435
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Review of Li3VO4 anode materials for energy storage

, , , , , & ORCID Icon show all

References

  • Wu, F.; Maier, J.; Yu, Y. Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. doi:10.1039/C7CS00863E. [32055806]
  • Choi, D.; Shamim, N.; Crawford, A.; Huang, Q.; Vartanian, C. K.; Viswanathan, V. V.; Paiss, M. D.; Alam, M. J. E.; Reed, D. M.; Sprenkle, V. L. Li-Ion Battery Technology for Grid Application. J. Power Sources 2021, 511, 230419. doi:10.1016/j.jpowsour.2021.230419
  • Galos, J.; Pattarakunnan, K.; Best, A. S.; Kyratzis, I. L.; Wang, C.-H.; Mouritz, A. P. Energy Storage Structural Composites with Integrated Lithium-Ion Batteries: A Review. Adv. Mater. Technol. 2021, 6, 2001059. doi:10.1002/admt.202001059
  • Duan, J.; Tang, X.; Dai, H.; Yang, Y.; Wu, W.; Wei, X.; Huang, Y. Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review. Electrochem. Energy Rev. 2020, 3, 1–42. doi:10.1007/s41918-019-00060-4
  • Zhang, L.; Li, X.; Yang, M.; Chen, W. High-Safety Separators for Lithium-Ion Batteries and Sodium-Ion Batteries: Advances and Perspective. Energy Storage Mater. 2021, 41, 522–545. doi:10.1016/j.ensm.2021.06.033
  • Masias, A.; Marcicki, J.; Paxton, W. A. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Lett. 2021, 6, 621–630. doi:10.1021/acsenergylett.0c02584
  • Zhang, C.; Wang, F.; Han, J.; Bai, S.; Tan, J.; Liu, J.; Li, F. Challenges and Recent Progress on Silicon-Based Anode Materials for Next-Generation Lithium-Ion Batteries. Small Struct. 2021, 2, 2170015. doi:10.1002/sstr.202100009
  • Yue, Q. L.; He, C. X.; Wu, M. C.; Zhao, T. S. Advances in Thermal Management Systems for Next-Generation Power Batteries. Int. J. Heat Mass Transfer 2021, 181, 121853. doi:10.1016/j.ijheatmasstransfer.2021.121853
  • Yi, T.-F.; Sari, H. M. K.; Li, X.; Wang, F.; Zhu, Y.-R.; Hu, J.; Zhang, J.; Li, X. A Review of Niobium Oxides Based Nanocomposites for Lithium-Ion Batteries, Sodium-Ion Batteries and Supercapacitors. Nano Energy 2021, 85, 105955. doi:10.1016/j.nanoen.2021.105955
  • Li, H. Q.; Liu, X. Z.; Zhai, T. Y.; Li, D.; Zhou, H. S. Li3VO4: A Promising Insertion Anode Material for Lithium-Ion Batteries. Adv. Energy Mater. 2013, 3, 428–432. doi:10.1002/aenm.201200833
  • Ni, S.; Lv, X.; Ma, J.; Yang, X.; Zhang, L. Electrochemical Characteristics of Lithium Vanadate, Li3VO4 as a New Sort of Anode Material for Li-Ion Batteries. J. Power Sources 2014, 248, 122–129. doi:10.1016/j.jpowsour.2013.09.050
  • Liang, Z.; Lin, Z.; Zhao, Y.; Dong, Y.; Kuang, Q.; Lin, X.; Liu, X.; Yan, D. New Understanding of Li3VO4/C as Potential Anode for Li-Ion Batteries: Preparation, Structure Characterization and Lithium Insertion Mechanism. J. Power Sources 2015, 274, 345–354. doi:10.1016/j.jpowsour.2014.10.024
  • Hu, S.; Song, Y. F.; Yuan, S. Y.; Liu, H. M.; Xu, Q. J.; Wang, Y. G.; Wang, C. X.; Xia, Y. Y. A Hierarchical Structure of Carbon-Coated Li3VO4 Nanoparticles Embedded in Expanded Graphite for High Performance Lithium Ion Battery. J. Power Sources 2016, 303, 333–339. doi:10.1016/j.jpowsour.2015.11.015
  • Arroyo-de Dompablo, M. E.; Tartaj, P.; Amarilla, J. M.; Amador, U. Computational Investigation of Li Insertion in Li3VO4. Chem. Mater. 2016, 28, 5643–5651. doi:10.1021/acs.chemmater.6b01519
  • Ni, S. B.; Lv, X. H.; Ma, J. J.; Yang, X. L.; Zhang, L. L. The Fabrication of Li3VO4/Ni Composite Material and Its Electrochemical Performance as Anode for Li-Ion Battery. Electrochim. Acta. 2014, 130, 800–804. doi:10.1016/j.electacta.2014.03.120
  • Wang, R.; Cao, X.; Zhao, D.; Zhu, L.; Xie, L.; Liu, J.; Liu, Y. Wet-Chemistry Synthesis of Li4Ti5O12 as Anode Materials Rendering High-Rate Li-Ion Storage. Int. J. Energy Res. 2020, 44, 4211–4223. doi:10.1002/er.5020
  • Chen, K.; Yang, H.; Liang, F.; Xue, D. Microwave-Irradiation-Assisted Combustion toward Modified Graphite as Lithium Ion Battery Anode. ACS Appl. Mater. Interfaces 2018, 10, 909–914. doi:10.1021/acsami.7b16418.
