
  • Zhu, Y.; Fang, T.; Hua, J.; Qiu, S.; Chu, H.; Zou, Y.; Xiang, C.; Huang, P.; Zhang, K.; Lin, X.; et al. Biomass-Derived Porous Carbon Prepared from Egg White for High-Performance Supercapacitor Electrode Materials. ChemistrySelect 2019, 4, 7358–7365. doi:10.1002/slct.201901632
  • Li, Z.; Xu, Z.; Wang, H.; Ding, J.; Zahiri, B.; Holt, C. M. B.; Tan, X.; Mitlin, D. Colossal Pseudocapacitance in a High Functionality–High Surface Area Carbon Anode Doubles the Energy of an Asymmetric Supercapacitor. Energy Environ. Sci 2014, 7, 1708–1718. doi:10.1039/C3EE43979H
  • Chang, J.; Gao, Z.; Liu, X.; Wu, D.; Xu, F.; Guo, Y.; Guo, Y.; Jiang, K. Hierarchically Porous Carbons with Graphene Incorporation for Efficient Supercapacitors. Electrochim. Acta 2016, 213, 382–392. doi:10.1016/j.electacta.2016.07.107
  • Ma, H.; Li, C.; Zhang, M.; Hong, J.-D.; Shi, G. Graphene Oxide Induced Hydrothermal Carbonization of Egg Proteins for High-Performance Supercapacitors. J. Mater. Chem. A. 2017, 5, 17040–17047. doi:10.1039/C7TA04771A
  • Guo, D.; Xin, R.; Wang, Y.; Jiang, W.; Gao, Q.; Hu, G.; Fan, M. N-Doped Carbons with Hierarchically Micro- and Mesoporous Structure Derived from Sawdust for High Performance Supercapacitors. Micropor. Mesopor. Mater 2019, 279, 323–333. doi:10.1016/j.micromeso.2019.01.003
  • Yang, L.; Feng, Y.; Cao, M.; Yao, J. Two-Step Preparation of Hierarchical Porous Carbon from KOH-Activated Wood Sawdust for Supercapacitor. Mater. Chem. Phys 2019, 238, 121956. doi:10.1016/j.matchemphys.2019.121956
  • Quan, C.; Su, R.; Gao, N. Preparation of Activated Biomass Carbon from Pine Sawdust for Supercapacitor and CO2 Capture. Int. J. Energy Res. 2020, 44, 4335–4351. doi:10.1002/er.5206
  • Yang, L.; Qiu, J.; Wang, Y.; Guo, S.; Feng, Y.; Dong, D.; Yao, J. Molten Salt Synthesis of Hierarchical Porous Carbon from Wood Sawdust for Supercapacitors. J. Electroanal. Chem 2020, 856, 113673. doi:10.1016/j.jelechem.2019.113673
  • Eleri, O. E.; Azuatalam, K. U.; Minde, M. W.; Trindade, A. M.; Muthuswamy, N.; Lou, F.; Yu, Z. Towards High-Energy-Density Supercapacitors via Less-Defects Activated Carbon from Sawdust. Electrochim. Acta 2020, 362, 137152. doi:10.1016/j.electacta.2020.137152
  • Sun, K.; Zhang, Z.; Peng, H.; Zhao, G.; Ma, G.; Lei, Z. Hybrid Symmetric Supercapacitor Assembled by Renewable Corn Silks Based Porous Carbon and Redox-Active Electrolytes. Mater. Chem. Phys 2018, 218, 229–238. doi:10.1016/j.matchemphys.2018.07.052
  • Gopiraman, M.; Deng, D.; Kim, B.-S.; Chung, I.-M.; Kim, I. S. Three-Dimensional Cheese-like Carbon Nanoarchitecture with Tremendous Surface Area and Pore Construction Derived from Corn as Superior Electrode Materials for Supercapacitors. Appl. Surf. Sci 2017, 409, 52–59. doi:10.1016/j.apsusc.2017.02.209
  • Mitravinda, T.; Nanaji, K.; Anandan, S.; Jyothirmayi, A.; Chakravadhanula, V. S. K.; Sharma, C. S.; Rao, T. N. Facile Synthesis of Corn Silk Derived Nanoporous Carbon for an Improved Supercapacitor Performance. J. Electrochem. Soc. 2018, 165, A3369–A3379. doi:10.1149/2.0621814jes
  • Mathew, S.; Kadam, P.; Rai, M.; Karandikar, P. B.; Kulkarni, N. Symmetric and Asymmetric Supercapacitors Derived from Banyan Tree Leaves and Rose Petals. in 2016 IEEE Students' Conference on Electrical, Electronics and Computer Science (SCEECS). 2016. IEEE.
  • Khan, A.; Arumugam Senthil, R.; Pan, J.; Sun, Y.; Liu, X. Hierarchically Porous Biomass Carbon Derived from Natural Withered Rose Flowers as High-Performance Material for Advanced Supercapacitors. Batteries Supercaps. 2020, 3, 731–737. doi:10.1002/batt.202000046
  • Del Ángel-Meraz, E.; de Jesús Orantes-Flores, H.; Morales, E. R.; Sevilla-Camacho, P.; Castillo-Palomera, R. The Use of Activated Carbon from Coffee Endocarp for the Manufacture of Supercapacitors. J. Mater. Sci. Mater 2020, 31, 7547–7554. https://doi.org/10.1007/s10854-020-03123-1
  • Choi, J.-H.; Lee, C.; Cho, S.; Moon, G. D.; Kim, B-s.; Chang, H.; Jang, H. D. High Capacitance and Energy Density Supercapacitor Based on Biomass-Derived Activated Carbons with Reduced Graphene Oxide Binder. Carbon 2018, 132, 16–24. doi:10.1016/j.carbon.2018.01.105
  • Jayakumar, A.; Zhao, J.; Lee, J.-M. A Coconut Leaf Sheath Derived Graphitized N-Doped Carbon Network for High-Performance Supercapacitors. ChemElectroChem 2018, 5, 284–291. doi:10.1002/celc.201701133
  • Chen, H.; Zhao, Z.; Qi, P.; Wang, G.; Shi, L.; Yu, F. Sulphur-Doped Banana Peel-Derived Activated Carbon as Electrode Materials for Supercapacitors. IJNM. 2019, 15, 181–195. doi:10.1504/IJNM.2019.097253
  • Yadav, N.; Singh, M. K.; Yadav, N.; Hashmi, S. A. High Performance Quasi-Solid-State Supercapacitors with Peanut-Shell-Derived Porous Carbon. J. Power Sources 2018, 402, 133–146. doi:10.1016/j.jpowsour.2018.09.032
  • Wu, M.-F.; Hsiao, C.-H.; Lee, C.-Y.; Tai, N.-H. Flexible Supercapacitors Prepared Using the Peanut-Shell-Based Carbon. ACS Omega. 2020, 5, 14417–14426.
  • Song, Y.; Qu, W.; He, Y.; Yang, H.; Du, M.; Wang, A.; Yang, Q.; Chen, Y. Synthesis and Processing Optimization of N-Doped Hierarchical Porous Carbon Derived from Corncob for High Performance Supercapacitors. J. Energy Storage 2020, 32, 101877. doi:10.1016/j.est.2020.101877
  • Ghosh, S.; Santhosh, R.; Jeniffer, S.; Raghavan, V.; Jacob, G.; Nanaji, K.; Kollu, P.; Jeong, S. K.; Grace, A. N. Natural Biomass Derived Hard Carbon and Activated Carbons as Electrochemical Supercapacitor Electrodes. Sci. Rep. 2019, 9, 16315. doi:10.1038/s41598-019-52006-x
  • Adhikari, M. P.; Adhikari, R.; Shrestha, R. G.; Rajendran, R.; Adhikari, L.; Bairi, P.; Pradhananga, R. R.; Shrestha, L. K.; Ariga, K. Nanoporous Activated Carbons Derived from Agro-Waste Corncob for Enhanced Electrochemical and Sensing Performance. Bcsj. 2015, 88, 1108–1115. doi:10.1246/bcsj.20150092
  • Fan, Y.; Yang, X.; Zhu, B.; Liu, P.-F.; Lu, H.-T. Micro-Mesoporous Carbon Spheres Derived from Carrageenan as Electrode Material for Supercapacitors. J. Power Sources 2014, 268, 584–590. doi:10.1016/j.jpowsour.2014.06.100
  • Elmouwahidi, A.; Bailón-García, E.; Pérez-Cadenas, A. F.; Carrasco-Marín, F. Valorization of Agricultural Wood Wastes as Electrodes for Electrochemical Capacitors by Chemical Activation with H3PO4 and KOH. Wood Sci. Technol. 2020, 54, 401–420. doi:10.1007/s00226-020-01163-8
  • Su, X.-L.; Li, S.-H.; Jiang, S.; Peng, Z.-K.; Guan, X.-X.; Zheng, X.-C. Superior Capacitive Behavior of Porous Activated Carbon Tubes Derived from Biomass Waste-Cotonier Strobili Fibers. Adv. Powder Technol 2018, 29, 2097–2107. doi:10.1016/j.apt.2018.05.018
  • Yan, S.; Lin, J.; Liu, P.; Zhao, Z.; Lian, J.; Chang, W.; Yao, L.; Liu, Y.; Lin, H.; Han, S. Preparation of Nitrogen-Doped Porous Carbons for High-Performance Supercapacitor Using Biomass of Waste Lotus Stems. RSC Adv. 2018, 8, 6806–6813. doi:10.1039/C7RA13013A
  • Sivachidambaram, M.; Vijaya, J. J.; Kennedy, L. J.; Jothiramalingam, R.; Al-Lohedan, H. A.; Munusamy, M. A.; Elanthamilan, E.; Merlin, J. P. Preparation and Characterization of Activated Carbon Derived from the Borassus Flabellifer Flower as an Electrode Material for Supercapacitor Applications. New J. Chem. 2017, 41, 3939–3949. doi:10.1039/C6NJ03867K
  • Moreno-Castilla, C.; García-Rosero, H.; Carrasco-Marín, F. Symmetric Supercapacitor Electrodes from KOH Activation of Pristine, Carbonized, and Hydrothermally Treated Melia Azedarach Stones. Materials 2017, 10, 747. doi:10.3390/ma10070747
  • Ou, Y-j.; Peng, C.; Lang, J-w.; Zhu, D-d.; Yan, X-b. Hierarchical Porous Activated Carbon Produced from Spinach Leaves as an Electrode Material for an Electric Double Layer Capacitor. New Carbon Mater 2014, 29, 209–215. doi:10.1016/S1872-5805(14)60135-9
  • Ahirrao, D. J.; Tambat, S.; Pandit, A. B.; Jha, N. Sweet Lime Peels Derived Activated Carbon Based Electrode for Highly Efficient Supercapacitor and Flow-through Water Desalination. ChemistrySelect 2019, 4, 2610–2625. doi:10.1002/slct.201803417
  • Li, X.; Xing, W.; Zhuo, S.; Zhou, J.; Li, F.; Qiao, S.-Z.; Lu, G.-Q. Preparation of Capacitor’s Electrode from Sunflower Seed Shell. Bioresour. Technol. 2011, 102, 1118–1123.
  • Chen, X.; Wu, K.; Gao, B.; Xiao, Q.; Kong, J.; Xiong, Q.; Peng, X.; Zhang, X.; Fu, J. Three-Dimensional Activated Carbon Recycled from Rotten Potatoes for High-Performance Supercapacitors. Waste Biomass Valor. 2016, 7, 551–557. doi:10.1007/s12649-015-9458-0
  • Fan, Y.; Liu, P.; Zhu, B.; Chen, S.; Yao, K.; Han, R. Microporous Carbon Derived from Acacia Gum with Tuned Porosity for High-Performance Electrochemical Capacitors. Int. J. Hydrog. Energy 2015, 40, 6188–6196. doi:10.1016/j.ijhydene.2015.03.090
  • Sesuk, T.; Tammawat, P.; Jivaganont, P.; Somton, K.; Limthongkul, P.; Kobsiriphat, W. Activated Carbon Derived from Coconut Coir Pith as High Performance Supercapacitor Electrode Material. J. Energy Storage. 2019, 25, 100910. doi:10.1016/j.est.2019.100910
  • Wang, C.; Wu, D.; Wang, H.; Gao, Z.; Xu, F.; Jiang, K. Nitrogen-Doped Two-Dimensional Porous Carbon Sheets Derived from Clover Biomass for High Performance Supercapacitors. J. Power Sources. 2017, 363, 375–383. doi:10.1016/j.jpowsour.2017.07.097
  • Ma, G.; Zhang, Z.; Sun, K.; Peng, H.; Yang, Q.; Ran, F.; Lei, Z. White Clover Based Nitrogen-Doped Porous Carbon for a High Energy Density Supercapacitor Electrode. RSC Adv. 2015, 5, 107707–107715. doi:10.1039/C5RA20327A
  • Yu, X.; Wang, Y.; Li, L.; Li, H.; Shang, Y. Soft and Wrinkled Carbon Membranes Derived from Petals for Flexible Supercapacitors. Sci. Rep. 2017, 7, 45378.
