851
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Magnetic frustration-driven ground state properties of rare-earth magnetic ions on a breathing kagome lattice: a review of the Gd3Ru4Al12 structure type magnets

, &

References

  • Cheong, S.-W.; Mostovoy, M. Multiferroics: A Magnetic Twist for Ferroelectricity. Nat Mater. 2007, 6, 13–20. doi:10.1038/nmat1804
  • Ramirez, A. P.; Broholm, C. L.; Cava, R. J.; Kowach, G. R. Geometrical Frustration, Spin Ice and Negative Thermal Expansion–the Physics of Underconstraint. Physica B. 2000, 280, 290–295. doi:10.1016/S0921-4526(99)01695-6
  • Onuchic, J. N.; Luthey-Schulten, Z.; Wolynes, P. G. Theory of Protein Folding: The Energy Landscape Perspective. Annu Rev Phys Chem. 1997, 48, 545–600. doi:10.1146/annurev.physchem.48.1.545
  • Wannier, G. H. Antiferromagnetism. the Triangular Ising Net. Phys. Rev. 1950, 79, 357–364. doi:10.1103/PhysRev.79.357
  • Ramirez, A.; Espinosa, G. P.; Cooper, A. S. Strong Frustration and Dilution-Enhanced Order in a Quasi-2d Spin Glass. Phys Rev Lett. 1990, 64, 2070–2073. doi:10.1103/PhysRevLett.64.2070
  • Ogunbunmi, M. O.; Strydom, A. M. Physical and Magnetic Properties of Frustrated Triangular-Lattice Antiferromagnets R3Cu (R = Ce, Pr). J. Alloys Compd. 2022, 895, 162545. doi:10.1016/j.jallcom.2021.162545
  • Ogunbunmi, M. O.; Sondezi, B. M.; Strydom, A. M. Rare-Earth Pyrocoboltates R2Co2O7 (R = Ce, Yb): Effective Spin-1/2 Antiferromagnetic Insulators with Strong Geometrical Frustration. J. Magn. Magn. Mater. 2021, 535, 168048. doi:10.1016/j.jmmm.2021.168048
  • Anderson, P. W. Resonating Valence Bonds: A New Kind of Insulator? Mater. Res. Bull. 1973, 8, 153–160. doi:10.1016/0025-5408(73)90167-0
  • Fazekas, P.; Anderson, P. W. On the Ground State Properties of the Anisotropic Triangular Antiferromagnet. Philos. Mag. 1974, 30, 423–440. doi:10.1080/14786439808206568
  • Shastry, B. S.; Sutherland, B. Exact Ground State of a Quantum Mechanical Antiferromagnet. Physica B + C. 1981, 108, 1069–1070. doi:10.1016/0378-4363(81)90838-X
  • Ogunbunmi, M. O.; Strydom, A. M. Low-Energy Quantum Fluctuations and Frustrated Magnetism in Rare-Earth-Based Shastry-Sutherland Lattices: Insights on the CaCo2Al8 Structure Type Antiferromagnets. Mater. Today Phys. 2021, 21, 100552. doi:10.1016/j.mtphys.2021.100552
  • Mekata, M. Kagome: The Story of the Basketweave Lattice. Phys. Today. 2003, 56, 12–13. doi:10.1063/1.1564329
  • Davis, D.; Hooper, W. P. Periodicity and Ergodicity in the Trihexagonal Tiling. Comment. Math. Helv. 2018, 93, 661–707. doi:10.4171/CMH/447
  • Inosov, D. S. Quantum Magnetism in Minerals. Advan. Phys. 2018, 67, 149–252. doi:10.1080/00018732.2018.1571986
  • Balents, L. Spin Liquids in Frustrated Magnets. Nature. 2010, 464, 199–208. doi:10.1038/nature08917
  • Li, Y.; Liu, C.; Zhao, G.-D.; Hu, T.; Ren, W. Two-Dimensional Multiferroics in a Breathing Kagome Lattice. Phys. Rev. B. 2021, 104, L060405. doi:10.1103/PhysRevB.104.L060405
  • Ogunbunmi, M. O.; Baranets, S.; Childs, A. B.; Bobev, S. The Zintl Phases AIn2As2 (A = Ca, Sr, Ba): new topological insulators and thermoelectric material candidates . Dalton Trans. 2021, 50, 9173–9184. doi:10.1039/d1dt01521d
  • Tokura, Y.; Yasuda, K.; Tsukazaki, A. Magnetic Topological Insulators. Nat Rev Phys. 2019, 1, 126–143. doi:10.1038/s42254-018-0011-5
  • Zhitomirsky, M. E. Effective Quantum Dimer Model for Trimerized Kagome Antiferromagnet. Phys. Rev. B. 2005, 71, 214413. doi:10.1103/PhysRevB.71.214413
  • Repellin, C.; He, Y.-C.; Pollmann, F. Stability of the Spin-1 2 Kagome Ground State with Breathing Anisotropy. Phys. Rev. B. 2017, 96, 205124. doi:10.1103/PhysRevB.96.205124
  • Swain, N.; Shahzad, M.; Sengupta, P. Atomic Scale Skyrmions and Large Topological Hall Effect in a Breathing-Kagome Lattice. arXiv preprint arXiv:2203.03359, 2022,
  • Hirschberger, M.; Nakajima, T.; Gao, S.; Peng, L.; Kikkawa, A.; Kurumaji, T.; Kriener, M.; Yamasaki, Y.; Sagayama, H.; Nakao, H.; et al. Skyrmion Phase and Competing Magnetic Orders on a Breathing Kagomé Lattice. Nat Commun. 2019, 10, 5831.