  • Wang, X.; Chen, J.; Dong, C.; Wang, D.; Mao, Z. Hard Carbon Derived from Graphite Anode by Mechanochemistry and the Enhanced Lithium-Ion Storage Performance. ChemElectroChem 2022, 9, doi:10.1002/celc.202101613
  • Zhang, W.; Yin, J.; Chen, C.; Qiu, X. Carbon Nitride Derived Nitrogen-Doped Carbon Nanosheets for High-Rate Lithium-Ion Storage. Chem. Eng. Sci. 2021, 241, 116709. doi:10.1016/j.ces.2021.116709
  • Zhang, M.; Bai, X.; Liu, Y.; Zhang, Y.; Wu, Y.; Cui, D.; Liu, Y.; Wang, L.; Li, B.; Tao, X. Solvothermal Processed Li3VO4/MoS2 Composites and Its Enhanced Electrochemical Performance as Lithium Battery Anode Materials. Appl. Surf. Sci. 2019, 469, 923–932. doi:10.1016/j.apsusc.2018.11.035
  • Liu, Y.; Zhang, M.; Liu, Y.; Xue, M.; Li, B.; Tao, X. Novel Li3VO4/MoS2 Composite Materials with High Electrochemical Performance as Anode for Lithium Ion Batteries. Mater. Lett. 2017, 196, 209–212. doi:10.1016/j.matlet.2017.03.049
  • Ni, S. B.; Zhang, J. C.; Ma, J. J.; Yang, X. L.; Zhang, L. L.; Li, X. M.; Zeng, H. B. Approaching the Theoretical Capacity of Li3VO4 via Electrochemical Reconstruction. Adv. Mater. Interfaces 2016, 3, 1500340. doi:10.1002/admi.201500340
  • Y.; Sun, C. L.; C.; Yang, G. L.; Dai, L. L.; Z. H.; D. D.; Wang, Y. R.; Liang, Y. L.; Y. X.; Wang, Y. F.; Xu, Y. Z.; Zhao, H. K.; Liu, S. L.; Chou.; et al. Novel Li3VO4 Nanostructures Grown in Highly Efficient Microwave Irradiation Strategy and Their In-Situ Lithium Storage Mechanism. Adv. Sci. 2022, 9, 2103493. doi:10.1002/advs.202103493
  • Liu, Y. J.; Wang, Q. L.; Wang, X. Q.; Wang, T. C.; Gao, Y. Y.; Su, M. R.; Dou, A. C. Improved Electrochemical Performance of Li1.2Ni0.2Mn0.6O2 Cathode Material with Fast Ionic Conductor Li3VO4 Coating. IONICS 2015, 21, 2725–2733. doi:10.1007/s11581-015-1484-1
  • Song, X. Q.; Jia, M. Y.; Chen, R. F. Synthesis of Li3VO4 by the Citrate Sol-Gel Method and Its Ionic Conductivity. J. Mater. Process. Technol. 2002, 120, 21–25. doi:10.1016/S0924-0136(01)01044-5
  • Zhang, C. K.; Song, H. Q.; Liu, C. F.; Liu, Y. G.; Zhang, C. P.; Nan, X. H.; Cao, G. Z. Fast and Reversible Li Ion Insertion in Carbon-Encapsulated Li3VO4 as Anode for Lithium-Ion Battery. Adv. Funct. Mater. 2015, 25, 3497–3504. doi:10.1002/adfm.201500644
  • Shen, L. F.; Lv, H. F.; Chen, S. Q.; Kopold, P.; van Aken, P. A.; Wu, X. J.; Maier, J.; Yu, Y. Peapod-like Li3VO4/N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors, ADVANCED MATERIALS. Adv. Mater. 2017, 29, 1700142. doi:10.1002/adma.201700142
  • Rozier, P.; Iwama, E.; Nishio, N.; Baba, K.; Matsumura, K.; Kisu, K.; Miyamoto, J.; Naoi, W.; Orikasa, Y.; Simon, P.; Naoi, K. Cation-Disordered Li3VO4: Reversible Li Insertion/Deinsertion Mechanism for Quasi Li-Rich Layered Li1+x[V1/2Li1/2]O2 (x = 0–1). Chem. Mater. 2018, 30, 4926–4934. doi:10.1021/acs.chemmater.8b00721
  • Liao, C.; Wen, Y.; Shan, B.; Zhai, T.; Li, H. Probing the Capacity Loss of Li3VO4 Anode upon Li Insertion and Extraction. J. Power Sources 2017, 348, 48–56. doi:10.1016/j.jpowsour.2017.02.075