  • Kang, X.; Zhu, H.; Wang, C.; Sun, K.; Yin, J. Biomass Derived Hierarchically Porous and Heteroatom-Doped Carbons for Supercapacitors. J. Colloid Interface Sci. 2018, 509, 369–383.
  • Madhu, R.; Sankar, K. V.; Chen, S.-M.; Selvan, R. K. Eco-Friendly Synthesis of Activated Carbon from Dead Mango Leaves for the Ultrahigh Sensitive Detection of Toxic Heavy Metal Ions and Energy Storage Applications. RSC Adv. 2014, 4, 1225–1233. doi:10.1039/C3RA45089A
  • Liang, S.-X.; Duan, F.-F.; Lü, Q.-F.; Yang, H. Hierarchical Biocarbons with Controlled Micropores and Mesopores Derived from Kapok Fruit Peels for High-Performance Supercapacitor Electrodes. ACS Omega 2019, 4, 5991–5999. doi:10.1021/acsomega.9b00148
  • Wang, X.; Gao, Z.; Chang, J.; Wu, D.; Wang, X.; Xu, F.; Guo, Y.; Jiang, K. Electrochemical Energy Storage and Adsorptive Dye Removal of Platanus Fruit-Derived Porous Carbon. RSC Adv. 2015, 5, 15969–15976. doi:10.1039/C4RA14357D
  • Hao, Z.-Q.; Cao, J.-P.; Wu, Y.; Zhao, X.-Y.; Zhou, L.; Fan, X.; Zhao, Y.-P.; Wei, X.-Y. Preparation of Porous Carbons from Waste Sugar Residue for High Performance Electric Double-Layer Capacitor. Fuel Process. Technol. 2017, 162, 45–54. doi:10.1016/j.fuproc.2017.03.031
  • Long, C.; Chen, X.; Jiang, L.; Zhi, L.; Fan, Z. Porous Layer-Stacking Carbon Derived from in-Built Template in Biomass for High Volumetric Performance Supercapacitors. Nano Energy 2015, 12, 141–151. doi:10.1016/j.nanoen.2014.12.014
  • Wang, Y.; Zhang, M.; Dai, Y.; Wang, H.-Q.; Zhang, H.; Wang, Q.; Hou, W.; Yan, H.; Li, W.; Zheng, J.-C. Nitrogen and Phosphorus co-Doped Silkworm-Cocoon-Based Self-Activated Porous Carbon for High Performance Supercapacitors. J. Power Sources. 2019, 438, 227045. doi:10.1016/j.jpowsour.2019.227045
  • Wang, X.; Yun, S.; Fang, W.; Zhang, C.; Liang, X.; Lei, Z.; Liu, Z. Layer-Stacking Activated Carbon Derived from Sunflower Stalk as Electrode Materials for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 11397–11407. doi:10.1021/acssuschemeng.8b01334
  • Wu, F.; Gao, J.; Zhai, X.; Xie, M.; Sun, Y.; Kang, H.; Tian, Q.; Qiu, H. Hierarchical Porous Carbon Microrods Derived from Albizia Flowers for High Performance Supercapacitors. Carbon 2019, 147, 242–251. doi:10.1016/j.carbon.2019.02.072
  • Sun, K.; Yu, S.; Hu, Z.; Li, Z.; Lei, G.; Xiao, Q.; Ding, Y. Oxygen-Containing Hierarchically Porous Carbon Materials Derived from Wild Jujube Pit for High-Performance Supercapacitor. Electrochim. Acta. 2017, 231, 417–428. doi:10.1016/j.electacta.2017.02.078
  • Li, Y.; Zheng, K.; Shah, S. A. A.; Huang, Y.; Tian, Y.; Cheng, J.; Zhang, J. Winter-Jujube-Derived Carbon with Self-Doped Heteroatoms and a Hierarchically Porous Structure for High-Performance Supercapacitors. RSC Adv. 2017, 7, 43356–43365. doi:10.1039/C7RA08275D
  • Liu, X.; Ma, C.; Li, J.; Zielinska, B.; Kalenczuk, R. J.; Chen, X.; Chu, P. K.; Tang, T.; Mijowska, E. Biomass-Derived Robust Three-Dimensional Porous Carbon for High Volumetric Performance Supercapacitors. J. Power Sources 2019, 412, 1–9. doi:10.1016/j.jpowsour.2018.11.032
  • Gurten Inal, I. I.; Aktas, Z. Enhancing the Performance of Activated Carbon Based Scalable Supercapacitors by Heat Treatment. Appl. Surf. Sci. 2020, 514, 145895. doi:10.1016/j.apsusc.2020.145895
  • Inal, I. I. G.; Holmes, S. M.; Banford, A.; Aktas, Z. The Performance of Supercapacitor Electrodes Developed from Chemically Activated Carbon Produced from Waste Tea. Appl. Surf. Sci. 2015, 357, 696–703. doi:10.1016/j.apsusc.2015.09.067
  • Ma, G.; Li, J.; Sun, K.; Peng, H.; Feng, E.; Lei, Z. Tea-Leaves Based Nitrogen-Doped Porous Carbons for High-Performance Supercapacitors Electrode. J. Solid State Electrochem. 2017, 21, 525–535. doi:10.1007/s10008-016-3389-y
  • Khan, A.; Senthil, R. A.; Pan, J.; Osman, S.; Sun, Y.; Shu, X. A New Biomass Derived Rod-like Porous Carbon from Tea-Waste as Inexpensive and Sustainable Energy Material for Advanced Supercapacitor Application. Electrochim. Acta 2020, 335, 135588. doi:10.1016/j.electacta.2019.135588
  • Elaiyappillai, E.; Srinivasan, R.; Johnbosco, Y.; Devakumar, P.; Murugesan, K.; Kesavan, K.; Johnson, P. M. Low Cost Activated Carbon Derived from Cucumis Melo Fruit Peel for Electrochemical Supercapacitor Application. Appl. Surf. Sci. 2019, 486, 527–538. doi:10.1016/j.apsusc.2019.05.004
  • Wang, X.; Wang, M.; Zhang, X.; Li, H.; Guo, X. Low-Cost, Green Synthesis of Highly Porous Carbons Derived from Lotus Root Shell as Superior Performance Electrode Materials in Supercapacitor. J. Energy Chem. 2016, 25, 26–34. doi:10.1016/j.jechem.2015.10.012
  • Sudhan, N.; Subramani, K.; Karnan, M.; Ilayaraja, N.; Sathish, M. Biomass-Derived Activated Porous Carbon from Rice Straw for a High-Energy Symmetric Supercapacitor in Aqueous and Non-Aqueous Electrolytes. Energy Fuels 2017, 31, 977–985. doi:10.1021/acs.energyfuels.6b01829
  • Liu, S.; Zhao, Y.; Zhang, B.; Xia, H.; Zhou, J.; Xie, W.; Li, H. Nano-Micro Carbon Spheres Anchored on Porous Carbon Derived from Dual-Biomass as High Rate Performance Supercapacitor Electrodes. J. Power Sources 2018, 381, 116–126. doi:10.1016/j.jpowsour.2018.02.014
  • Cheng, P.; Gao, S.; Zang, P.; Yang, X.; Bai, Y.; Xu, H.; Liu, Z.; Lei, Z. Hierarchically Porous Carbon by Activation of Shiitake Mushroom for Capacitive Energy Storage. Carbon 2015, 93, 315–324. doi:10.1016/j.carbon.2015.05.056
  • Yang, H.; Sun, X.; Zhu, H.; Yu, Y.; Zhu, Q.; Fu, Z.; Ta, S.; Wang, L.; Zhu, H.; Zhang, Q. Nano-Porous Carbon Materials Derived from Different Biomasses for High Performance Supercapacitors. Ceram. Int 2020, 46, 5811–5820. doi:10.1016/j.ceramint.2019.11.031
  • Manasa, P.; Lei, Z. J.; Ran, F. Biomass Waste Derived Low Cost Activated Carbon from Carchorus Olitorius (Jute Fiber) as Sustainable and Novel Electrode Material. J. Energy Storage 2020, 30, 101494. doi:10.1016/j.est.2020.101494
  • Shen, F.; Zhu, L.; Qi, X. Nitrogen Self-Doped Hierarchical Porous Carbon from Myriophyllum Aquaticum for Supercapacitor Electrode. ChemistrySelect 2018, 3, 11350–11356. doi:10.1002/slct.201802400
  • Elanthamilan, E.; Sriram, B.; Rajkumar, S.; Dhaneshwaran, C.; Nagaraj, N.; Princy Merlin, J.; Vijayan, A.; Wang, S.-F. Couroupita Guianansis Dead Flower Derived Porous Activated Carbon as Efficient Supercapacitor Electrode Material. Mater. Res. Bull 2019, 112, 390–398. doi:10.1016/j.materresbull.2018.12.028
  • Yu, D.; Chen, C.; Zhao, G.; Sun, L.; Du, B.; Zhang, H.; Li, Z.; Sun, Y.; Besenbacher, F.; Yu, M. Biowaste-Derived Hierarchical Porous Carbon Nanosheets for Ultrahigh Power Density Supercapacitors. ChemSusChem 2018, 11, 1678–1685.
  • Pandi, K.; Sankar, K. V.; Kalpana, D.; Lee, Y. S.; Selvan, R. K. Fabrication of Solid-State Flexible Fiber Supercapacitor Using Agave Americana Derived Activated Carbon and Its Performance Analysis at Different Conditions. ChemistrySelect 2016, 1, 6713–6725. doi:10.1002/slct.201601365
  • Zhong, Y.; Li, Q.; Liu, R. Blueberry Peel Derived Porous Carbon for High-Performance Supercapacitors: The Effect of n-Doping and Activation. ChemistrySelect 2020, 5, 1029–1036. doi:10.1002/slct.201904820
  • Bai, S.; Tan, G.; Li, X.; Zhao, Q.; Meng, Y.; Wang, Y.; Zhang, Y.; Xiao, D. Pumpkin-Derived Porous Carbon for Supercapacitors with High Performance. Chem. Asian J. 2016, 11, 1828–1836.
  • Lu, Y.; Zhang, S.; Yin, J.; Bai, C.; Zhang, J.; Li, Y.; Yang, Y.; Ge, Z.; Zhang, M.; Wei, L.; et al. Mesoporous Activated Carbon Materials with Ultrahigh Mesopore Volume and Effective Specific Surface Area for High Performance Supercapacitors. Carbon 2017, 124, 64–71. doi:10.1016/j.carbon.2017.08.044
  • Zhou, M.; Catanach, J.; Gomez, J.; Richins, S.; Deng, S. Effects of Nanoporous Carbon Derived from Microalgae and Its CoO Composite on Capacitance. ACS Appl. Mater. Interfaces. 2017, 9, 4362–4373.
  • Pourhosseini, S. E. M.; Norouzi, O.; Naderi, H. R. Study of Micro/Macro Ordered Porous Carbon with Olive-Shaped Structure Derived from Cladophora Glomerata Macroalgae as Efficient Working Electrodes of Supercapacitors. Biomass Bioenerg 2017, 107, 287–298. doi:10.1016/j.biombioe.2017.10.025
  • Wu, F.-C.; Tseng, R.-L.; Hu, C.-C.; Wang, C.-C. Physical and Electrochemical Characterization of Activated Carbons Prepared from Firwoods for Supercapacitors. J. Power Sources 2004, 138, 351–359. doi:10.1016/j.jpowsour.2004.06.023
  • Ding, Y.; Li, Y.; Dai, Y.; Han, X.; Xing, B.; Zhu, L.; Qiu, K.; Wang, S. A Novel Approach for Preparing in-Situ Nitrogen Doped Carbon via Pyrolysis of Bean Pulp for Supercapacitors. Energy 2020, 216, 119227.