  • Rössler, U. K.; Bogdanov, A. N.; Pfleiderer, C. Spontaneous Skyrmion Ground States in Magnetic Metals. Nature. 2006, 442, 797–801. doi:10.1038/nature05056
  • Kempkes, S.; Slot, M.; van Den Broeke, J.; Capiod, P.; Benalcazar, W.; Vanmaekelbergh, D.; Bercioux, D.; Swart, I.; Morais Smith, C. Robust Zero-Energy Modes in an Electronic Higher-Order Topological Insulator. Nat Mater. 2019, 18, 1292–1297. doi:10.1038/s41563-019-0483-4
  • Essafi, K.; Jaubert, L.; Udagawa, M. Flat Bands and Dirac Cones in Breathing Lattices. J Phys Condens Matter. 2017, 29, 315802. doi:10.1088/1361-648X/aa782f
  • Kang, M.; Ye, L.; Fang, S.; You, J.-S.; Levitan, A.; Han, M.; Facio, J. I.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; et al. Dirac Fermions and Flat Bands in the Ideal Kagome Metal Fesn. Nat Mater. 2020, 19, 163–169. doi:10.1038/s41563-019-0531-0
  • Li, M.; Wang, Q.; Wang, G.; Yuan, Z.; Song, W.; Lou, R.; Liu, Z.; Huang, Y.; Liu, Z.; Lei, H. Dirac Cone, Flat Band and Saddle Point in Kagome Magnet YMn6Sn6. Nat. Commun. 2021, 12, 1–8.
  • Ezawa, M. Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices. Phys Rev Lett. 2018, 120, 026801. doi:10.1103/PhysRevLett.120.026801
  • Gladyshevskii, R.; Strusievicz, O. R.; Cenzual, K.; Parthé, E. Structure of Gd3Ru4Al12, a New Member of the EuMg. Structure Family with Minority-Atom Clusters. Acta Crystallogr B Struct. Sci. 1993, 49, 474–478. 5.2 doi:10.1107/S0108768192011510
  • Erassme, J.; Lueken, H. Strontium and Europium Polynuclear Units in Intermetallic Compounds with Magnesium. structural Refinements and Relationships. Acta Crystallogr B Struct. Sci. 1987, 43, 244–250. doi:10.1107/S0108768187097933
  • Fornasini, M. L. Crystal Structure of (Ho-, Er-, Tm-, Lu-, Y-) Zn5 and ThCd5 Intermetallic Compounds. J. Less Common Met. 1971, 25, 329–332. doi:10.1016/0022-5088(71)90157-3
  • Andrusyak, R. I. Crystal Structure of Germanide Sc3Ni11Ge4. Sov. Phys. Crystallogr. 1988, 33, 1012–1014.
  • Kotur, B. Crystal Structure of the Compound Sc3Ni11Si4. Sov. Phys. Crystallogr. 1983, 28, 387–389.
  • Florio, J. V.; Baenziger, N.; Rundle, R. Compounds of Thorium with Transition Metals. II. systems with Iron, Cobalt and Nickel. Acta Cryst. 1956, 9, 367–372. doi:10.1107/S0365110X5600108X
  • Chuang, Y. C.; Wu, C. H.; Li, T. C.; Chang, S. C.; Kao, L. Structure and Magnetic Properties of Ho2Co17-xMx Pseudobinary Compounds. J. Less Common Met. 1984, 96, 183–189. 17-x doi:10.1016/0022-5088(84)90194-2
  • Hoffmann, R.-D.; Huppertz, H.; Pöttgen, R. High-Pressure High-Temperature Synthesis of Ca3Ruh4In12–a Ternary Indide with Condensed, Distorted RhIn8 Cubes. Solid State Sci. 2002, 4, 103–107. doi:10.1016/S1293-2558(01)01230-4
  • Niermann, J.; Jeitschko, W. Ternary Rare Earth (R) transition Metal Aluminides R3T4Al12 (T = Ru and Os) with Gd3Ru4Al12 Type Structure. Z. Anorg. Allg. Chem. 2002, 628, 2549–2556. doi:10.1002/1521-3749(200211)628:11<2549::AID-ZAAC2549>3.0.CO;2-X
  • Bukhan’ko, N.; Tursina, A. I.; Malyshev, S. V.; Gribanov, A. V.; Seropegin, Y. D.; Bodak, O. I. The Crystal Structure of the Compound Ce3Ru4Al12 with Gd3Ru4Al12 Type. J. Alloys Compd. 2004, 367, 149–151. doi:10.1016/j.jallcom.2003.08.028
  • Chen, Y.; Shen, J.; Chen, N-x. Site Preference and Vibrational Properties of R3T4+x Al12-x (R = Y, Ce, Gd, U, Th; T = Fe, Ru). J. Solid State Chem. 2010, 183, 504–509. doi:10.1016/j.jssc.2009.12.022
  • Ogunbunmi, M. O.; Strydom, A. M. Magnetism and Spin-Gap Behaviour in the Layered Pr3T4Al12 (T = Fe, Ru, Os) Compounds with the Distorted Kagomé Lattice. J. Phys.: Condens. Matter 2019, 32, 125602.