  • Xu, Z.; Li, D.; Xu, J.; Lu, J.; Zhang, D.; Ni, S. Controllable Synthesis of Li3VO4/N Doped C Nanofibers toward High-Capacity and High-Rate Li-Ion Storage. Electrochim. Acta 2021, 384, 138386. doi:10.1016/j.electacta.2021.138386
  • Liu, T.; Yao, T.; Li, L.; Zhu, L.; Wang, J.; Li, F.; Wang, H. Embedding Amorphous Lithium Vanadate into Carbon Nanofibers by Electrospinning as a High-Performance Anode Material for Lithium-Ion Batteries. J. Colloid Interface Sci. 2020, 580, 21–29. doi:10.1016/j.jcis.2020.06.111.
  • Yang, Y.; Li, J. Q.; Chen, D. Q.; Zhao, J. B. Spray Drying-Assisted Synthesis of Li3VO4/C/CNTs Composites for High-Performance Lithium Ion Battery Anodes. J. Electrochem. Soc. 2017, 164, A6001–A6006. doi:10.1149/2.0031701jes
  • Xu, J.; Zhang, D. M.; Zhang, Z. P.; Ni, S. B. A High Performance All-Vanadate-Based Li-Ion Full Cell. J. Mater. Chem. A 2021, 9, 10345–10353. doi:10.1039/D1TA01170G
  • Yan, Z.; Sun, Z.; Xia, A.; Yin, R.; Huang, X.; Yue, K.; Xu, H.; Zhao, G.; Qian, L. Li3VO4/Carbon Sheets Composites from Cellulose as an Anode Material for High Performance Lithium-Ion Batteries. Ceram. Int. 2020, 46, 2247–2254. doi:10.1016/j.ceramint.2019.09.210
  • Zakharova, G. S.; Thauer, E.; Wegener, S. A.; Nolke, J. H.; Zhu, Q.; Klingeler, R. Hydrothermal Microwave-Assisted Synthesis of Li3VO4 as an Anode for Lithium-Ion Battery. J. Solid State Electrochem. 2019, 23, 2205–2212. doi:10.1007/s10008-019-04315-4
  • Kim, W. T.; Min, B. K.; Choi, H. C.; Lee, Y. J.; Jeong, Y. U. Lithium Intercalation and Crystal Chemistry of Li3VO4 Synthesized by Ultrasonic Nebulization as a New Anode Material for Secondary Lithium Batteries. J. Electrochem. Soc. 2014, 161, A1302–A1305. doi:10.1149/2.0651409jes
  • Thauer, E.; Zakharova, G. S.; Wegener, S. A.; Zhu, Q.; Klingeler, R. Sol-Gel Synthesis of Li3VO4/C Composites as Anode Materials for Lithium-Ion Batteries. J. Alloys Compd. 2021, 853, 157364. doi:10.1016/j.jallcom.2020.157364
  • Amiri, T.; Etsell, T. H.; Sarkar, P. Using Microwave Irradiation for In-Situ Infiltration of Electrodes in Solid Oxide Fuel Cells. Mater. Technol. doi:10.1080/10667857.2022.2041223
  • Zhang, X.; Hu, G. R.; Cao, Y. B.; Peng, Z. D.; Wang, W. G.; Tan, C. P.; Wang, Y. Z.; Du, K. A Facile in-Situ Coating Strategy for Ni-Rich Cathode Materials with Improved Electrochemical Performance. Electrochim. Acta 2021, 383, 138297. doi:10.1016/j.electacta.2021.138297
  • Liu, H.; Cheng, X. B.; Chong, Y.; Yuan, H.; Huang, J. Q.; Zhang, Q. Advanced Electrode Processing of Lithium Ion Batteries: A Review of Powder Technology in Battery Fabrication. Particuology 2021, 57, 56–71. doi:10.1016/j.partic.2020.12.003
  • Wang, H.; Wang, L.; Lin, J.; Yang, J.; Wu, F.; Li, L.; Chen, R. Structural and Electrochemical Characteristics of Hierarchical Li4Ti5O12 as High-Rate Anode Material for Lithium-Ion Batteries. Electrochim. Acta 2021, 368, 137470. doi:10.1016/j.electacta.2020.137470