  • Han, J.; Li, Q.; Wang, J.; Ye, J.; Fu, G.; Zhai, L.; Zhu, Y. Heteroatoms (O, N)-Doped Porous Carbon Derived from Bamboo Shoots Shells for High Performance Supercapacitors. J. Mater. Sci: Mater. Electron. 2018, 29, 20991–21001. doi:10.1007/s10854-018-0244-1
  • Maria Sundar Raj, F. R.; Jaya, N. V.; Boopathi, G.; Kalpana, D.; Pandurangan, A. S-Doped Activated Mesoporous Carbon Derived from the Borassus Flabellifer Flower as Active Electrodes for Supercapacitors. Mater. Chem. Phys 2020, 240, 122151. doi:10.1016/j.matchemphys.2019.122151
  • Song, J.; Shen, W.; Wang, J.; Fan, W. Hierarchical Porous Carbons Derived from Renewable Poplar Anthers for High-Performance Supercapacitors. ChemElectroChem 2018, 5, 1451–1458. doi:10.1002/celc.201800305
  • Feng, W.; He, P.; Ding, S.; Zhang, G.; He, M.; Dong, F.; Wen, J.; Du, L.; Liu, M. Oxygen-Doped Activated Carbons Derived from Three Kinds of Biomass: preparation, Characterization and Performance as Electrode Materials for Supercapacitors. RSC Adv. 2016, 6, 5949–5956. doi:10.1039/C5RA24613J
  • Mo, R.-J.; Zhao, Y.; Wu, M.; Xiao, H.-M.; Kuga, S.; Huang, Y.; Li, J.-P.; Fu, S.-Y. Activated Carbon from Nitrogen Rich Watermelon Rind for High-Performance Supercapacitors. RSC Adv. 2016, 6, 59333–59342. doi:10.1039/C6RA10719B
  • Thangavel, R.; Kannan, A. G.; Ponraj, R.; Thangavel, V.; Kim, D.-W.; Lee, Y.-S. High-Energy Green Supercapacitor Driven by Ionic Liquid Electrolytes as an Ultra-High Stable Next-Generation Energy Storage Device. J. Power Sources 2018, 383, 102–109. doi:10.1016/j.jpowsour.2018.02.037
  • Lin, X.-Q.; Yang, N.; Lü, Q.-F.; Liu, R. Self‐Nitrogen‐Doped Porous Biocarbon from Watermelon Rind: A High‐Performance Supercapacitor Electrode and Its Improved Electrochemical Performance Using Redox Additive Electrolyte. Energy Technol. 2019, 7, 1800628. doi:10.1002/ente.201800628
  • Wu, X.-L.; Wen, T.; Guo, H.-L.; Yang, S.; Wang, X.; Xu, A.-W. Biomass-Derived Sponge-like Carbonaceous Hydrogels and Aerogels for Supercapacitors. ACS Nano. 2013, 7, 3589–3597.
  • Ma, X.; Ding, C.; Li, D.; Wu, M.; Yu, Y. A Facile Approach to Prepare Biomass-Derived Activated Carbon Hollow Fibers from Wood Waste as High-Performance Supercapacitor Electrodes. Cellulose 2018, 25, 4743–4755. doi:10.1007/s10570-018-1903-3
  • Yuan, Y.; Yi, R.; Sun, Y.; Zeng, J.; Li, J.; Hu, J.; Zhao, Y.; Sun, W.; Zhao, C.; Yang, L.; Zhao, C. Porous Activated Carbons Derived from Pleurotus Eryngii for Supercapacitor Applications. J. Nanomater 2018, 2018, 1–10. doi:10.1155/2018/7539509
  • Sayed, D. M.; Taha, M. M.; Ghanem, L. G.; El-Deab, M. S.; Allam, N. K. Hybrid Supercapacitors: A Simple Electrochemical Approach to Determine Optimum Potential Window and Charge Balance. J. Power Sources 2020, 480, 229152. doi:10.1016/j.jpowsour.2020.229152
  • Xu, S.-S.; Qiu, S.-W.; Yuan, Z.-Y.; Ren, T.-Z.; Bandosz, T. J. Nitrogen-Containing Activated Carbon of Improved Electrochemical Performance Derived from Cotton Stalks Using Indirect Chemical Activation. J. Colloid Interface Sci. 2019, 540, 285–294.
  • Kang, X.; Wang, C.; Yin, J. Hierarchically Porous Carbons Derived from Cotton Stalks for High-Performance Supercapacitors. ChemElectroChem 2017, 4, 2599–2607. doi:10.1002/celc.201700501
  • Meng, S.; Mo, Z.; Li, Z.; Guo, R.; Liu, N. Oxygen-Rich Porous Carbons Derived from Alfalfa Flowers for High Performance Supercapacitors. Mater. Chem. Phys 2020, 246, 122830. doi:10.1016/j.matchemphys.2020.122830
  • Su, X.; Jiang, S.; Zheng, X.; Guan, X.; Liu, P.; Peng, Z. Hierarchical Porous Carbon Materials from Bio Waste-Mango Stone for High-Performance Supercapacitor Electrodes. Mater. Lett 2018, 230, 123–127. doi:10.1016/j.matlet.2018.07.096
  • Liu, Y.; Wang, Y.; Zhang, G.; Liu, W.; Wang, D.; Dong, Y. Preparation of Activated Carbon from Willow Leaves and Evaluation in Electric Double-Layer Capacitors. Mater. Lett 2016, 176, 60–63. doi:10.1016/j.matlet.2016.04.065
  • Xuan, H.; Lin, G.; Wang, F.; Liu, J.; Dong, X.; Xi, F. Preparation of Biomass-Activated Porous Carbons Derived from Torreya Grandis Shell for High-Performance Supercapacitor. J. Solid State Electrochem. 2017, 21, 2241–2249. doi:10.1007/s10008-017-3562-y
  • Guardia, L.; Suárez, L.; Querejeta, N.; Pevida, C.; Centeno, T. A. Winery Wastes as Precursors of Sustainable Porous Carbons for Environmental Applications. J. Clean. Prod 2018, 193, 614–624. doi:10.1016/j.jclepro.2018.05.085
  • Suárez, L.; Centeno, T. A. Unravelling the Volumetric Performance of Activated Carbons from Biomass Wastes in Supercapacitors. J. Power Sources 2020, 448, 227413. doi:10.1016/j.jpowsour.2019.227413
  • Han, X.; Jiang, H.; Zhou, Y.; Hong, W.; Zhou, Y.; Gao, P.; Ding, R.; Liu, E. A High Performance Nitrogen-Doped Porous Activated Carbon for Supercapacitor Derived from Pueraria. J. Alloys Compd 2018, 744, 544–551. doi:10.1016/j.jallcom.2018.02.078
  • Song, G.-G.; Yang, J.; Liu, K.-X.; Qin, Z.; Zheng, X.-C. Cattail Fiber-Derived Hierarchical Porous Carbon Materials for High-Performance Supercapacitors. Diam. Relat. Mater. 2020, 111, 108162.
  • Tabarov, F.; Astakhov, M.; Kalashnik, A.; Klimont, A.; Krechetov, I.; Isaeva, N. Micro-Mesoporous Carbon Materials Prepared from the Hogweed (Heracleum) Stalks as Electrode Materials for Supercapacitors. Russ. J. Electrochem. 2019, 55, 265–271. doi:10.1134/S1023193519020125
  • Momodu, D.; Sylla, N. F.; Mutuma, B.; Bello, A.; Masikhwa, T.; Lindberg, S.; Matic, A.; Manyala, N. Stable Ionic-Liquid-Based Symmetric Supercapacitors from Capsicum Seed-Porous Carbons. J. Electroanal. Chem. 2019, 838, 119–128. doi:10.1016/j.jelechem.2019.02.045
  • Karnan, M.; Subramani, K.; Sudhan, N.; Ilayaraja, N.; Sathish, M. Aloe Vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors. ACS Appl Mater Interfaces 2016, 8, 35191–35202. doi:10.1021/acsami.6b10704
  • Potphode, D.; Saha, S.; Sharma, C. S. Carbon Nanosheets Decorated Activated Carbon Derived from Borassus Flabellifer Fruit Skin for High Performance Supercapacitors. J. Electrochem. Soc. 2020, 167, 140508. doi:10.1149/1945-7111/abbfdb
  • Lu, X.; Xiang, K.; Zhou, W.; Zhu, Y.; Chen, X.; Chen, H. Porous Carbons Derived from Tea-Seed Shells and Their Improved Electrochemical Performance in Lithium-Ion Batteries and Supercapacitors. Mater. Technol 2018, 33, 443–450. doi:10.1080/10667857.2018.1466511
  • Quan, C.; Jia, X.; Gao, N. Nitrogen-Doping Activated Biomass Carbon from Tea Seed Shell for CO2 Capture and Supercapacitor. Int. J. Energy Res. 2020, 44, 1218–1232. doi:10.1002/er.5017
  • Na, R.; Wang, X.; Lu, N.; Huo, G.; Lin, H.; Wang, G. Novel Egg White Gel Polymer Electrolyte and a Green Solid-State Supercapacitor Derived from the Egg and Rice Waste. Electrochim. Acta. 2018, 274, 316–325. doi:10.1016/j.electacta.2018.04.127
  • Guo, F.; Jia, X.; Liang, S.; Jiang, X.; Peng, K.; Qian, L. Design and Synthesis of Highly Porous Activated Carbons from Sargassum as Advanced Electrode Materials for Supercapacitors. J. Electrochem. Soc. 2019, 166, A3109–A3118. doi:10.1149/2.0191914jes
  • Yakaboylu, G. A.; Yumak, T.; Jiang, C.; Zondlo, J. W.; Wang, J.; Sabolsky, E. M. Preparation of Highly Porous Carbon through Slow Oxidative Torrefaction, Pyrolysis, and Chemical Activation of Lignocellulosic Biomass for High-Performance Supercapacitors. Energy Fuels. 2019, 33, 9309–9329. doi:10.1021/acs.energyfuels.9b01260
  • Jiang, C.; Yakaboylu, G. A.; Yumak, T.; Zondlo, J. W.; Sabolsky, E. M.; Wang, J. Activated Carbons Prepared by Indirect and Direct CO2 Activation of Lignocellulosic Biomass for Supercapacitor Electrodes. Renew. Energy 2020, 155, 38–52. doi:10.1016/j.renene.2020.03.111
  • Veeramani, V.; Sivakumar, M.; Chen, S.-M.; Madhu, R.; Alamri, H. R.; Alothman, Z. A.; Hossain, M. S. A.; Chen, C.-K.; Yamauchi, Y.; Miyamoto, N.; Wu, K. C. W. Lignocellulosic Biomass-Derived, Graphene Sheet-like Porous Activated Carbon for Electrochemical Supercapacitor and Catechin Sensing. RSC Adv 2017, 7, 45668–45675. doi:10.1039/C7RA07810B
  • Srinivasan, R.; Elaiyappillai, E.; Pandian, H. P.; Vengudusamy, R.; Johnson, P. M.; Chen, S.-M.; Karvembu, R. Sustainable Porous Activated Carbon from Polyalthia Longifolia Seeds as Electrode Material for Supercapacitor Application. J. Electroanal. Chem 2019, 849, 113382. doi:10.1016/j.jelechem.2019.113382
  • Sodtipinta, J.; Amornsakchai, T.; Pakawatpanurut, P. Nanoporous Carbon Derived from Agro-Waste Pineapple Leaves for Supercapacitor Electrode. Adv. Nat. Sci: Nanosci. Nanotechnol. 2017, 8, 035017. doi:10.1088/2043-6254/aa7233
  • Sodtipinta, J.; Ieosakulrat, C.; Poonyayant, N.; Kidkhunthod, P.; Chanlek, N.; Amornsakchai, T.; Pakawatpanurut, P. Interconnected Open-Channel Carbon Nanosheets Derived from Pineapple Leaf Fiber as a Sustainable Active Material for Supercapacitors. Ind. Crops Prod. 2017, 104, 13–20. doi:10.1016/j.indcrop.2017.04.015
  • Liu, B.; Yang, M.; Yang, D.; Chen, H.; Li, H. Graphene-like Porous Carbon Nanosheets for Ultra-High Rate Performance Supercapacitors and Efficient Oxygen Reduction Electrocatalysts. J. Power Sources 2020, 456, 227999. doi:10.1016/j.jpowsour.2020.227999
  • Lu, X.; Xiang, K.; Zhou, W.; Zhu, Y.; Chen, H. Biomass Carbon Materials Derived from Macadamia Nut Shells for High-Performance Supercapacitors. Bull. Mater. Sci. 2018, 41, 138.