  • Pasturel, M.; Nasri, N.; Gastebois, J.; Guizouarn, T.; Belgacem, B.; Hassen, R. B.; Tougait, O. Magnetocaloric Properties of a Novel Ferromagnet Gd3Co4+xAl12-x (x= 0.50). Intermetallics 2015, 60, 28–32. doi:10.1016/j.intermet.2015.01.003
  • Pasturel, M.; Nasri, N.; Guizouarn, T.; Belgacem, B.; Hassen, R. B.; Tougait, O.; Noël, H. Magnetic and Magnetocaloric Properties of the New R3Co4+xAl12-x (R: Tb–Er) with the Gd3Ru4Al12 Structure-Type. Intermetallics 2017, 90, 74–80. doi:10.1016/j.intermet.2017.07.005
  • Gorbunov, D. I.; Henriques, M. S.; Andreev, A. V.; Gukasov, A.; Petříček, V.; Baranov, N. V.; Skourski, Y.; Eigner, V.; Paukov, M.; Prokleška, J.; Gonçalves, A. P. Electronic Properties of a Distorted Kagome Lattice Antiferromagnet Dy3Ru4Al12. Phys. Rev. B 2014, 90, 094405. doi:10.1103/PhysRevB.90.094405
  • Chandragiri, V.; Iyer, K. K.; Sampathkumaran, E. V. Insight into the Magnetism of a Distorted Kagome Lattice, Dy3Ru4Al12, Based on Polycrystalline Studies. Intermetallics. 2016, 76, 26–32. doi:10.1016/j.intermet.2016.05.014
  • Ge, W.; Michioka, C.; Ohta, H.; Yoshimura, K. Physical Properties of the Layered Compounds RE3Ru4Al12 (RE = La–Nd). Solid State Commun. 2014, 195, 1–5. doi:10.1016/j.ssc.2014.06.011
  • Ge, W.; Ohta, H.; Michioka, C.; Yoshimura, K. Magnetic Properties of the Novel Layered Compounds RE3Ru4Al12 (RE = La–Nd). J. Phys.: Conf. Ser. 2012, volume 344, 012023. in: IOP Publishing,
  • Henriques, M. S.; Gorbunov, D. I.; Andreev, A. V.; Fabrèges, X.; Gukasov, A.; Uhlarz, M.; Petříček, V.; Ouladdiaf, B.; Wosnitza, J. Complex Magnetic Order in the Kagome Ferromagnet Pr3Ru4Al12. Phys. Rev. B. 2018, 97, 014431. doi:10.1103/PhysRevB.97.014431
  • Gorbunov, D. I.; Henriques, M. S.; Andreev, A. V.; Eigner, V.; Gukasov, A.; Fabrèges, X.; Skourski, Y.; Petříček, V.; Wosnitza, J. Magnetic Anisotropy and Reduced Neodymium Magnetic Moments in Nd3Ru4Al12. Phys. Rev. B. 2016, 93, 024407. doi:10.1103/PhysRevB.93.024407
  • Chandragiri, V.; Iyer, K. K.; Sampathkumaran, E. V. Magnetic Behavior of Gd3Ru4Al12, a Layered Compound with Distorted Kagomé Net. J Phys Condens Matter. 2016, 28, 286002. doi:10.1088/0953-8984/28/28/286002
  • Matsumura, T.; Ozono, Y.; Nakamura, S.; Kabeya, N.; Ochiai, A. Helical Ordering of Spin Trimers in a Distorted Kagome Lattice of Gd3Ru4Al12 Studied by Resonant x-Ray Diffraction. J. Phys. Soc. Jpn. 2019, 88, 023704. doi:10.7566/JPSJ.88.023704
  • Nakamura, S.; Kabeya, N.; Kobayashi, M.; Araki, K.; Katoh, K.; Ochiai, A. Spin Trimer Formation in the Metallic Compound Gd3Ru4Al12 with a Distorted Kagome Lattice Structure. Phys. Rev. B. 2018, 98, 054410. doi:10.1103/PhysRevB.98.054410
  • Sampathkumaran, E. V.; Iyer, K. K.; Upadhyay, S. K.; Andreev, A. V. Anisotropic Re-Entrant Spin-Glass Features in a Metallic Kagome Lattice, Tb3Ru4Al12. Solid State Commun. 2019, 288, 64–67. doi:10.1016/j.ssc.2018.11.015
  • Gorbunov, D. I.; Henriques, M. S.; Andreev, A. V.; Skourski, Y.; Dušek, M. Magnetic, Thermal and Transport Properties of Tb3Ru4Al12 with a Distorted Kagome Lattice. J. Alloys Compd. 2015, 634, 115–121. doi:10.1016/j.jallcom.2015.02.070
  • Upadhyay, S. K.; Iyer, K. K.; Sampathkumaran, E. Magnetic Behavior of Metallic Kagome Lattices, Tb3Ru4Al12 and Er3Ru4Al12. J Phys Condens Matter 2017, 29, 325601. doi:10.1088/1361-648X/aa7959