  • Casino, S.; Beuse, T.; Kupers, V.; Borner, M.; Gallasch, T.; Winter, M.; Niehoff, P. Quantification of Aging Mechanisms of Carbon-Coated and Uncoated Silicon Thin Film Anodes in Lithium Metal and Lithium Ion Cells. J. Storage Mater. 2021, 41, 102812. doi:10.1016/j.est.2021.102812[Mismatch]
  • Yi, T. F.; Qu, J. P.; Lai, X.; Han, X.; Chang, H.; Zhu, Y. R. Toward High-Performance Li Storage Anodes: design and Construction of Spherical Carbon-Coated CoNiO2 Materials. Mater. Today Chem. 2021, 19, 100407. doi:10.1016/j.mtchem.2020.100407
  • Qin, P. C.; Lv, X. D.; Li, C.; Zheng, Y. Z.; Tao, X. Morphology Inheritance Synthesis of Carbon-Coated Li3VO4 Rods as Anode for Lithium-Ion Battery. Sci. China Mater. 2019, 62, 1105–1114. doi:10.1007/s40843-019-9424-9
  • Liu, X.; Li, G.; Zhang, D.; Chen, D.; Wang, X.; Li, B.; Li, L. Fe-Doped Li3VO4 as an Excellent Anode Material for Lithium Ion Batteries: Optimizing Rate Capability and Cycling Stability. Electrochim. Acta 2019, 308, 185–194. doi:10.1016/j.electacta.2019.04.009
  • Peng, P.-P.; Wu, Y.-R.; Li, X.-Z.; Zhang, J.-H.; Li, Y.-W.; Cui, P.; Yi, T.-F. Toward Superior Lithium/Sodium Storage Performance: Design and Construction of Novel TiO2-Based Anode Materials. Rare Met. 2021, 40, 3049–3075. doi:10.1007/s12598-021-01742-z
  • Liu, X.; Li, G.; Qian, P.; Zhang, D.; Wu, J.; Li, K.; Li, L. Carbon Coated Li3VO4 Microsphere: Ultrafast Solvothermal Synthesis and Excellent Performance as Lithium-Ion Battery Anode. J. Power Sources 2021, 493, 229680. doi:10.1016/j.jpowsour.2021.229680
  • Cao, J.; Zhang, D. M.; Sun, P. P.; Yang, D. Z.; Ni, S. B. Low Temperature and Atmospheric Pressure Fabrication of Li3VO4/rGO Hybrid as High-Performance Anode for Lithium-Ion Batteries. IONICS 2021, 27, 1041–1048. doi:10.1007/s11581-020-03896-9
  • Shi, Y.; Zhang, Y.; Liu, L.; Zhang, Z.; Wang, J.; Chou, S.; Gao, J.; Abruña, H. D.; Li, H.; Liu, H.; et al. Rapid Hydrothermal Synthesis of Li3VO4 with Different Favored Facets. J. Solid State Electrochem. 2017, 21, 2547–2553. doi:10.1007/s10008-016-3462-6
  • Li, Q.; Wei, Q.; Wang, Q.; Luo, W.; An, Q.; Xu, Y.; Niu, C.; Tang, C.; Mai, L. Self-Template Synthesis of Hollow Shell-Controlled Li3VO4 as a High-Performance Anode for Lithium-Ion Batteries. J. Mater. Chem. A 2015, 3, 18839–18842. doi:10.1039/C5TA05594F
  • Yang, G.; Zhang, B. W.; Feng, J. Y.; Lu, Y.; Wang, Z. Q.; Aravindan, V.; Aravind, M.; Liu, J. L.; Srinivasan, M.; Shen, Z. X.; Huang, Y. Z. Morphology Controlled Lithium Storage in Li3VO4 Anodes. J. Mater. Chem. A 2018, 6, 456–463. doi:10.1039/C7TA09023D
  • Wang, X. T.; Qin, B.; Sui, D.; Sun, Z. H.; Zhou, Y.; Zhang, H. T.; Chen, Y. S. Facile Synthesis of Carbon-Coated Li3VO4 Anode Material and Its Application in Full Cells. Energy Technol. 2018, 6, 2074–2081. doi:10.1002/ente.201800186