  • Lu, X.; Xiang, K.; Zhou, W.; Zhu, Y.; He, Y.; Chen, H. Graphene-Like Carbon Derived from Macadamia Nut Shells for High-Performance Supercapacitor. Russ. J. Electrochem. 2019, 55, 242–246. doi:10.1134/S1023193519020034
  • Ahmed, S.; Ahmed, A.; Rafat, M. Supercapacitor Performance of Activated Carbon Derived from Rotten Carrot in Aqueous, Organic and Ionic Liquid Based Electrolytes. J. Saudi Chem. Soc. 2018, 22, 993–1002. doi:10.1016/j.jscs.2018.03.002
  • Wang, J.; Li, Z.; Yan, S.; Yu, X.; Ma, Y.; Ma, L. Modifying the Microstructure of Algae-Based Active Carbon and Modelling Supercapacitors Using Artificial Neural Networks. RSC Adv. 2019, 9, 14797–14808. doi:10.1039/C9RA01255A
  • Hu, W.; Huang, J.; Yu, P.; Zheng, M.; Xiao, Y.; Dong, H.; Liang, Y.; Hu, H.; Liu, Y. Hierarchically Porous Carbon Derived from Neolamarckia Cadamba for Electrochemical Capacitance and Hydrogen Storage. ACS Sustain. Chem. Eng. 2019, 7, 15385–15393. doi:10.1021/acssuschemeng.9b02734
  • Liang, X.; Liu, R.; Wu, X. Biomass Waste Derived Functionalized Hierarchical Porous Carbon with High Gravimetric and Volumetric Capacitances for Supercapacitors. Micropor. Mesopor. Mater. 2021, 310, 110659. doi:10.1016/j.micromeso.2020.110659
  • Shanmugapriya, S.; Surendran, S.; Lee, Y. S.; Selvan, R. K. Improved Surface Charge Storage Properties of Prosopis Juliflora (Pods) Derived Onion–Like Porous Carbon through Redox-Mediated Reactions for Electric Double Layer Capacitors. Appl. Surf. Sci. 2019, 492, 896–908. doi:10.1016/j.apsusc.2019.06.147
  • Zhu, X.; Yu, S.; Xu, K.; Zhang, Y.; Zhang, L.; Lou, G.; Wu, Y.; Zhu, E.; Chen, H.; Shen, Z.; et al. Sustainable Activated Carbons from Dead Ginkgo Leaves for Supercapacitor Electrode Active Materials. Chem. Eng. Sci. 2018, 181, 36–45. doi:10.1016/j.ces.2018.02.004
  • Bhat, V. S.; Kanagavalli, P.; Sriram, G.; B, R. P.; John, N. S.; Veerapandian, M.; Kurkuri, M.; Hegde, G. Low Cost, Catalyst Free, High Performance Supercapacitors Based on Porous Nano Carbon Derived from Agriculture Waste. J. Energy Storage. 2020, 32, 101829. doi:10.1016/j.est.2020.101829
  • Mohammed, A. A.; Chen, C.; Zhu, Z. Low-Cost, High-Performance Supercapacitor Based on Activated Carbon Electrode Materials Derived from Baobab Fruit Shells. J Colloid Interface Sci. 2019, 538, 308–319. doi:10.1016/j.jcis.2018.11.103
  • Tang, D.; Luo, Y.; Lei, W.; Xiang, Q.; Ren, W.; Song, W.; Chen, K.; Sun, J. Hierarchical Porous Carbon Materials Derived from Waste Lentinus Edodes by a Hybrid Hydrothermal and Molten Salt Process for Supercapacitor Applications. Appl. Surf. Sci. 2018, 462, 862–871. doi:10.1016/j.apsusc.2018.08.153
  • Perez-Salcedo, K.; Ruan, S.; Su, J.; Shi, X.; Kannan, A.; Escobar, B. Seaweed-Derived KOH Activated Biocarbon for Electrocatalytic Oxygen Reduction and Supercapacitor Applications. J. Porous Mater 2020, 27, 959–969. doi:10.1007/s10934-020-00871-7
  • Dai, C.; Wan, J.; Yang, J.; Qu, S.; Jin, T.; Ma, F.; Shao, J. H3PO4 Solution Hydrothermal Carbonization Combined with KOH Activation to Prepare Argy Wormwood-Based Porous Carbon for High-Performance Supercapacitors. Appl. Surf. Sci 2018, 444, 105–117. doi:10.1016/j.apsusc.2018.02.261
  • Qin, L.; Hou, Z.; Lu, S.; Liu, S.; Liu, Z.; Jiang, E. Porous Carbon Derived from Pine Nut Shell Prepared by Steam Activation for Supercapacitor Electrode Material. Int. J. Electrochem. Sci. 2019, 14, 8907–8918. doi:10.20964/2019.09.20
  • Baru, S. Preparation of Activated Carbon Electrode from Pineapple Crown Waste for Supercapacitor Application. Int. J. Electrochem. Sci. 2019, 14, 2462–2475.
  • Li, J.; Zan, G.; Wu, Q. Facile Synthesis of Hierarchical Porous Carbon via the Liquidoid Carbonization Method for Supercapacitors. New J. Chem. 2015, 39, 8165–8171. doi:10.1039/C5NJ01373A
  • Yadav, N.; Ritu, Promila, S. A. Hashmi, Hierarchical Porous Carbon Derived from Eucalyptus-Bark as a Sustainable Electrode for High-Performance Solid-State Supercapacitors. Sustainable Energ. Fuels. 2020, 4, 1730–1746. doi:10.1039/C9SE00812H
  • Rawal, S.; Joshi, B.; Kumar, Y. Synthesis and Characterization of Activated Carbon from the Biomass of Saccharum Bengalense for Electrochemical Supercapacitors. J. Energy Storage. 2018, 20, 418–426. doi:10.1016/j.est.2018.10.009
  • Palisoc, S.; Dungo, J. M.; Natividad, M. Low-Cost Supercapacitor Based on Multi-Walled Carbon Nanotubes and Activated Carbon Derived from Moringa Oleifera Fruit Shells. Heliyon. 2020, 6, e03202. doi:10.1016/j.heliyon.2020.e03202
  • Chaudhari, K. N.; Yu, J.-S. Efficient Electrode Material for Electrochemical Energy Storage from Organic Waste. J. Solid State Electrochem. 2019, 23, 1481–1492. doi:10.1007/s10008-019-04244-2
  • Deng, D.; Kim, B.-S.; Gopiraman, M.; Kim, I. S. Needle-like MnO2/Activated Carbon Nanocomposites Derived from Human Hair as Versatile Electrode Materials for Supercapacitors. RSC Adv. 2015, 5, 81492–81498. doi:10.1039/C5RA16624A
  • Sinha, P.; Yadav, A.; Tyagi, A.; Paik, P.; Yokoi, H.; Naskar, A. K.; Kuila, T.; Kar, K. K. Keratin-Derived Functional Carbon with Superior Charge Storage and Transport for High-Performance Supercapacitors. Carbon 2020, 168, 419–438. doi:10.1016/j.carbon.2020.07.007
  • Li, G.; Li, Q.; Ye, J.; Fu, G.; Han, J.; Zhu, Y. Activated Carbon from the Waste Water Purifier for Supercapacitor Application. J. Solid State Electrochem. 2017, 21, 3169–3177. doi:10.1007/s10008-017-3653-9
  • Wang, C.; Wu, D.; Wang, H.; Gao, Z.; Xu, F.; Jiang, K. A Green and Scalable Route to Yield Porous Carbon Sheets from Biomass for Supercapacitors with High Capacity. J. Mater. Chem. A. 2018, 6, 1244–1254. doi:10.1039/C7TA07579K
  • Wang, W.; Quan, H.; Gao, W.; Zou, R.; Chen, D.; Dong, Y.; Guo, L. N-Doped Hierarchical Porous Carbon from Waste Boat-Fruited Sterculia Seed for High Performance Supercapacitors. RSC Adv. 2017, 7, 16678–16687. doi:10.1039/C7RA01043E
  • Yan, J.; Fang, Y.-Y.; Wang, S.-W.; Wu, S.-D.; Wang, L.-X.; Zhang, Y.; Luo, H.-W.; Cao, Y.; Gao, H.-L.; Wang, L.-Z. Nitrogen-Doped Oxygen-Rich Activated Carbon Derived from Longan Shell for Supercapacitors. Int. J. Electrochem. Sci. 2020, 15, 1982–1995. doi:10.20964/2020.03.18
  • Wang, D.; Xu, Z.; Lian, Y.; Ban, C.; Zhang, H. Nitrogen Self-Doped Porous Carbon with Layered Structure Derived from Porcine Bladders for High-Performance Supercapacitors. J. Colloid Interface Sci. 2019, 542, 400–409.
  • Guo, N.; Li, M.; Sun, X.; Wang, F.; Yang, R. Enzymatic Hydrolysis Lignin Derived Hierarchical Porous Carbon for Supercapacitors in Ionic Liquids with High Power and Energy Densities. Green Chem. 2017, 19, 2595–2602. doi:10.1039/C7GC00506G
  • Fu, M.; Zhu, Z.; Zhang, Z.; Zhuang, Q.; Chen, W.; Liu, Q. Microwave Deposition Synthesis of Ni(OH)2/Sorghum Stalk Biomass Carbon Electrode Materials for Supercapacitors. J. Alloy. Compd. 2020, 846, 156376. doi:10.1016/j.jallcom.2020.156376
  • Zhang, X.; Peng, C.; Wang, R-t.; Lang, J-w. High-Performance Supercapacitors Based on Novel Carbons Derived from Sterculia Lychnophora. RSC Adv. 2015, 5, 32159–32167. doi:10.1039/C5RA02085A
  • Sattayarut, V.; Wanchaem, T.; Ukkakimapan, P.; Yordsri, V.; Dulyaseree, P.; Phonyiem, M.; Obata, M.; Fujishige, M.; Takeuchi, K.; Wongwiriyapan, W.; Endo, M. Nitrogen Self-Doped Activated Carbons via the Direct Activation of Samanea Saman Leaves for High Energy Density Supercapacitors. RSC Adv. 2019, 9, 21724–21732. doi:10.1039/C9RA03437D
  • Shang, T.; Xu, Y.; Li, P.; Han, J.; Wu, Z.; Tao, Y.; Yang, Q.-H. A Bio-Derived Sheet-like Porous Carbon with Thin-Layer Pore Walls for Ultrahigh-Power Supercapacitors. Nano Energy 2020, 70, 104531. doi:10.1016/j.nanoen.2020.104531
  • Joseph, S.; Kempaiah, D. M.; Benzigar, M. R.; Ilbeygi, H.; Singh, G.; Talapaneni, S. N.; Park, D.-H.; Vinu, A. Highly Ordered Mesoporous Carbons with High Specific Surface Area from Carbonated Soft Drink for Supercapacitor Application. Micropor. Mesopor. Mater. 2019, 280, 337–346. doi:10.1016/j.micromeso.2019.02.020
  • Boyjoo, Y.; Cheng, Y.; Zhong, H.; Tian, H.; Pan, J.; Pareek, V. K.; Jiang, S. P.; Lamonier, J.-F.; Jaroniec, M.; Liu, J. From Waste Coca Cola® to Activated Carbons with Impressive Capabilities for CO2 Adsorption and Supercapacitors. Carbon 2017, 116, 490–499. doi:10.1016/j.carbon.2017.02.030
  • Sanchez-Sanchez, A.; Martinez de Yuso, A.; Braghiroli, F. L.; Izquierdo, M. T.; Alvarez, E. D.; Pérez-Cappe, E.; Mosqueda, Y.; Fierro, V.; Celzard, A. Sugarcane Molasses as a Pseudocapacitive Material for Supercapacitors. RSC Adv. 2016, 6, 88826–88836. doi:10.1039/C6RA16314A
  • Athanasiou, M.; Samartzis, N.; Sygellou, L.; Dracopoulos, V.; Ioannides, T.; Yannopoulos, S. N. High-Quality Laser-Assisted Biomass-Based Turbostratic Graphene for High-Performance Supercapacitors. Carbon. 2021, 172, 750–761. doi:10.1016/j.carbon.2020.10.042
  • Xu, C.; Xu, F.; Sun, L.; Cao, L.; Yu, F.; Zhang, H.; Yan, E.; Peng, H.; Chu, H.; Zou, Y. A High-Performance Supercapacitor Based on Nitrogen-Doped Porous Carbon Derived from Cycas Leaves. Int. J. Electrochem. Sci. 2019, 14, 1782–1793.
  • Li, W.; Ding, Y.; Zhang, W.; Shu, Y.; Zhang, L.; Yang, F.; Shen, Y. Lignocellulosic Biomass for Ethanol Production and Preparation of Activated Carbon Applied for Supercapacitor. J. Taiwan Inst. Chem. E. 2016, 64, 166–172. doi:10.1016/j.jtice.2016.04.010
  • Jiang, X.; Shi, G.; Wang, G.; Mishra, P.; Liu, C.; Dong, Y.; Zhang, P.; Tian, H.; Liu, Y.; Wang, Z.; et al. A Hydrothermal Carbonization Process for the Preparation of Activated Carbons from Hemp Straw: An Efficient Electrode Material for Supercapacitor Application. Ionics. 2019, 25, 3299–3307. doi:10.1007/s11581-019-02850-8
  • Lin, Y.; Chen, Z.; Yu, C.; Zhong, W. Facile Synthesis of High Nitrogen-Doped Content, Mesopore-Dominated Biomass-Derived Hierarchical Porous Graphitic Carbon for High Performance Supercapacitors. Electrochim. Acta. 2020, 334, 135615. doi:10.1016/j.electacta.2020.135615
  • Ying, Z.; Zhang, Y.; Lin, X.; Hui, S.; Wang, Y.; Yang, Y.; Li, Y. A Biomass-Derived Super-Flexible Hierarchically Porous Carbon Film Electrode Prepared via Environment-Friendly Ice-Microcrystal Pore-Forming for Supercapacitors. Chem. Commun. (Camb). 2020, 56, 10730–10733.