  • Gorbunov, D. I.; Nomura, T.; Ishii, I.; Henriques, M. S.; Andreev, A. V.; Doerr, M.; Stöter, T.; Suzuki, T.; Zherlitsyn, S.; Wosnitza, J. Crystal-Field Effects in the Kagome Antiferromagnet Ho3Ru4Al12. Phys. Rev. B. 2018, 97, 184412. doi:10.1103/PhysRevB.97.184412
  • Gorbunov, D. I.; Ishii, I.; Kurata, Y.; Andreev, A. V.; Suzuki, T.; Zherlitsyn, S.; Wosnitza, J. Crystal-Field Effects in Er3Ru4Al12 with a Distorted Kagome Lattice. Phys. Rev. B. 2020, 101, 094415. doi:10.1103/PhysRevB.101.094415
  • Nakamura, S.; Toyoshima, S.; Kabeya, N.; Katoh, K.; Nojima, T.; Ochiai, A. Low-Temperature Properties of the S= 1/2 Spin System Yb3Ru4Al12 with a Distorted Kagome Lattice Structure. Phys. Rev. B. 2015, 91, 214426. doi:10.1103/PhysRevB.91.214426
  • Gonçalves, A. P.; Waerenborgh, J. C.; Gaczyński, P.; Noël, H.; Tougait, O. Spin-Glass-like Behaviour in the Ternary U3Fe4+xAl12-x Uranium–Iron Aluminide. Intermetallics. 2009, 17, 25–31. doi:10.1016/j.intermet.2008.09.003
  • Qian, P.; Tian, H.-J.; Chen, N.-X.; Shen, J. Atomistic Simulation on the Site Preference and Mechanical Properties of Th3Co4+xAl12-x and U3Co4+xAl12-x J. Solid State Chem 2008, 181, 983–986. doi:10.1016/j.jssc.2008.01.016
  • Tougait, O.; Noël, H.; Troc, R. Spin-Glass like Behavior in a New Ternary Uranium Cobalt Aluminide, U3Co4+xAl12-x. With x= 0.55 (2). J. Solid State Chem. 2004, 177, 2053–2057. doi:10.1016/j.jssc.2004.02.009
  • Tougait, O.; Troć, R.; Zaleski, A.; Noel, H. Spin-Glass Behaviour of Novel Ternary Uranium Aluminide U3Co4+xAl12-x. (x= 0.55). Philos. Mag. 2007, 87, 1085–1095. doi:10.1080/14786430601026479
  • Soudé, A.; Tougait, O.; Pasturel, M.; Kaczorowski, D.; Noël, H. Crystal Structure and Electronic Properties of the New Compounds U3Co12-x X4 with X = Si, Ge. J. Solid State Chem. 2010, 183, 1180–1185. doi:10.1016/j.jssc.2010.03.015
  • Brisset, N.; Chajewski, G.; Pikul, A.; Tougait, O.; Pasturel, M. U3Pt12Si4: Structural and Physical Properties of a New Uranium-Platinum-Silicon Ternary Compound. SSP. 2016, 257, 86–91. doi:10.4028/www.scientific.net/SSP.257.86
  • Troć, R.; Pasturel, M.; Tougait, O.; Sazonov, A. P.; Gukasov, A.; Sułkowski, C.; Noël, H. Single-Crystal Study of the Kagome Antiferromagnet U3Ru4Al12. Phys. Rev. B. 2012, 85, 064412. doi:10.1103/PhysRevB.85.064412
  • Stegemann, F.; Zhang, Y.; Fokwa, B. P.; Janka, O. On the Formation of the Gd3Ru4Al12 versus the Y2Co3Ga9 type structure – M3Rh4Al12 (M = Ca, Eu) versus M2T3Al9 (M = Ca, Sr, Eu, Yb; T = Ir, Pt). Dalton Trans. 2020, 49, 6398–6406. ) doi:10.1039/d0dt00521e
  • Klenner, S.; Reimann, M. K.; Pöttgen, R. A Europium Kagome Lattice in the Solid Solution Eu. SrxPt4Zn12–First Zinc Representatives of the Gd3Ru4Al12 Type. Z. Kristallogr. Cryst. Mater. 2021, 236, 215–223. doi:10.1515/zkri-2021-2041
  • Meschke, V.; Gorai, P.; Stevanovic, V.; Toberer, E. S. Search and Structural Featurization of Magnetically Frustrated Kagome Lattices. Chem. Mater. 2021, 33, 4373–4381. doi:10.1021/acs.chemmater.1c00071
  • Graser, J.; Kauwe, S. K.; Sparks, T. D. Machine Learning and Energy Minimization Approaches for Crystal Structure Predictions: A Review and New Horizons. Chem. Mater. 2018, 30, 3601–3612. doi:10.1021/acs.chemmater.7b05304
  • Georgescu, I. M.; Ashhab, S.; Nori, F. Quantum Simulation. Rev. Mod. Phys. 2014, 86, 153–185. doi:10.1103/RevModPhys.86.153
  • Kramers, H. General Theory of Paramagnetic Rotation in Crystals. Proc. Acad. Sci. Amsterdam, 1930, 33, 959.