  • Liu, W.; Zhang, X.; Li, C.; Wang, K.; Sun, X.; Ma, Y. Carbon-Coated Li3VO4 with Optimized Structure as High Capacity Anode Material for Lithium-Ion Capacitors. Chin. Chem. Lett. 2020, 31, 2225–2229. doi:10.1016/j.cclet.2019.11.015
  • Liang, Z. Y.; Zhao, Y. M.; Dong, Y. Z.; Kuang, Q.; Lin, X. H.; Liu, X. D.; Yan, D. L. The Low and High Temperature Electrochemical Performance of Li3VO4/C Anode Material for Li-Ion Batteries. Electroanal. Chem. 2015, 745, 1–7. doi:10.1016/j.jelechem.2015.03.013
  • Wen, Z. P.; Zhao, M.; Kong, X. B.; Liu, C. Y.; Yang, Y.; Zhao, J. B. Insight into Thermal Behavior Mechanism of Li3VO4 Anode for Safety Design of Li-Ion Batteries. J. Alloys Compd. 2021, 856, 157363. doi:10.1016/j.jallcom.2020.157363
  • Liang, Z. Y.; Zhao, Y. M.; Ouyang, L. Z.; Dong, Y. Z.; Kuang, Q.; Lin, X. H.; Liu, X. D.; Yan, L. Synthesis of Carbon-Coated Li3VO4 and Its High Electrochemical Performance as Anode Material for Lithium-Ion Batteries. J. Power Sources 2014, 252, 244–247. doi:10.1016/j.jpowsour.2013.12.019
  • Huang, Y.; Yang, H.; Zhang, Y.; Zhang, Y.; Wu, Y.; Tian, M.; Chen, P.; Trout, R.; Ma, Y.; Wu, T.-H.; et al. A Safe and Fast-Charging Lithium-Ion Battery Anode Using MXene Supported Li3VO4. J. Mater. Chem. A 2019, 7, 11250–11256. doi:10.1039/C9TA02037C[Mismatch]
  • Ni, S. B.; Lv, X. H.; Zhang, J. C.; Ma, J. J.; Yang, X. L.; Zhang, L. L. The Electrochemical Performance of Lithium Vanadate/Natural Graphite Composite Material as Anode for Lithium Ion Batteries. Electrochim. Acta 2014, 145, 327–334. doi:10.1016/j.electacta.2014.09.018
  • Park, H.; Jae, W.; Kim, J. One-Pot Synthesis of Li3VO4 Particles with Thin Nitrogen-Doped Carbon Coating Layers as an Anode Material for Lithium-Ion Batteries. J. Alloys Compd. 2018, 767, 657–665. doi:10.1016/j.jallcom.2018.07.151
  • Ni, S. B.; Zhang, J. C.; Ma, J. J.; Yang, X. L.; Zhang, L. L. Li3VO4/N-Doped Graphene with High Capacity and Excellent Cycle Stability as Anode for Lithium Ion Batteries. J. Power Sources 2015, 296, 377–382. doi:10.1016/j.jpowsour.2015.07.053
  • Yang, S. Y.; Zhang, D. M.; Xu, J.; Zhang, Z. P.; Ni, S. B. Robust Pseudocapacitive Charge Storage Behavior in Li3VO4 Induced by N Doped MXene. Electrochim. Acta 2021, 388, 138567. doi:10.1016/j.electacta.2021.138567
  • Xu, X. N.; Niu, F. E.; Wang, C. S.; Li, Y. J.; Zhao, C. L.; Yang, J.; Qian, Y. T. Li3VO4 Nanoparticles in N-Doped Carbon with Porous Structure as an Advanced Anode Material for Lithium-Ion Batteries. Chem. Eng. J. 2019, 370, 606–613. doi:10.1016/j.cej.2019.03.167
  • Li, Q.; Sheng, J.; Wei, Q.; An, Q.; Wei, X.; Zhang, P.; Mai, L. A Unique Hollow Li3VO4/Carbon Nanotube Composite Anode for High Rate Long-Life Lithium-Ion Batteries. NANOSCALE 2014, 6, 11072–11077. doi:10.1039/C4NR03119A.
  • Shi, Y.; Wang, J.-Z.; Chou, S.-L.; Wexler, D.; Li, H.-J.; Ozawa, K.; Liu, H.-K.; Wu, Y.-P. Hollow Structured Li3VO4 Wrapped with Graphene Nanosheets in Situ Prepared by a One-Pot Template-Free Method as an Anode for Lithium-Ion Batteries. Nano Lett. 2013, 13, 4715–4720.10.1021/nl402237u.