  • Han, J.; Ping, Y.; Yang, S.; Zhang, Y.; Qian, L.; Li, J.; Liu, L.; Xiong, B.; Fang, P.; He, C. High Specific Power/Energy, Ultralong Life Supercapacitors Enabled by Cross-Cutting Bamboo-Derived Porous Carbons. Diam. Relat. Mater. 2020, 109, 108044. doi:10.1016/j.diamond.2020.108044
  • Sun, Y.; Xue, J.; Dong, S.; Zhang, Y.; An, Y.; Ding, B.; Zhang, T.; Dou, H.; Zhang, X. Biomass-Derived Porous Carbon Electrodes for High-Performance Supercapacitors. J. Mater. Sci. 2020, 55, 5166–5176. doi:10.1007/s10853-019-04343-5
  • Yang, K.; Yu, C.; Yu, Z.; Zhu, M.; Zhao, W.; Chen, H.; Pan, F. Hierarchically Porous Activated Carbons Derived from Schefflera Octophylla Leaves for High Performance Supercapacitors. Mater. Lett. 2019, 247, 102–105. doi:10.1016/j.matlet.2019.03.101
  • Goldfarb, J. L.; Dou, G.; Salari, M.; Grinstaff, M. W. Biomass-Based Fuels and Activated Carbon Electrode Materials: An Integrated Approach to Green Energy Systems. ACS Sustain. Chem. Eng. 2017, 5, 3046–3054. doi:10.1021/acssuschemeng.6b02735
  • Şahin, Ö.; Yardim, Y.; Baytar, O.; Saka, C. Enhanced Electrochemical Double-Layer Capacitive Performance with CO2 Plasma Treatment on Activated Carbon Prepared from Pyrolysis of Pistachio Shells. Int. J. Hydrog. Energy. 2020, 45, 8843–8852. doi:10.1016/j.ijhydene.2020.01.128
  • Chen, Y.; Hu, R.; Qi, J.; Sui, Y.; He, Y.; Meng, Q.; Wei, F.; Ren, Y. Sustainable Synthesis of N/S-Doped Porous Carbon Sheets Derived from Waste Newspaper for High-Performance Asymmetric Supercapacitor. Mater. Res. Express. 2019, 6, 095605. doi:10.1088/2053-1591/ab2d97
  • Liu, J.; Min, S.; Wang, F.; Zhang, Z. Biomass-Derived Three-Dimensional Porous Carbon Membrane Electrode for High-Performance Aqueous Supercapacitors: An Alternative of Powdery Carbon Materials. J. Power Sources. 2020, 466, 228347. doi:10.1016/j.jpowsour.2020.228347
  • Zhang, J.; Chen, H.; Ma, Z.; Li, H.; Dong, Y.; Yang, H.; Yang, L.; Bai, L.; Wei, D.; Wang, W. A Lignin Dissolution-Precipitation Strategy for Porous Biomass Carbon Materials Derived from Cherry Stones with Excellent Capacitance. J. Alloy. Compd. 2020, 832, 155029. doi:10.1016/j.jallcom.2020.155029
  • Cai, N.; Cheng, H.; Jin, H.; Liu, H.; Zhang, P.; Wang, M. Porous Carbon Derived from Cashew Nut Husk Biomass Waste for High-Performance Supercapacitors. J. Electroanal. Chem. 2020, 861, 113933. doi:10.1016/j.jelechem.2020.113933
  • Hiremath, V.; Lim, A. C.; Nagaraju, G.; Seo, J. G. Promoting Discarded Packing Waste into Value-Added 2d Porous Carbon Flakes for Multifunctional Applications. ACS Sustain. Chem. Eng. 2019, 7, 11944–11954.
  • Wang, D.; Fang, G.; Xue, T.; Ma, J.; Geng, G. A Melt Route for the Synthesis of Activated Carbon Derived from Carton Box for High Performance Symmetric Supercapacitor Applications. J. Power Sources. 2016, 307, 401–409. doi:10.1016/j.jpowsour.2016.01.009
  • Mangisetti, S. R.; Kamaraj, M.; Sundara, R. Large-Scale Single-Step Synthesis of Wrinkled N–S Doped 3D Graphene like Nanosheets from Tender Palm Shoots for High Energy Density Supercapacitors. Int. J. Hydrog. Energy 2020, 46, 403–415. doi:10.1016/j.ijhydene.2020.09.161
  • Chaudhary, R.; Maji, S.; Shrestha, R. G.; Shrestha, R. L.; Shrestha, T.; Ariga, K.; Shrestha, L. K. Jackfruit Seed-Derived Nanoporous Carbons as the Electrode Material for Supercapacitors. C. 2020, 6, 73.
  • Lu, Q.; Zhou, S.; Li, B.; Wei, H.; Zhang, D.; Hu, J.; Zhang, L.; Zhang, J.; Liu, Q. Mesopore-Rich Carbon Flakes Derived from Lotus Leaves and It’s Ultrahigh Performance for Supercapacitors. Electrochim. Acta. 2020, 333, 135481. doi:10.1016/j.electacta.2019.135481
  • Pontiroli, D.; Scaravonati, S.; Magnani, G.; Fornasini, L.; Bersani, D.; Bertoni, G.; Milanese, C.; Girella, A.; Ridi, F.; Verucchi, R.; et al. Super-Activated Biochar from Poultry Litter for High-Performance Supercapacitors. Micropor. Mesopor. Mater. 2019, 285, 161–169. doi:10.1016/j.micromeso.2019.05.002
  • Zhu, G.; Ma, L.; Lv, H.; Hu, Y.; Chen, T.; Chen, R.; Liang, J.; Wang, X.; Wang, Y.; Yan, C.; et al. Pine Needle-Derived Microporous Nitrogen-Doped Carbon Frameworks Exhibit High Performances in Electrocatalytic Hydrogen Evolution Reaction and Supercapacitors. Nanoscale. 2017, 9, 1237–1243.
  • Leng, C.; Sun, K.; Li, J.; Jiang, J. From Dead Pine Needles to O, N Codoped Activated Carbons by a One-Step Carbonization for High Rate Performance Supercapacitors. ACS Sustain. Chem. Eng. 2017, 5, 10474–10482. doi:10.1021/acssuschemeng.7b02481
  • Chan Hyun, J.; Kwak, J. H.; Yun, Y. S. Microporous Waste Charcoals for Redox-Mediated Supercapacitors. J. Ind. Eng. Chem. 2019, 79, 204–209. doi:10.1016/j.jiec.2019.06.036
  • Eguchi, T.; Tashima, D.; Fukuma, M.; Kumagai, S. Activated Carbon Derived from Japanese Distilled Liquor Waste: Application as the Electrode Active Material of Electric Double-Layer Capacitors. J. Clean. Prod. 2020, 259, 120822. doi:10.1016/j.jclepro.2020.120822
  • Chang, B.; Guo, Y.; Li, Y.; Yang, B. Hierarchical Porous Carbon Derived from Recycled Waste Filter Paper as High-Performance Supercapacitor Electrodes. RSC Adv. 2015, 5, 72019–72027. doi:10.1039/C5RA12651G
  • Divya, P.; Rajalakshmi, R. Renewable Low Cost Green Functional Mesoporous Electrodes from Solanum Lycopersicum Leaves for Supercapacitors. J. Energy Storage. 2020, 27, 101149. doi:10.1016/j.est.2019.101149
  • Martínez-Casillas, D. C.; Alonso-Lemus, I. L.; Mascorro-Gutiérrez, I.; Cuentas-Gallegos, A. K. Leather Waste-Derived Biochar with High Performance for Supercapacitors. J. Electrochem. Soc. 2018, 165, A2061–A2068. doi:10.1149/2.0421810jes
  • Le, P.-A.; Nguyen, V.-T.; Sahoo, S. K.; Tseng, T. Y.; Wei, K.-H. Porous Carbon Materials Derived from Areca Palm Leaves for High Performance Symmetrical Solid-State Supercapacitors. J. Mater. Sci. 2020, 55, 10751–10764. doi:10.1007/s10853-020-04693-5
  • Ferrero, G.; Fuertes, A.; Sevilla, M. From Soybean Residue to Advanced Supercapacitors. Sci. Rep. 2015, 5, 16618.
  • Li, Y.; Zhang, D.; Zhang, Y.; He, J.; Wang, Y.; Wang, K.; Xu, Y.; Li, H.; Wang, Y. Biomass-Derived Microporous Carbon with Large Micropore Size for High-Performance Supercapacitors. J. Power Sources. 2020, 448, 227396. doi:10.1016/j.jpowsour.2019.227396
  • Cao, J.; Luo, J.; Wang, P.; Wang, X.; Weng, W. Biomass-Based Porous Carbon Beehive Prepared in Molten KOH for Capacitors. Mater. Technol. 2020, 35, 522–528. doi:10.1080/10667857.2019.1699270
  • Zhang, J.; Chen, H.; Bai, J.; Xu, M.; Luo, C.; Yang, L.; Bai, L.; Wei, D.; Wang, W.; Yang, H. N-Doped Hierarchically Porous Carbon Derived from Grape Marcs for High-Performance Supercapacitors. J. Alloy. Compd. 2021, 854, 157207. doi:10.1016/j.jallcom.2020.157207
  • Gu, W.; Yushin, G. Review of Nanostructured Carbon Materials for Electrochemical Capacitor Applications: advantages and Limitations of Activated Carbon, Carbide‐Derived Carbon, Zeolite‐Templated Carbon, Carbon Aerogels, Carbon Nanotubes, Onion‐like Carbon, and Graphene. Wires. Energy Environ. 2014, 3, 424–473. doi:10.1002/wene.102
  • Sevilla, M.; Mokaya, R. Energy Storage Applications of Activated Carbons: supercapacitors and Hydrogen Storage. Energy Environ. Sci. 2014, 7, 1250–1280. doi:10.1039/C3EE43525C
  • Titirici, M.-M.; White, R. J.; Brun, N.; Budarin, V. L.; Su, D. S.; del Monte, F.; Clark, J. H.; MacLachlan, M. J. Sustainable Carbon Materials. Chem. Soc. Rev. 2015, 44, 250–290. doi:10.1039/c4cs00232f
  • Wang, J.; Zhang, X.; Li, Z.; Ma, Y.; Ma, L. Recent Progress of Biomass-Derived Carbon Materials for Supercapacitors. J. Power Sources. 2020, 451, 227794. doi:10.1016/j.jpowsour.2020.227794
  • Bhatnagar, A.; Sillanpää, M.; Witek-Krowiak, A. Agricultural Waste Peels as Versatile Biomass for Water Purification–a Review. Chem. Eng. J. 2015, 270, 244–271. doi:10.1016/j.cej.2015.01.135
  • Ioannidou, O.; Zabaniotou, A. Agricultural Residues as Precursors for Activated Carbon Production—a Review. Renew. Sust. Energ. Rev 2007, 11, 1966–2005. doi:10.1016/j.rser.2006.03.013
  • Deng, Y.; Xie, Y.; Zou, K.; Ji, X. Review on Recent Advances in Nitrogen-Doped Carbons: preparations and Applications in Supercapacitors. J. Mater. Chem. A. 2016, 4, 1144–1173.