  • Bleaney, B. Crystal Field Effects and the co-Operative State I. A Primitive Theory. Proc. R. Soc. A: Math. Phys. Eng. Sci 1963, 276, 19.
  • Grover, B. Dynamical Properties of Induced-Moment Systems. Phys. Rev 1965, 140, A1944–A1951. doi:10.1103/PhysRev.140.A1944
  • Andres, K.; Bucher, E.; Darack, S.; Maita, J. P. Induced-Moment ferromagnetism in Pr3Tl. Phys. Rev. B 1972, 6, 2716–2724. doi:10.1103/PhysRevB.6.2716
  • Suzuki, T.; Mizuno, T.; Takezawa, K.; Kamikawa, S.; Andreev, A. V.; Gorbunov, D. I.; Henriques, M. S.; Ishii, I. Elastic Moduli of the Distorted Kagome-Lattice Ferromagnet Nd3Ru4Al12. Physica B 2018, 536, 18–20. doi:10.1016/j.physb.2017.10.008
  • Suzuki, T.; Mizuno, T.; Kumano, S.; Umeno, T.; Suzuki, D.; Andreev, A. V.; Gorbunov, D. I.; Henriques, M. S.; Ishii, I. Ultrasonic Dispersion in the Hexagonal Ferromagnet Nd3Ru4Al12. JPS Conf. Proc. 2020, 30, 011091.
  • Ishii, I.; Mizuno, T.; Kumano, S.; Umeno, T.; Suzuki, D.; Andreev, A. V.; Gorbunov, D. I.; Henriques, M. S.; Suzuki, T. 2020 The Crystal Electric Field Effect in the Distorted Kagome Lattice Ferromagnet Nd3Ru4Al12. In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019), p. 011161. doi:10.7566/JPSCP.30.011161
  • Pecharsky, V. K.; Gschneidner, K. A. Jr, Giant Magnetocaloric Effect in Gd5(Si2Ge2). Phys. Rev. Lett. 1997, 78, 4494–4497. doi:10.1103/PhysRevLett.78.4494
  • Jianqiu, D.; Jinming, Z.; Jialin, Y.; Yinghong, Z.; Richu, W. Magnetocaloric Effect of Alloys Gd(Al1-xCox)2. J. Rare Earth. 2007, 25, 783–786. 1-x doi:10.1016/S1002-0721(08)60025-3
  • Li, L.; Nishimura, K.; Huo, D.; Qian, Z.; Namiki, T. Critical Behaviour of the RCo3B2 (R = Gd, Tb and Dy) Compounds. J. Alloys Compd. 2013a, 572, 205–208. doi:10.1016/j.jallcom.2013.03.270
  • Li, L.; Hu, G.; Umehara, I.; Huo, D.; Hutchison, W. D.; Namiki, T.; Nishimura, K. Magnetic Properties and Magnetocaloric Effect of GdCr2Si2 Compound under Hydrostatic Pressure. J. Alloy Compd. 2013b, 575, 1–4. doi:10.1016/j.jallcom.2013.04.081
  • Couillaud, S.; Gaudin, E.; Franco, V.; Conde, A.; Pöttgen, R.; Heying, B.; Rodewald, U. C.; Chevalier, B. The Magnetocaloric Properties of GdScsi and GdScGe. Intermetallics. 2011, 19, 1573–1578. doi:10.1016/j.intermet.2011.06.001
  • Tencé, S.; Gorsse, S.; Gaudin, E.; Chevalier, B. Magnetocaloric Effect in the Ternary Silicide Gd3NiSi2. Intermetallics 2009, 17, 115–119. doi:10.1016/j.intermet.2008.10.004
  • Coey, J. M. D. Magnetism and Magnetic Materials, Cambridge University Press, New York, 2014.