  • Ni, S. B.; Zhang, J. C.; Ma, J. J.; Yang, X. L.; Zhang, L. L. Superior Electrochemical Performance of Li3VO4/N-Doped C as an Anode for Li-Ion Batteries. J. Mater. Chem. A 2015, 3, 17951–17955. doi:10.1039/C5TA04402B
  • Yang, S.; Xu, Z.; Xu, J.; Lu, J.; Zhang, D.; Ni, S. High Capacity Li3VO4-Ga2O3/NC as Durable Anode for Li-Ion Batteries via Robust Pseudocapacitive Charge Storage. J. Alloys Compd. 2021, 868, 159115. doi:10.1016/j.jallcom.2021.159115
  • Gautam, N.; Alwera, V.; Muhammad, R.; Raj, H.; Goyal, M.; Sil, A.; Mohanty, P.; Mandal, T. K. In-Situ-Grown Hierarchical Mesoporous Li3VO4 on GO as a Viable Anode Material for Lithium Ion Batteries. Bull. Mater. Sci. 2020, 43. doi:10.1007/s12034-020-02271-8
  • Jin, X.; Lei, B. B.; Wang, J.; Chen, Z. L.; Xie, K.; Wu, F. L.; Song, Y.; Sun, D. L.; Fang, F. Pomegranate-like Li3VO4/3D Graphene Networks Nanocomposite as Lithium Ion Battery Anode with Long Cycle Life and High-Rate Capability. J. Alloys Compd. 2016, 686, 227–234. doi:10.1016/j.jallcom.2016.06.018 [Mismatch]
  • Ren, X. L.; Ai, D. S.; Zhan, C. Z.; Lv, R. T.; Kang, F. Y.; Huang, Z. H. 3D Porous Li3VO4@C Composite Anodes with Ultra-High Rate Capacity for Lithium-Ion Capacitors. Electrochim. Acta 2020, 355, 136819. doi:10.1016/j.electacta.2020.136819
  • Liu, H.; Hu, P.; Yu, Q.; Liu, Z.; Zhu, T.; Luo, W.; Zhou, L.; Mai, L. Boosting the Deep Discharging/Charging Lithium Storage Performances of Li3VO4 through Double-Carbon Decoration. ACS Appl. Mater. Interfaces 2018, 10, 23938–23944.10.1021/acsami.8b08483.
  • Yang, Y.; Li, J. Q.; Huang, J. X.; Huang, J. X.; Zeng, J.; Zhao, J. B. Polystyrene-Template-Assisted Synthesis of Li3VO4/C/rGO Ternary Composite with Honeycomb-like Structure for Durable High-Rate Lithium Ion Battery Anode Materials. Electrochim. Acta 2017, 247, 771–778. doi:10.1016/j.electacta.2017.06.108
  • Zhou, J. F.; Zhao, B. C.; Song, J. Y.; Chen, B. Z.; Bai, J.; Fang, Z. T.; Dai, J. M.; Zhu, X. B.; Sun, Y. P. Three-Dimensional Porous Hierarchically Architectured Li3VO4 Anode Materials for High-Performance Lithium-Ion Batteries. ACS Appl. Energy Mater. 2019, 2, 354–362. doi:10.1021/acsaem.8b01334[Mismatch]
  • Qin, R. H.; Shao, G. Q.; Hou, J. X.; Zheng, Z.; Zhai, T. Y.; Li, H. Q. One-Pot Synthesis of Li3VO4@C Nanofibers by Electrospinning with Enhanced Electrochemical Performance for Lithium-Ion Batteries. Sci. Bull. 2017, 62, 1081–1088. doi:10.1016/j.scib.2017.07.001
  • Li, D.; Xu, Z.; Zhang, D.; Pei, C.; Li, T.; Xiao, T.; Ni, S. Ga2O3-Li3VO4/NC Nanofibers toward Superb High-Capacity and High-Rate Li-Ion Storage. New J. Chem. 2022, 46, 1025–1033. doi:10.1039/D1NJ04821J
  • Zhang, J. C.; Ni, S. B.; Ma, J. J.; Yang, X. L.; Zhang, L. L. High Capacity and Superlong Cycle Life of Li3VO4/N-C Hybrids as Anode for High Performance Li-Ion Batteries. J. Power Sources 2016, 301, 41–46. doi:10.1016/j.jpowsour.2015.09.102