  • Molina-Sabio, M.; Rodrı́guez-Reinoso, F. Role of Chemical Activation in the Development of Carbon Porosity. Colloid. Surface. A 2004, 241, 15–25. doi:10.1016/j.colsurfa.2004.04.007
  • Jagtoyen, M.; Derbyshire, F. Activated Carbons from Yellow Poplar and White Oak by H3PO4 Activation. m. Carbon 1998, 36, 1085–1097. [Database] doi:10.1016/S0008-6223(98)00082-7
  • Lillo-Ródenas, M.; Cazorla-Amorós, D.; Linares-Solano, A. Understanding Chemical Reactions between Carbons and NaOH and KOH: An Insight into the Chemical Activation Mechanism. Carbon 2003, 41, 267–275. doi:10.1016/S0008-6223(02)00279-8
  • Teng, H.; Hsu, L.-Y. High-Porosity Carbons Prepared from Bituminous Coal with Potassium Hydroxide Activation. Ind. Eng. Chem. Res. 1999, 38, 2947–2953. doi:10.1021/ie990101+
  • Guan, C.; Wang, K.; Yang, C.; Zhao, X. Characterization of a Zeolite-Templated Carbon for H2 Storage Application. Micropor. Mesopor. Mater. 2009, 118, 503–507. doi:10.1016/j.micromeso.2008.09.029
  • Lillo-Ródenas, M.; Juan-Juan, J.; Cazorla-Amorós, D.; Linares-Solano, A. About Reactions Occurring during Chemical Activation with Hydroxides. Carbon 2004, 42, 1371–1375. doi:10.1016/j.carbon.2004.01.008
  • Teng, H.; Yeh, T.-S.; Hsu, L.-Y. Preparation of Activated Carbon from Bituminous Coal with Phosphoric Acid Activation. Carbon. 1998, 36, 1387–1395. doi:10.1016/S0008-6223(98)00127-4
  • Tsai, W.-T.; Chang, C.; Lee, S. A Low Cost Adsorbent from Agricultural Waste Corn Cob by Zinc Chloride Activation. Bioresour. Technol. 1998, 64, 211–217. doi:10.1016/S0960-8524(97)00168-5
  • Hsu, L.-Y.; Teng, H. Influence of Different Chemical Reagents on the Preparation of Activated Carbons from Bituminous Coal. Fuel Process. Technol. 2000, 64, 155–166. doi:10.1016/S0378-3820(00)00071-0
  • Illán-Gómez, M.; Garcia-Garcia, A.; Salinas-Martinez de Lecea, C.; Linares-Solano, A. Activated Carbons from Spanish Coals. 2. Chemical Activation. Energy Fuels. 1996, 10, 1108–1114. doi:10.1021/ef950195+
  • Lozano-Castello, D.; Cazorla-Amoros, D.; Linares-Solano, A.; Quinn, D. Influence of Pore Size Distribution on Methane Storage at Relatively Low Pressure: preparation of Activated Carbon with Optimum Pore Size. Carbon. 2002, 40, 989–1002. doi:10.1016/S0008-6223(01)00235-4
  • Lozano-Castelló, D.; Cazorla-Amorós, D.; Linares-Solano, A. Can Highly Activated Carbons Be Prepared with a Homogeneous Micropore Size Distribution? Fuel Process. Technol. 2002, 77–78, 325–330. doi:10.1016/S0378-3820(02)00048-6
  • Puziy, A. M.; Poddubnaya, O. I.; Martı́nez-Alonso, A.; Suárez-Garcı́a, F.;.; Tascón, J. M. D. ; Synthetic Carbons Activated with Phosphoric Acid III. Carbons Prepared in Air. Carbon 2003, 41, 1181–1191. doi:10.1016/S0008-6223(03)00031-9
  • Redondo, E.; Carretero-González, J.; Goikolea, E.; Ségalini, J.; Mysyk, R. Effect of Pore Texture on Performance of Activated Carbon Supercapacitor Electrodes Derived from Olive Pits. Electrochim. Acta. 2015, 160, 178–184. doi:10.1016/j.electacta.2015.02.006
  • He, X.; Ling, P.; Qiu, J.; Yu, M.; Zhang, X.; Yu, C.; Zheng, M. Efficient Preparation of Biomass-Based Mesoporous Carbons for Supercapacitors with Both High Energy Density and High Power Density. J. Power Sources. 2013, 240, 109–113. doi:10.1016/j.jpowsour.2013.03.174
  • Peng, C.; Yan, X-b.; Wang, R-t.; Lang, J-w.; Ou, Y-j.; Xue, Q-j. Promising Activated Carbons Derived from Waste Tea-Leaves and Their Application in High Performance Supercapacitors Electrodes. Electrochim. Acta. 2013, 87, 401–408. doi:10.1016/j.electacta.2012.09.082
  • Rufford, T. E.; Hulicova-Jurcakova, D.; Zhu, Z.; Lu, G. Q. Nanoporous Carbon Electrode from Waste Coffee Beans for High Performance Supercapacitors. Electrochem. Commun. 2008, 10, 1594–1597. doi:10.1016/j.elecom.2008.08.022
  • Jain, D.; Kanungo, J.; Tripathi, S. K. Enhancement in Performance of Supercapacitor Using Eucalyptus Leaves Derived Activated Carbon Electrode with CH3COONa and HQ Electrolytes: A Step towards Environment Benign Supercapacitor. J. Alloys Compd. 2020, 832, 154956. doi:10.1016/j.jallcom.2020.154956
  • Ahmed, S.; Ahmed, A.; Rafat, M. Investigation on Activated Carbon Derived from Biomass Butnea Monosperma and Its Application as a High Performance Supercapacitor Electrode. J. Energy Storage. 2019, 26, 100988. doi:10.1016/j.est.2019.100988
  • Hong, P.; Liu, X.; Zhang, X.; Peng, S.; Wang, Z.; Yang, Y.; Zhao, R.; Wang, Y. Hierarchically Porous Carbon Derived from the Activation of Waste Chestnut Shells by Potassium Bicarbonate (KHCO3) for High-Performance Supercapacitor Electrode. Int. J. Energy Res. 2020, 44, 988–999. doi:10.1002/er.4970
  • Vijayakumar, M.; Bharathi Sankar, A.; Sri Rohita, D.; Rao, T. N.; Karthik, M. Conversion of Biomass Waste into High Performance Supercapacitor Electrodes for Real-Time Supercapacitor Applications. ACS Sustain. Chem. Eng. 2019, 7, 17175–17185. doi:10.1021/acssuschemeng.9b03568
  • Shen, H.; Xia, X.; Ouyang, Y.; Jiao, X.; Mutahir, S.; Mandler, D.; Hao, Q. Preparation of Biomass-Based Porous Carbons with High Specific Capacitance for Applications in Supercapacitors. ChemElectroChem. 2019, 6, 3599–3605. doi:10.1002/celc.201900395
  • Dai, C.; Wan, J.; Shao, J.; Ma, F. Hollow Activated Carbon with Unique through-Pore Structure Derived from Reed Straw for High-Performance Supercapacitors. Mater. Lett 2017, 193, 279–282. doi:10.1016/j.matlet.2017.02.007
  • Marsh, H.; Reinoso, F. R. Activated Carbon. 2006: Elsevier. USA.
  • Dawson, E. A.; Parkes, G.; Barnes, P. A.; Chinn, M. J. An Investigation of the Porosity of Carbons Prepared by Constant Rate Activation in Air. Carbon 2003, 41, 571–578. doi:10.1016/S0008-6223(02)00366-4
  • Yang, T.; Lua, A. C. Characteristics of Activated Carbons Prepared from Pistachio-Nut Shells by Physical Activation. J. Colloid Interface Sci. 2003, 267, 408–417. doi:10.1016/S0021-9797(03)00689-1
  • Feng, B.; Bhatia, S. K. Variation of the Pore Structure of Coal Chars during Gasification. Carbon 2003, 41, 507–523. doi:10.1016/S0008-6223(02)00357-3
  • Bouchelta, C.; Medjram, M. S.; Bertrand, O.; Bellat, J.-P. Preparation and Characterization of Activated Carbon from Date Stones by Physical Activation with Steam. J. Anal. Appl. Pyrol 2008, 82, 70–77. doi:10.1016/j.jaap.2007.12.009
  • Valix, M.; Cheung, W.; McKay, G. Preparation of Activated Carbon Using Low Temperature Carbonisation and Physical Activation of High Ash Raw Bagasse for Acid Dye Adsorption. Chemosphere 2004, 56, 493–501. doi:10.1016/j.chemosphere.2004.04.004
  • Mi, J.; Wang, X.-R.; Fan, R.-J.; Qu, W.-H.; Li, W.-C. Coconut-Shell-Based Porous Carbons with a Tunable Micro/Mesopore Ratio for High-Performance Supercapacitors. Energy Fuels 2012, 26, 5321–5329. doi:10.1021/ef3009234
  • Xia, C.; Shi, S. Q. Self-Activation for Activated Carbon from Biomass: theory and Parameters. Green Chem. 2016, 18, 2063–2071. doi:10.1039/C5GC02152A
  • Wu, F.-C.; Tseng, R.-L.; Hu, C.-C.; Wang, C.-C. Effects of Pore Structure and Electrolyte on the Capacitive Characteristics of Steam- and KOH-Activated Carbons for Supercapacitors. J. Power Sources 2005, 144, 302–309. doi:10.1016/j.jpowsour.2004.12.020
  • Braghiroli, F. L.; Cuña, A.; da Silva, E. L.; Amaral-Labat, G.; Lenz e Silva, G. F. B.; Bouafif, H.; Koubaa, A. The Conversion of Wood Residues, Using Pilot-Scale Technologies, into Porous Activated Biochars for Supercapacitors. J. Porous Mater. 2020, 27, 537–548. doi:10.1007/s10934-019-00823-w
  • Sun, W.; Xiao, Y.; Ren, Q.; Yang, F. Soybean-Waste-Derived Activated Porous Carbons for Electrochemical-Double-Layer Supercapacitors: Effects of Processing Parameters. J. Energy Storage 2020, 27, 101070. doi:10.1016/j.est.2019.101070
  • Geng, J.; Wu, H.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. Freestanding Eggshell Membrane-Based Electrodes for High-Performance Supercapacitors and Oxygen Evolution Reaction. Nanoscale. 2015, 7, 14378–14384. doi:10.1039/c5nr04603c
  • Jin, Z.; Yan, X.; Yu, Y.; Zhao, G. Sustainable Activated Carbon Fibers from Liquefied Wood with Controllable Porosity for High-Performance Supercapacitors. J. Mater. Chem. A 2014, 2, 11706–11715. doi:10.1039/C4TA01413H
  • Fu, K.; Yue, Q.; Gao, B.; Sun, Y.; Zhu, L. Preparation, Characterization and Application of Lignin-Based Activated Carbon from Black Liquor Lignin by Steam Activation. Chem. Eng. J 2013, 228, 1074–1082. doi:10.1016/j.cej.2013.05.028
  • Qu, W.-H.; Xu, Y.-Y.; Lu, A.-H.; Zhang, X.-Q.; Li, W.-C. Converting Biowaste Corncob Residue into High Value Added Porous Carbon for Supercapacitor Electrodes. Bioresour. Technol. 2015, 189, 285–291. doi:10.1016/j.biortech.2015.04.005
  • Tan, Y.; Li, Y.; Wang, W.; Ran, F. High Performance Electrode of Few-Layer-Carbon@Bulk-Carbon Synthesized via Controlling Diffusion Depth from Liquid Phase to Solid Phase for Supercapacitors. J. Energy Storage 2020, 32, 101672. doi:10.1016/j.est.2020.101672
  • Bommier, C.; Xu, R.; Wang, W.; Wang, X.; Wen, D.; Lu, J.; Ji, X. Self-Activation of Cellulose: A New Preparation Methodology for Activated Carbon Electrodes in Electrochemical Capacitors. Nano Energy 2015, 13, 709–717. doi:10.1016/j.nanoen.2015.03.022
  • Yahya, M. A.; Al-Qodah, Z.; Ngah, C. W. Z. Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. Renew. Sust. Energ. Rev 2015, 46, 218–235. doi:10.1016/j.rser.2015.02.051
  • Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. doi:10.1016/j.fuel.2006.12.013
  • Bhat, V. S.; Krishnan, S. G.; Jayeoye, T. J.; Rujiralai, T.; Sirimahachai, U.; Viswanatha, R.; Khalid, M.; Hegde, G. Self-Activated ‘Green’ Carbon Nanoparticles for Symmetric Solid-State Supercapacitors. J. Mater. Sci. 2021, 56, 13271–13290. doi:10.1007/s10853-021-06154-z
  • Sun, K.; Leng, C-y.; Jiang, J-c.; Bu, Q.; Lin, G-f.; Lu, X-c.; Zhu, G-z. Microporous Activated Carbons from Coconut Shells Produced by Self-Activation Using the Pyrolysis Gases Produced from Them, That Have an Excellent Electric Double Layer Performance. New Carbon Mater 2017, 32, 451–459. doi:10.1016/S1872-5805(17)60134-3
  • Zhang, W.; Lin, N.; Liu, D.; Xu, J.; Sha, J.; Yin, J.; Tan, X.; Yang, H.; Lu, H.; Lin, H. Direct Carbonization of Rice Husk to Prepare Porous Carbon for Supercapacitor Applications. Energy 2017, 128, 618–625. doi:10.1016/j.energy.2017.04.065