  • Nakamura, S.; Kabeya, N.; Kobayashi, M.; Araki, K.; Katoh, K.; Ochiai, A. Magnetic Phases of Frustrated Ferromagnetic Spin-Trimer System Gd3Ru4Al12 with a Distorted Kagome Lattice Structure. arXiv preprint arXiv:1811.12656, 2018,
  • Kadowaki, H.; Ubukoshi, K.; Hirakawa, K. Neutron Scattering Study of Successive Phase Transitions in Triangular Lattice Antiferromagnet CsNiCl3. J. Phys. Soc. Jpn. 1987, 56, 751–756. doi:10.1143/JPSJ.56.751
  • Matsumura, T.; Okuyama, D.; Mouri, T.; Murakami, Y. Successive Magnetic Phase Transitions of Component Orderings in DyB4. J. Phys. Soc. Jpn. 2011, 80, 074701. doi:10.1143/JPSJ.80.074701
  • Kubota, Y.; Tanaka, H.; Ono, T.; Narumi, Y.; Kindo, K. Successive Magnetic Phase Transitions in α- RuCl3: Xy-like Frustrated Magnet on the Honeycomb Lattice. Phys. Rev. B. 2015, 91, 094422. doi:10.1103/PhysRevB.91.094422
  • Mekata, M.; Yaguchi, N.; Takagi, T.; Sugino, T.; Mitsuda, S.; Yoshizawa, H.; Hosoito, N.; Shinjo, T. Successive Magnetic Ordering in CuFeO2–a New Type of Partially Disordered Phase in a Triangular Lattice Antiferromagnet–. J. Phys. Soc. Jpn. 1993, 62, 4474–4487. doi:10.1143/JPSJ.62.4474
  • Amitsuka, H. Well-Designed Experiments Revealing Composite Spin Structures with Spontaneous Broken Chiral Symmetry. JPSJ News Comment. 2019, 16, 06. doi:10.7566/JPSJNC.16.06
  • Bogdanov, A. N.; Yablonskii, D. Thermodynamically Stable “Vortices” in Magnetically Ordered Crystals. the Mixed State of Magnets. Zh. Eksp. Teor. Fiz. 1989, 95, 178.
  • Nayak, A. K.; Kumar, V.; Ma, T.; Werner, P.; Pippel, E.; Sahoo, R.; Damay, F.; Rößler, U. K.; Felser, C.; Parkin, S. S. P. Magnetic Antiskyrmions above Room Temperature in Tetragonal Heusler Materials. Nature. 2017, 548, 561–566. doi:10.1038/nature23466
  • Schulz, T.; Ritz, R.; Bauer, A.; Halder, M.; Wagner, M.; Franz, C.; Pfleiderer, C.; Everschor, K.; Garst, M.; Rosch, A. Emergent Electrodynamics of Skyrmions in a Chiral Magnet. Nature Phys. 2012, 8, 301–304. doi:10.1038/nphys2231
  • Frontzek, M.; Tang, F.; Link, P.; Schneidewind, A.; Hoffman, J.-U.; Mignot, J.-M.; Loewenhaupt, M. Correlation between Crystallographic Superstructure and Magnetic Structures in Finite Magnetic Fields: A Neutron Study on a Single Crystal of Ho2PdSi3. Phys. Rev. B. 2010, 82, 174401. doi:10.1103/PhysRevB.82.174401
  • Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion Lattice in a Chiral Magnet. Science. 2009, 323, 915–919. doi:10.1126/science.1166767
  • Khanh, N. D.; Nakajima, T.; Yu, X.; Gao, S.; Shibata, K.; Hirschberger, M.; Yamasaki, Y.; Sagayama, H.; Nakao, H.; Peng, L.; et al. Nanometric Square Skyrmion Lattice in a Centrosymmetric Tetragonal Magnet. Nat Nanotechnol. 2020, 15, 444–449. doi:10.1038/s41565-020-0684-7
  • Kurumaji, T.; Nakajima, T.; Hirschberger, M.; Kikkawa, A.; Yamasaki, Y.; Sagayama, H.; Nakao, H.; Taguchi, Y.; Arima, T-h.; Tokura, Y. Skyrmion Lattice with a Giant Topological Hall Effect in a Frustrated Triangular-Lattice Magnet. Science. 2019, 365, 914–918. doi:10.1126/science.aau0968
  • Hirschberger, M.; Nakajima, T.; Kriener, M.; Kurumaji, T.; Spitz, L.; Gao, S.; Kikkawa, A.; Yamasaki, Y.; Sagayama, H.; Nakao, H.; et al. High-Field Depinned Phase and Planar Hall Effect in the Skyrmion Host Gd2PdSi3. Phys. Rev. B. 2020, 101, 220401. doi:10.1103/PhysRevB.101.220401
  • Hirschberger, M.; Hayami, S.; Tokura, Y. Nanometric Skyrmion Lattice from Anisotropic Exchange Interactions in a Centrosymmetric Host. New J. Phys. 2021, 23, 023039. doi:10.1088/1367-2630/abdef9
  • Rayaprol, S.; Hoser, A.; Iyer, K. K.; Upadhyay, S. K.; Sampathkumaran, E. V. Neutron Diffraction Study of a Metallic Kagome Lattice, Tb3Ru4Al12. J. Magn. and Magn. Mater. 2019, 477, 83–87. doi:10.1016/j.jmmm.2018.12.104
  • Henriques, M. S.; Gorbunov, D. I.; Kriegner, D.; Vališka, M.; Andreev, A. V.; Matěj, Z. Magneto-Elastic Coupling across the First-Order Transition in the Distorted Kagome Lattice Antiferromagnet Dy3Ru4Al12. J Magn Magn Mater. 2016, 400, 125–129. doi:10.1016/j.jmmm.2015.07.066