  • Wang, Z. Z.; Sun, W. W.; Tang, D. J.; Liu, W. L.; Meng, F. C.; Wei, X. F.; Liu, J. H. In Situ Interfacial Architecture of Lithium Vanadate-Based Cathode for Printable Lithium Batteries. iScience 2021, 24, 102666. doi:10.1016/j.isci.2021.102666
  • Liu, J.; Lu, P. J.; Liang, S.; Liu, J.; Wang, W.; Lei, M.; Tang, S.; Yang, Q. Ultrathin Li3VO4 Nanoribbon/Graphene Sandwich-like Nanostructures with Ultrahigh Lithium Ion Storage Properties. Nano Energy 2015, 12, 709–724. doi:10.1016/j.nanoen.2014.12.019
  • Kang, T.; Shen, D. Y.; Ni, S. B.; Chen, Q. C.; Li, T.; Yang, X. L.; Zhao, J. B. Pseudocapacitive Charge Storage Induced by Self-Enhanced Electrical Conductivity and Li-Ion Diffusion in High Performance Li3VO4@LiVO2 Anode for Li-Ion Batteries. J. Alloys Compd. 2018, 741, 442–448. doi:10.1016/j.jallcom.2018.01.129
  • Kang, T.; Ni, S. B.; Chen, Q. C.; Li, T.; Chao, D. L.; Yang, X. L.; Zhao, J. B. Ag Embedded Li3VO4 as Superior Anode for Li-Ion Batteries. J. Electrochem. Soc. 2019, 166, A5295–A5300. doi:10.1149/2.0381903jes
  • Ni, S. B.; Zhang, J. C.; Lv, X. H.; Yang, X. L.; Zhang, L. L. Superior Electrochemical Performance of Li3VO4/NiO/Ni Electrode via a Coordinated Electrochemical Reconstruction. J. Power Sources 2015, 291, 95–101. doi:10.1016/j.jpowsour.2015.05.015
  • Yi, T.-F.; Mei, J.; Peng, P.-P.; Luo, S. Facile Synthesis of Polypyrrole-Modified Li5Cr7Ti6O25 with Improved Rate Performance as Negative Electrode Material for Li-Ion Batteries. Compos. B Eng. 2019, 167, 566–572. doi:10.1016/j.compositesb.2019.03.032
  • Xu, J.; Liang, P.; Zhang, D. M.; Pei, C. Y.; Zhang, Z. P.; Yang, S. Y.; Ni, S. B. A Reverse-Design-Strategy for C@Li3VO4 Nanoflakes toward Superb High-Rate Li-Ion Storage. J. Mater. Chem. A 2021, 9, 17270–17280. doi:10.1039/D1TA05662J
  • Wei, T.-T.; Peng, P.; Ji, Y.-R.; Zhu, Y.-R.; Yi, T.-F.; Xie, Y. Rational Construction and Decoration of Li5Cr7Ti6O25@C Nanofibers as Stable Lithium Storage Materials. J. Energy Chem. 2022, 71, 400–410. doi:10.1016/j.jechem.2022.04.017
  • Yang, S.; Zhang, D.; Xu, Z.; Xu, J.; Lu, J.; Cao, J.; Ni, S. A Scalable Synthesis of 2D Laminate Li3VO4/C for Robust Pseudocapacitive Li-Ion Storage. J. Mater. Chem. A 2020, 8, 21122–21130. doi:10.1039/D0TA07484E
  • Xu, Z.; Zhang, D. M.; Lu, J. L.; Pei, C. Y.; Li, T.; Xiao, T.; Ni, S. B. Neural-Network Design of Li3VO4/NC Fibers toward Superior High-Rate Li-Ion Storage. J. Mater. Chem. A 2021, 9, 24002–24011. doi:10.1039/D1TA07369A
  • Yi, T. f.; Shi, L.; Han, X.; Wang, F.; Zhu, Y.; Xie, Y. Approaching High-Performance Lithium Storage Materials by Constructing Hierarchical CoNiO2@CeO2 Nanosheets. Energy Environ. Mater. 2021, 4, 586–595. doi:10.1002/eem2.12140
  • Zhu, L.; Ge, P.; Xie, L.; Miao, Y.; Cao, X. Doped-Li1+xV3O8 as Cathode Materials for Lithium-Ion Batteries: A Mini Review. Electrochem. Commun. 2020, 115, 106722. doi:10.1016/j.elecom.2020.106722[Mismatch]
  • Mu, C.; Lei, K.; Li, H.; Li, F.; Chen, J. Enhanced Conductivity and Structure Stability of Ti4+ Doped Li3VO4 as Anodes for Lithium-Ion Batteries. J. Phys. Chem. C 2017, 121, 26196–26201. doi:10.1021/acs.jpcc.7b08197