  • Kleszyk, P.; Ratajczak, P.; Skowron, P.; Jagiello, J.; Abbas, Q.; Frąckowiak, E.; Béguin, F. Carbons with Narrow Pore Size Distribution Prepared by Simultaneous Carbonization and Self-Activation of Tobacco Stems and Their Application to Supercapacitors. Carbon 2015, 81, 148–157. doi:10.1016/j.carbon.2014.09.043
  • He, J.; Zhang, D.; Han, M.; Liu, X.; Wang, Y.; Li, Y.; Zhang, X.; Wang, K.; Feng, H.; Wang, Y. One-Step Large-Scale Fabrication of Nitrogen Doped Microporous Carbon by Self-Activation of Biomass for Supercapacitors Application. J. Energy Storage 2019, 21, 94–104. doi:10.1016/j.est.2018.11.015
  • Falco, C.; Baccile, N.; Titirici, M.-M. Morphological and Structural Differences between Glucose, Cellulose and Lignocellulosic Biomass Derived Hydrothermal Carbons. Green Chem. 2011, 13, 3273–3281. doi:10.1039/c1gc15742f
  • Yu, L.; Falco, C.; Weber, J.; White, R. J.; Howe, J. Y.; Titirici, M.-M. Carbohydrate-Derived Hydrothermal Carbons: A Thorough Characterization Study. Langmuir 2012, 28, 12373–12383. doi:10.1021/la3024277
  • Fang, J.; Zhan, L.; Ok, Y. S.; Gao, B. Minireview of Potential Applications of Hydrochar Derived from Hydrothermal Carbonization of Biomass. J. Ind. Eng. Chem 2018, 57, 15–21. doi:10.1016/j.jiec.2017.08.026
  • Funke, A.; Ziegler, F. Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuels. Biofuels, Bioprod. Bioref. 2010, 4, 160–177. [Database] doi:10.1002/bbb.198
  • Baccile, N.; Falco, C.; Titirici, M.-M. Characterization of Biomass and Its Derived Char Using 13 C-Solid State Nuclear Magnetic Resonance. Green Chem 2014, 16, 4839–4869. doi:10.1039/C3GC42570C
  • Yorgun, S.; Yıldız, D. Preparation and Characterization of Activated Carbons from Paulownia Wood by Chemical Activation with H3PO4. J. Taiwan. Inst. Chem. Eng 2015, 53, 122–131. doi:10.1016/j.jtice.2015.02.032
  • Misnon, I. I.; Zain, N. K. M.; Lei, T. S.; Vijayan, B. L.; Jose, R. Activated Carbon with Graphitic Content from Stinky Bean Seedpod Biowaste as Supercapacitive Electrode Material. Ionics 2020, 26, 4081–4093. doi:10.1007/s11581-020-03565-x
  • Wang, Z.; Yun, S.; Wang, X.; Wang, C.; Si, Y.; Zhang, Y.; Xu, H. Aloe Peel-Derived Honeycomb-like Bio-Based Carbon with Controllable Morphology and Its Superior Electrochemical Properties for New Energy Devices. Ceram. Int 2019, 45, 4208–4218. doi:10.1016/j.ceramint.2018.11.091
  • Wang, C.; Wu, D.; Wang, H.; Gao, Z.; Xu, F.; Jiang, K. Biomass Derived Nitrogen-Doped Hierarchical Porous Carbon Sheets for Supercapacitors with High Performance. J Colloid Interface Sci. 2018, 523, 133–143. doi:10.1016/j.jcis.2018.03.009
  • Jain, A.; Xu, C.; Jayaraman, S.; Balasubramanian, R.; Lee, J. Y.; Srinivasan, M. P. Mesoporous Activated Carbons with Enhanced Porosity by Optimal Hydrothermal Pre-Treatment of Biomass for Supercapacitor Applications. Micropor. Mesopor. Mater 2015, 218, 55–61. doi:10.1016/j.micromeso.2015.06.041
  • Wei, T.; Wei, X.; Gao, Y.; Li, H. Large Scale Production of Biomass-Derived Nitrogen-Doped Porous Carbon Materials for Supercapacitors. Electrochim. Acta 2015, 169, 186–194. doi:10.1016/j.electacta.2015.04.082
  • Kasturi, P. R.; Harivignesh, R.; Lee, Y. S.; Selvan, R. K. Hydrothermally Derived Porous Carbon and Its Improved Electrochemical Performance for Supercapacitors Using Redox Additive Electrolytes. J. Phys Chem. Solids 2020, 143, 109447. doi:10.1016/j.jpcs.2020.109447
  • Ye, R.; Cai, J.; Pan, Y.; Qiao, X.; Sun, W. Microporous Carbon from Malva Nut for Supercapacitors: effects of Primary Carbonizations on Structures and Performances. Diam. Relat. Mater 2020, 105, 107816. doi:10.1016/j.diamond.2020.107816
  • Liu, J.; Wu, Q.; Zhu, Q.; Guan, Y.; Xu, B. Hierarchical Porous Carbon Prepared from Mulberry Leaves for Supercapacitors. Ionics 2019, 25, 4935–4941. doi:10.1007/s11581-019-03023-3
  • Zhao, G.; Li, Y.; Zhu, G.; Shi, J.; Lu, T.; Pan, L. Waste Fruit Grain Orange–Derived 3D Hierarchically Porous Carbon for High-Performance All-Solid-State Supercapacitor. Ionics 2019, 25, 3935–3944. doi:10.1007/s11581-019-02930-9
  • Ban, C.-L.; Xu, Z.; Wang, D.; Liu, Z.; Zhang, H. Porous Layered Carbon with Interconnected Pore Structure Derived from Reed Membranes for Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 10742–10750. doi:10.1021/acssuschemeng.9b01429
  • Peng, L.; Liang, Y.; Huang, J.; Xing, L.; Hu, H.; Xiao, Y.; Dong, H.; Liu, Y.; Zheng, M. Mixed-Biomass Wastes Derived Hierarchically Porous Carbons for High-Performance Electrochemical Energy Storage. ACS Sustain. Chem. Eng. 2019, 7, 10393–10402. doi:10.1021/acssuschemeng.9b00477
  • Luan, R.; Xu, D.; Pan, H.; Zhu, C.; Wang, D.; Meng, X.; Li, Y.; Imtiaz, M.; Zhu, S.; Ma, J. High Electrochemical Cycling Performance through Accurately Inheriting Hierarchical Porous Structure from Bagasse. J. Energy Storage 2019, 22, 60–67. doi:10.1016/j.est.2019.01.021
  • Huang, G.; Wang, Y.; Zhang, T.; Wu, X.; Cai, J. High-Performance Hierarchical N-Doped Porous Carbons from Hydrothermally Carbonized Bamboo Shoot Shells for Symmetric Supercapacitors. J. Taiwan Inst. Chem. E 2019, 96, 672–680. doi:10.1016/j.jtice.2018.12.024
  • Ma, H.; Chen, Z.; Wang, X.; Liu, Z.; Liu, X. A Simple Route for Hierarchically Porous Carbon Derived from Corn Straw for Supercapacitor Application. J. Renew. Sustain. Ener 2019, 11, 024102. doi:10.1063/1.5063676
  • Qiang, L.; Hu, Z.; Li, Z.; Yang, Y.; Wang, X.; Zhou, Y.; Zhang, X.; Wang, W.; Wang, Q. Hierarchical Porous Biomass Carbon Derived from Cypress Coats for High Energy Supercapacitors. J. Mater. Sci: Mater. Electron. 2019, 30, 7324–7336. doi:10.1007/s10854-019-01045-1
  • Saning, A.; Herou, S.; Dechtrirat, D.; Ieosakulrat, C.; Pakawatpanurut, P.; Kaowphong, S.; Thanachayanont, C.; Titirici, M.-M.; Chuenchom, L. Green and Sustainable Zero-Waste Conversion of Water Hyacinth (Eichhornia crassipes) into Superior Magnetic Carbon Composite Adsorbents and Supercapacitor Electrodes. RSC Adv. 2019, 9, 24248–24258. doi:10.1039/C9RA03873F
  • Liu, Y.; An, Z.; Wu, M.; Yuan, A.; Zhao, H.; Zhang, J.; Xu, J. Peony Pollen Derived Nitrogen-Doped Activated Carbon for Supercapacitor Application. Chinese Chem. Lett. 2019, 31, 1644–1647. doi:10.1016/j.cclet.2019.08.005
  • Yu, P.; Liang, Y.; Dong, H.; Hu, H.; Liu, S.; Peng, L.; Zheng, M.; Xiao, Y.; Liu, Y. Rational Synthesis of Highly Porous Carbon from Waste Bagasse for Advanced Supercapacitor Application. ACS Sustain. Chem. Eng. 2018, 6, 15325–15332. doi:10.1021/acssuschemeng.8b03763
  • Li, Y.; Wang, X.; Cao, M. Three-Dimensional Porous Carbon Frameworks Derived from Mangosteen Peel Waste as Promising Materials for CO2 Capture and Supercapacitors. J. CO2 Util 2018, 27, 204–216. doi:10.1016/j.jcou.2018.07.019
  • Ren, M.; Jia, Z.; Tian, Z.; Lopez, D.; Cai, J.; Titirici, M.-M.; Jorge, A. B. High Performance n-Doped Carbon Electrodes Obtained via Hydrothermal Carbonization of Macroalgae for Supercapacitor Applications. ChemElectroChem 2018, 5, 2686–2693. doi:10.1002/celc.201800603
  • Zhang, J.; Song, S.; Xue, J.; Li, P.; Gao, Z.; Li, Y.; Zhang, Z.; Feng, H.; Luo, H. Nitrogen-Rich Porous Carbon Derived from Biomass as High Performance Electrode Materials for Supercapacitors. Int. J. Electrochem. Sci. 2018, 13, 5204–5218.
  • Zou, R.; Quan, H.; Wang, W.; Gao, W.; Dong, Y.; Chen, D. Porous Carbon with Interpenetrating Framework from Osmanthus Flower as Electrode Materials for High-Performance Supercapacitor. J. Environ. Chem. Eng. 2018, 6, 258–265. doi:10.1016/j.jece.2017.11.080
  • Cai, T.; Wang, H.; Jin, C.; Sun, Q.; Nie, Y. Fabrication of Nitrogen-Doped Porous Electrically Conductive Carbon Aerogel from Waste Cabbage for Supercapacitors and Oil/Water Separation. J. Mater. Sci: Mater. Electron. 2018, 29, 4334–4344. doi:10.1007/s10854-017-8381-5
  • Li, C.; He, D.; Huang, Z.-H.; Wang, M.-X. Hierarchical Micro-/Mesoporous Carbon Derived from Rice Husk by Hydrothermal Pre-Treatment for High Performance Supercapacitor. J. Electrochem. Soc. 2018, 165, A3334–A3341. doi:10.1149/2.0121814jes
  • Liu, J.; Li, H.; Zhang, H.; Liu, Q.; Li, R.; Li, B.; Wang, J. Three-Dimensional Hierarchical and Interconnected Honeycomb-like Porous Carbon Derived from Pomelo Peel for High Performance Supercapacitors. J. Solid State Chem. 2018, 257, 64–71. doi:10.1016/j.jssc.2017.07.033
  • Wang, H.; Li, Z.; Tak, J. K.; Holt, C. M. B.; Tan, X.; Xu, Z.; Amirkhiz, B. S.; Harfield, D.; Anyia, A.; Stephenson, T.; Mitlin, D. Supercapacitors Based on Carbons with Tuned Porosity Derived from Paper Pulp Mill Sludge Biowaste. Carbon. 2013, 57, 317–328. doi:10.1016/j.carbon.2013.01.079
  • Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. doi:10.1515/pac-2014-1117
  • Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Desolvation of Ions in Subnanometer Pores and Its Effect on Capacitance and Double-Layer Theory. Angew. Chem. Int. Ed. Engl. 2008, 47, 3392–3395. doi:10.1002/anie.200704894
  • Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.-L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less than 1 Nanometer. Science 2006, 313, 1760–1763. [Database] doi:10.1126/science.1132195
  • Chodankar, N. R.; Pham, H. D.; Nanjundan, A. K.; Fernando, J. F. S.; Jayaramulu, K.; Golberg, D.; Han, Y.-K.; Dubal, D. P. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small 2020, 16, 2002806. doi:10.1002/smll.202002806
  • Borchardt, L.; Oschatz, M.; Kaskel, S. Tailoring Porosity in Carbon Materials for Supercapacitor Applications. Mater. Horiz 2014, 1, 157–168. doi:10.1039/C3MH00112A
  • Krishnan, S. G.; Rahim, M. H. A.; Jose, R. Synthesis and Characterization of MnCo2O4 Cuboidal Microcrystals as a High Performance Psuedocapacitor Electrode. J. Alloy Compd 2016, 656, 707–713. doi:10.1016/j.jallcom.2015.10.007
  • Krishnan, S. G.; Reddy, M. V.; Harilal, M.; Vidyadharan, B.; Misnon, I. I.; Rahim, M. H. A.; Ismail, J.; Jose, R. Characterization of MgCo2O4 as an Electrode for High Performance Supercapacitors. Electrochim. Acta 2015, 161, 312–321. doi:10.1016/j.electacta.2015.02.081
  • Achaw, O.-W.; Afrane, G. The Evolution of the Pore Structure of Coconut Shells during the Preparation of Coconut Shell-Based Activated Carbons. Microporous Mesoporous Mater 2008, 112, 284–290. doi:10.1016/j.micromeso.2007.10.001
  • Molina-Sabio, M.; Gonzalez, M. T.; Rodriguez-Reinoso, F.; Sepúlveda-Escribano, A. Effect of Steam and Carbon Dioxide Activation in the Micropore Size Distribution of Activated Carbon. Carbon 1996, 34, 4, 505–509.