  • Gao, S.; Hirschberger, M.; Zaharko, O.; Nakajima, T.; Kurumaji, T.; Kikkawa, A.; Shiogai, J.; Tsukazaki, A.; Kimura, S.; Awaji, S.; et al. Ordering Phenomena of Spin Trimers Accompanied by a Large Geometrical Hall Effect. Phys. Rev. B. 2019, 100, 241115. doi:10.1103/PhysRevB.100.241115
  • Ishii, I.; Mizuno, T.; Kumano, S.; Umeno, T.; Suzuki, D.; Kurata, Y.; Suzuki, T.; Gorbunov, D. I.; Henriques, M. S.; Andreev, A. V. Magnetic Transition Due to the Inter-Singlet Spin-Exchange Interaction and Elastic Softening by the Interplay of Electric Quadrupoles in the Distorted Kagome Lattice Antiferromagnet Tb3Ru4Al12. Phys. Rev. B. 2020, 101, 165116. doi:10.1103/PhysRevB.101.165116
  • Ishii, I.; Mizuno, T.; Takezawa, K.; Kumano, S.; Kawamoto, Y.; Suzuki, T.; Gorbunov, D. I.; Henriques, M. S.; Andreev, A. V. Magnetic-Field-Induced Quadrupolar Ordering and the Crystal Electric Field Effect in the Distorted Kagome Lattice Antiferromagnet Dy3Ru4Al12. Phys. Rev. B. 2018, 97, 235130. doi:10.1103/PhysRevB.97.235130
  • Ogunbunmi, M. O. Unusual Electronic and Magnetic Ground States in Praseodymium Based Intermetallic Compounds. Ph.D. thesis, University of Johannesburg, 2019. http://hdl.handle.net/10210/292749.,
  • Ueda, K. Effect of Magnetic Field on Spin Fluctuations in Weakly Ferromagnetic Metals. Solid State Commun. 1976, 19, 965–968. doi:10.1016/0038-1098(76)90631-1
  • Pasturel, M.; Tougait, O.; Potel, M.; Roisnel, T.; Wochowski, K.; Noël, H.; Troć, R. Crystal Structure and Physical Properties of a Novel Kondo Antiferromagnet: URuAl. J Phys Condens Matter. 2009, 21, 125401. doi:10.1088/0953-8984/21/12/125401
  • Henriques, M. S.; Tougait, O.; Noël, H.; Pereira, L. C. J.; Waerenborgh, J. C.; Gonçalves, A. P. Evidence of Uranium Magnetic Ordering on U2Fe3Ge. Solid State Commun. 2008, 148, 159–162. doi:10.1016/j.ssc.2008.07.029
  • Mydosh, J. A. An Experimental Introduction to Spin Glass, Taylor and Francis, London, 1993.
  • Kaczorowski, D.; Troć, R.; Czopnik, A.; Jeżowski, A.; Henkie, Z.; Zaremba, V. I. Magnetic, Electrical Transport, and Thermal Properties of a Uranium Intermetallic Compound UCu5In. Phys. Rev. B. 2001, 63, 144401. doi:10.1103/PhysRevB.63.144401
  • Degiorgi, L.; Thieme, S.; Ott, H. R.; Dressel, M.; Grüner, G.; Dalichaouch, Y.; Maple, M. B.; Fisk, Z.; Geibel, C.; Steglich, F. The Electrodynamic Response of Heavy-Electron Materials with Magnetic Phase Transitions. Z. Phys. B 1997, 102, 367–380. doi:10.1007/s002570050300
  • Degiorgi, L.; Ott, H. R.; Dressel, M.; Grüner, G.; Fisk, Z. Optical Probing of the Antiferromagnetic Phase Transitions in the Heavy-Electron Compounds U2 Zn17 and UCu5. Europhys. Lett. 1994, 26, 221–226. doi:10.1209/0295-5075/26/3/011
  • Ogunbunmi, M. O.; Nair, H. S.; Strydom, A. M. Superzone Gap Formation and Possible Kondo-like Features in the Heavy Fermion PrFe2Ga8 Compound. JPS Conf. Proc 2020, 30, 011114. doi:10.7566/JPSCP.30.011114
  • Ogunbunmi, M. O. Electronic and Magnetic Properties of the Quasi-Skutterudite RT2X8 Intermetallic Compounds. Prog. Solid State Chem. 2020, 58, 100275. doi:10.1016/j.progsolidstchem.2020.100275
  • Takahashi, M.; Nawa, K.; Okuyama, D.; Nojiri, H.; Frontzek, M. D.; Avdeev, M.; Yoshida, M.; Ueta, D.; Yoshizawa, H.; Sato, T. J. Crystal Structure and Magnetic Properties of the Breathing Kagome Ising Antiferromagnet Yb3Ni11Ge4.63. J. Phys. Soc. Jpn 2020, 89, 094704. doi:10.7566/JPSJ.89.094704
  • Gorbunov, D. I.; Ishii, I.; Nomura, T.; Henriques, M. S.; Andreev, A. V.; Uhlarz, M.; Suzuki, T.; Zherlitsyn, S.; Wosnitza, J. Magnetic Phase Diagram and Crystal-Field Effects in the Kagome-Lattice Antiferromagnet U3Ru4Al12. Phys. Rev. B. 2019, 99, 054413. doi:10.1103/PhysRevB.99.054413
  • Asaba, T.; Su, Y.; Janoschek, M.; Thompson, J. D.; Thomas, S. M.; Bauer, E. D.; Lin, S.-Z.; Ronning, F. Large Tunable Anomalous Hall Effect in the Kagome Antiferromagnet U3Ru4Al12. Phy. Rev. B. 2020, 102, 035127.