  • Jain, A.; Tripathi, S. K. Fabrication and Characterization of Energy Storing Supercapacitor Devices Using Coconut Shell Based Activated Charcoal Electrode. Mater. Sci. Eng. B 2014, 183, 54–60. doi:10.1016/j.mseb.2013.12.004
  • Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of Biomass: deriving More Value from Waste. Science 2012, 337, 695–699. doi:10.1126/science.1218930
  • Rufford, T. E.; Hulicova-Jurcakova, D.; Khosla, K.; Zhu, Z.; Lu, G. Q. Microstructure and Electrochemical Double-Layer Capacitance of Carbon Electrodes Prepared by Zinc Chloride Activation of Sugar Cane Bagasse. J. Power Sources 2010, 195, 912–918. doi:10.1016/j.jpowsour.2009.08.048
  • Konno, K.; Ohba, Y.; Onoe, K.; Yamaguchi, T. Preparation of Activated Carbon Having the Structure Derived from Biomass by Alkali Activation with NaOH, and Its Application for Electric Double-Layer Capacitor. TANSO 2008, 2008, 2–7. doi:10.7209/tanso.2008.2
  • Ma, F.; Lu, J.; Pu, L.; Wang, W.; Dai, Y. Construction of Hierarchical Cobalt-Molybdenum Selenide Hollow Nanospheres Architectures for High Performance Battery-Supercapacitor Hybrid Devices. J Colloid Interface Sci. 2020, 563, 435–446. doi:10.1016/j.jcis.2019.12.101
  • Wang, C.; Kaneti, Y. V.; Bando, Y.; Lin, J.; Liu, C.; Li, J.; Yamauchi, Y. Metal–Organic Framework-Derived One-Dimensional Porous or Hollow Carbon-Based Nanofibers for Energy Storage and Conversion. Mater. Horiz. 2018, 5, 394–407. doi:10.1039/C8MH00133B
  • Hegde, G.; Abdul Manaf, S. A.; Kumar, A.; Ali, G. A. M.; Chong, K. F.; Ngaini, Z.; Sharma, K. V. Biowaste Sago Bark Based Catalyst Free Carbon Nanospheres: Waste to Wealth Approach. ACS Sustain. Chem. Eng. 2015, 3, 2247–2253. doi:10.1021/acssuschemeng.5b00517
  • Supriya, S.; Sriram, G.; Ngaini, Z.; Kavitha, C.; Kurkuri, M.; De Padova, I. P.; Hegde, G. The Role of Temperature on Physical–Chemical Properties of Green Synthesized Porous Carbon Nanoparticles. Waste Biomass Valor. 2020, 11, 3821–3831. doi:10.1007/s12649-019-00675-0
  • Hao, X.; Wang, J.; Ding, B.; Chang, Z.; Wang, Y.; Dou, H.; Zhang, X. Nitrogen-Doped Porous Carbon Nanospheres from Natural Sepia Ink: Easy Preparation and Extraordinary Capacitive Performance. ChemNanoMat 2017, 3, 895–901. doi:10.1002/cnma.201700194
  • A, D.; Hegde, G. Activated Carbon Nanospheres Derived from Bio-Waste Materials for Supercapacitor Applications – a Review. RSC Adv. 2015, 5, 88339–88352. doi:10.1039/C5RA19392C
  • Wang, D.; Geng, Z.; Li, B.; Zhang, C. High Performance Electrode Materials for Electric Double-Layer Capacitors Based on Biomass-Derived Activated Carbons. Electrochim. Acta 2015, 173, 377–384. doi:10.1016/j.electacta.2015.05.080
  • Ali, G. A. M.; Supriya, S.; Chong, K. F.; Shaaban, E. R.; Algarni, H.; Maiyalagan, T.; Hegde, G. Superior Supercapacitance Behavior of Oxygen Self-Doped Carbon Nanospheres: A Conversion of Allium Cepa Peel to Energy Storage System. Biomass Conv. Bioref 2019, 11, 1311–1323. doi:10.1007/s13399-019-00520-3
  • Ali, G. A. M.; Divyashree, A.; Supriya, S.; Chong, K. F.; Ethiraj, A. S.; Reddy, M. V.; Algarni, H.; Hegde, G. Carbon Nanospheres Derived from Lablab Purpureus for High Performance Supercapacitor Electrodes: A Green Approach. Dalton Trans. 2017, 46, 14034–14044. doi:10.1039/c7dt02392h
  • A, D.; Manaf, S. A. B. A.; S, Y.; K, C.; N, K.; Hegde, G. Low Cost, High Performance Supercapacitor Electrode Using Coconut Wastes: Eco-Friendly Approach. J. Energy Chem. 2016, 25, 880–887. doi:10.1016/j.jechem.2016.08.002
  • Akinwolemiwa, B.; Peng, C.; Chen, G. Z. Redox Electrolytes in Supercapacitors. J. Electrochem. Soc. 2015, 162, A5054–A5059. doi:10.1149/2.0111505jes
  • Li, J.; Qiao, J.; Lian, K. Hydroxide Ion Conducting Polymer Electrolytes and Their Applications in Solid Supercapacitors: A Review. Energy Storage Mater. 2020, 24, 6–21. doi:10.1016/j.ensm.2019.08.012
  • Zhao, C.; Zheng, W. A Review for Aqueous Electrochemical Supercapacitors. Front. Energy Res. 2015, 3, 23. doi:10.3389/fenrg.2015.00023
  • Alipoori, S.; Mazinani, S.; Aboutalebi, S. H.; Sharif, F. Review of PVA-Based Gel Polymer Electrolytes in Flexible Solid-State Supercapacitors: Opportunities and Challenges. J. Energy Storage 2020, 27, 101072. doi:10.1016/j.est.2019.101072
  • Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. doi:10.1039/C5CS00303B
  • Ricketts, B. W.; Ton-That, C. Self-Discharge of Carbon-Based Supercapacitors with Organic Electrolytes. J. Power Sources 2000, 89, 64–69. doi:10.1016/S0378-7753(00)00387-6
  • Andreas, H. A.; Conway, B. E. Examination of the Double-Layer Capacitance of an High Specific-Area C-Cloth Electrode as Titrated from Acidic to Alkaline pHs. Electrochim. Acta 2006, 51, 6510–6520. doi:10.1016/j.electacta.2006.04.045
  • Volkov, A. G.; Paula, S.; Deamer, D. W. Two Mechanisms of Permeation of Small Neutral Molecules and Hydrated Ions across Phospholipid Bilayers. Bioelectrochem. Bioenerg 1997, 42, 153–160. doi:10.1016/S0302-4598(96)05097-0
  • Nightingale, E. R. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 1959, 63, 1381–1387. doi:10.1021/j150579a011
  • Bichat, M. P.; Raymundo-Piñero, E.; Béguin, F. High Voltage Supercapacitor Built with Seaweed Carbons in Neutral Aqueous Electrolyte. Carbon 2010, 48, 4351–4361. doi:10.1016/j.carbon.2010.07.049
  • Wang, Q.; Yan, J.; Wang, Y.; Wei, T.; Zhang, M.; Jing, X.; Fan, Z. Three-Dimensional Flower-like and Hierarchical Porous Carbon Materials as High-Rate Performance Electrodes for Supercapacitors. Carbon 2014, 67, 119–127. doi:10.1016/j.carbon.2013.09.070
  • Vijayan, B. L.; Mohd Zain, N. K.; Misnon, I. I.; Reddy, M. V.; Adams, S.; Yang, C.-C.; Anilkumar, G. M.; Jose, R. Void Space Control in Porous Carbon for High-Density Supercapacitive Charge Storage. Energy Fuels 2020, 34, 5072–5083. doi:10.1021/acs.energyfuels.0c00737
  • Krishnan, S. G.; Harilal, M.; Pal, B.; Misnon, I. I.; Karuppiah, C.; Yang, C.-C.; Jose, R. Improving the Symmetry of Asymmetric Supercapacitors Using Battery-Type Positive Electrodes and Activated Carbon Negative Electrodes by Mass and Charge Balance. J. Electroanal. Chem 2017, 805, 126–132. doi:10.1016/j.jelechem.2017.10.029
  • Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V. Anomalous or Regular Capacitance? The Influence of Pore Size Dispersity on Double-Layer Formation. J. Power Sources 2016, 326, 660–671. doi:10.1016/j.jpowsour.2016.03.015
  • Largeot, C.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Microporous Carbon-Based Electrical Double Layer Capacitor Operating at High Temperature in Ionic Liquid Electrolyte. Electrochem. Solid-State Lett. 2011, 14, A174. doi:10.1149/2.013112esl
  • Dyatkin, B.; Osti, N. C.; Zhang, Y.; Wang, H.-W.; Mamontov, E.; Heller, W. T.; Zhang, P.; Rother, G.; Cummings, P. T.; Wesolowski, D. J.; Gogotsi, Y. Ionic Liquid Structure, Dynamics, and Electrosorption in Carbon Electrodes with Bimodal Pores and Heterogeneous Surfaces. Carbon 2018, 129, 104–118. doi:10.1016/j.carbon.2017.12.001
  • Raymundo-Piñero, E.; Cadek, M.; Béguin, F. Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds. Adv. Funct. Mater. 2009, 19, 1032–1039. doi:10.1002/adfm.200801057
  • Hulicova, D.; Yamashita, J.; Soneda, Y.; Hatori, H.; Kodama, M. Supercapacitors Prepared from Melamine-Based Carbon. Chem. Mater. 2005, 17, 1241–1247. doi:10.1021/cm049337g
  • Krishnan, S. G.; Arulraj, A.; Khalid, M.; Reddy, M. V.; Jose, R. Energy Storage in Metal Cobaltite Electrodes: Opportunities & Challenges in Magnesium Cobalt Oxide. Renew. Sustain. Energ. Rev 2021, 141, 110798. doi:10.1016/j.rser.2021.110798
  • Kumar, T. R.; Senthil, R. A.; Pan, Z.; Pan, J.; Sun, Y. A Tubular-like Porous Carbon Derived from Waste American Poplar Fruit as Advanced Electrode Material for High-Performance Supercapacitor. J. Energy Storage 2020, 32, 101903. doi:10.1016/j.est.2020.101903
  • Krishnan, S. G.; Arunachalam, A.; Jagadish, P.; Khalid, M. 2D Materials for Supercapacitor and Supercapattery Applications. In Adapting 2D Nanomaterials for Advanced Applications. 2020, American Chemical Society. p. 33–47. USA
  • Misnon, I. I.; Aziz, R. A.; Zain, N. K. M.; Vidhyadharan, B.; Krishnan, S. G.; Jose, R. High Performance MnO2 Nanoflower Electrode and the Relationship between Solvated Ion Size and Specific Capacitance in Highly Conductive Electrolytes. Mater. Res. Bull. 2014, 57, 221–230. doi:10.1016/j.materresbull.2014.05.044
  • Yu, J.; Wu, J.; Yang, Z.; Cai, J.; Zhang, Z. A Cheese-Shaped Bio-Carbon for High Performance Supercapacitors Prepared from Juncus Effuses. L. J. Energy Storage 2020, 30, 101531. doi:10.1016/j.est.2020.101531
  • Surya, K.; Michael, M. S. Novel Interconnected Hierarchical Porous Carbon Electrodes Derived from Bio-Waste of Corn Husk for Supercapacitor Applications. J. Electroanal. Chem 2020, 878, 114674. doi:10.1016/j.jelechem.2020.114674
  • Krishnan, S. G.; Arunachalam, A.; Jagadish, P. Chapter 12 – Applications of Supercapattery. in Advances in Supercapacitor and Supercapattery; Arshid, N., Khalid, M., Grace, A.N. Eds. Elsevier, 2021, pp 311–348.
  • Manikandan, R.; Raj, C. J.; Moulton, S. E.; Todorov, T. S.; Yu, K. H.; Kim, B. C. High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors. Chemistry 2021, 27, 669–682. doi:10.1002/chem.202003253
  • Yuan, Y.; Sun, Y.; Feng, Z.; Li, X.; Yi, R.; Sun, W.; Zhao, C.; Yang, L. Nitrogen-Doped Hierarchical Porous Activated Carbon Derived from Paddy for High-Performance Supercapacitors. Materials 2021, 14, 318. doi:10.3390/ma14020318
  • Wan, L.; Hu, J.; Liu, J.; Xie, M.; Zhang, Y.; Chen, J.; Du, C.; Tian, Z. Heteroatom-Doped Porous Carbons Derived from Lotus Pollen for Supercapacitors: Comparison of Three Activators. J. Alloy. Compd 2021, 859, 158390. doi:10.1016/j.jallcom.2020.158390
  • Senthil, R. A.; Yang, V.; Pan, J.; Sun, Y. A Green and Economical Approach to Derive Biomass Porous Carbon from Freely Available Feather Finger Grass Flower for Advanced Symmetric Supercapacitors. J. Energy Storage 2021, 35, 102287. doi:10.1016/j.est.2021.102287
  • Khalafallah, D.; Quan, X.; Ouyang, C.; Zhi, M.; Hong, Z. Heteroatoms Doped Porous Carbon Derived from Waste Potato Peel for Supercapacitors. Renew. Energy 2021, 170, 60–71. doi:10.1016/j.renene.2021.01.077
  • Guo, R.; Guo, N.; Luo, W.; Xu, M.; Zhou, D.; Ma, R.; Sheng, R.; Guo, J.; Jia, D.; Wang, L. A Dual-Activation Strategy to Tailor the Hierarchical Porous Structure of Biomass-Derived Carbon for Ultrahigh Rate Supercapacitor. Int. J. Energy Res. 2021, 45, 9284–9294. doi:10.1002/er.6458
  • Xu, H.; Wang, L.; Zhang, Y.; Chen, Y.; Gao, S. Pore-Structure Regulation of Biomass-Derived Carbon Materials for an Enhanced Supercapacitor Performance. Nanoscale 2021, 13, 10051–10060. doi:10.1039/d1nr01640g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.