  • Stewart, G. R. Heavy Fermion Systems. Rev. Mod. Phys. 1984, 56, 755–787. doi:10.1103/RevModPhys.56.755
  • Kadowaki, K.; Woods, S. B. Universal Relationship of the Resistivity and Specific Heat in Heavy-Fermion Compounds. Solid State Commun. 1986, 58, 507–509. doi:10.1016/0038-1098(86)90785-4
  • Wilson, K. G. The Renormalization Group: Critical Phenomena and the Kondo Problem. Rev. Mod. Phys. 1975, 47, 773–840. doi:10.1103/RevModPhys.47.773
  • Troć, R.; Noël, H.; Tougait, O.; Wochowski, K. Transport and Magnetic Studies of New Ternary Compounds of the U-Co-Al System. in Proceedings of the 33èmes Journées Des Actinides, 27–29 April 2003, Prague, 2003, pp. P–27.
  • Tsujii, N.; Yoshimura, K.; Kosuge, K. Deviation from the Kadowaki–Woods Relation in Yb-Based Intermediate-Valence Systems. J. Phys.: Condens. Matter. 2003, 15, 1993–2003. doi:10.1088/0953-8984/15/12/316
  • Machida, Y.; Yoshida, T.; Ikeura, T.; Izawa, K.; Nakama, A.; Higashinaka, R.; Aoki, Y.; Sato, H.; Sakai, A.; Nakatsuji, S.; et al. Anomalous Enhancement of Seebeck Coefficient in Pr-Based 1-2-20 System with non-Kramers Doublet Ground States. J. Phys.: Conf. Ser. 2015, 592, 012025. doi:10.1088/1742-6596/592/1/012025
  • Behnia, K.; Jaccard, D.; Flouquet, J. On the Thermoelectricity of Correlated Electrons in the Zero-Temperature Limit. J. Phys.: Condens. Matter. 2004, 16, 5187–5198. doi:10.1088/0953-8984/16/28/037
  • Zelenskiy, A.; Monchesky, T. L.; Plumer, M. L.; Southern, B. W. Anisotropic Magnetic Interactions in Hexagonal a b-Stacked Kagome Lattice Structures: Application to Mn3X (X = Ge, Sn,Ga) Compounds. Phys. Rev. B. 2021, 103, 144401. doi:10.1103/PhysRevB.103.144401
  • Miao, H.; Li, H. X.; Meier, W. R.; Huon, A.; Lee, H. N.; Said, A.; Lei, H. C.; Ortiz, B. R.; Wilson, S. D.; Yin, J. X.; et al. Geometry of the Charge Density Wave in the Kagome Metal AV3Sb5. Phys. Rev. B. 2021, 104, 195132. doi:10.1103/PhysRevB.104.195132
  • Sun, Z.; Zhou, H.; Wang, C.; Kumar, S.; Geng, D.; Yue, S.; Han, X.; Haraguchi, Y.; Shimada, K.; Cheng, P. Observation of Topological Flat Bands in the Kagome Semiconductor Nb3Cl8. arXiv preprint arXiv:2111.01583, 2021.
  • Tanaka, H.; Fujisawa, Y.; Kuroda, K.; Noguchi, R.; Sakuragi, S.; Bareille, C.; Smith, B.; Cacho, C.; Jung, S. W.; Muro, T.; et al. Three-Dimensional Electronic Structure in Ferromagnetic Fe3Sn2 with Breathing Kagome Bilayers. Phys. Rev. B 2020, 101, 161114. doi:10.1103/PhysRevB.101.161114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.