  • Liang, G. S.; Jin, X. X.; Huang, C. H.; Luo, L. J.; Chen, Y. J.; Lin, C. F. Cr3+-Doped Li3VO4 for Enhanced Li+ Storage. Funct. Mater. Lett 2020, 13, 2050005. doi:10.1142/S1793604720500058[Mismatch]
  • Liang, G. S.; Yang, L. T.; Han, Q.; Chen, G. Y.; Lin, C. F.; Chen, Y. J.; Luo, L. J.; Liu, X. H.; Li, Y. S.; Che, R. C. Conductive Li3.08Cr0.02Si0.09V0.9O4 Anode Material: Novel "Zero-Strain" Characteristic and Superior Electrochemical Li + Storage. Adv. Energy Mater. 2020, 10, 1904267. ) doi:10.1002/aenm.201904267[Mismatch]
  • Huu, H. T.; Vu, N. H.; Ha, H.; Moon, J.; Kim, H. Y.; Bin Im, W. Sub-Micro Droplet Reactors for Green Synthesis of Li3VO4 Anode Materials in Lithium Ion Batteries. Nat. Commun. 2021, 12. doi:10.1038/s41467-021-23366-8
  • Zhang, C.; Wang, K.; Liu, C.; Nan, X.; Fu, H.; Ma, W.; Li, Z.; Cao, G. Effects of High Surface Energy on Lithium-Ion Intercalation Properties of Ni-Doped Li3VO4. NPG Asia Mater. 2016, 8, e287–e287. doi:10.1038/am.2016.95
  • Mulaudzi, I.; Zhang, Y.; Ndlovu, G. F.; Wu, Y.; Legodi, M. A.; Ree, T. Copper Doped Li3VO4 as Anode Material for Lithium-Ion Batteries. Electroanalysis 2020, 32, 2635–2641. doi:10.1002/elan.202060380[Mismatch]
  • Zhou, J. F.; Zhao, B. C.; Song, J. Y.; Chen, B. Z.; Ma, X. H.; Dai, J. M.; Zhu, X. B.; Sun, Y. P. Optimization of Rate Capability and Cyclability Performance in Li3VO4 Anode Material through Ca Doping. Chemistry 2017, 23, 16338–16345. doi: 10.1002/chem.201703405.
  • Dong, Y. Z.; Duan, H.; Park, K. S.; Zhao, Y. M. Mo6+ Doping in Li3VO4 Anode for Li-Ion Batteries: Significantly Improve the Reversible Capacity and Rate Performance. ACS Appl. Mater. Interfaces 2017, 9, 27688–27696. doi:10.1021/acsami.7b06459.
  • Zhao, L.; Duan, H.; Zhao, Y. M.; Kuang, Q.; Fan, Q. H.; Chen, L.; Dong, Y. Z. High Capacity and Stability of Nb-Doped Li3VO4 as an Anode Material for Lithium Ion Batteries. J. Power Sources 2018, 378, 618–627. doi:10.1016/j.jpowsour.2018.01.018
  • Dong, Y. Z.; Zhao, Y. M.; Duan, H.; Singh, P.; Kuang, Q.; Peng, H. J. Li2.97Mg0.03VO4: High Rate Capability and Cyclability Performances Anode Material for Rechargeable Li-Ion Batteries. J. Power Sources 2016, 319, 104–110. doi:10.1016/j.jpowsour.2016.04.048
  • Zhou, J. F.; Zhao, B. C.; Song, J. Y.; Chen, B. Z.; Ma, X. H.; Dai, J. M.; Zhu, X. B.; Sun, Y. P. The Enhanced Cycling Stability and Rate Capability of Sodium-Modified Li3VO4 Anode Material for Lithium-Ion Batteries. Solid State Ionics 2018, 322, 30–38. doi:10.1016/j.ssi.2018.05.001
  • Liu, X.; Li, G.; Zhang, D.; Meng, L.; Li, B.; Li, L. F Doped Li3VO4: An Advanced Anode Material with Optimized Rate Capability and Durable Lifetime. Electrochim. Acta 2020, 354, 136655. doi:10.1016/j.electacta.2020.136655[Mismatch]
  • Shen, L.; Chen, S.; Maier, J.; Yu, Y. Carbon-Coated Li3VO4 Spheres as Constituents of an Advanced Anode Material for High-Rate Long-Life Lithium-Ion Batteries. Adv. Mater. 2017, 29, 1701571. doi:10.1002/adma.201701571
  • Berg, E. J.; Villevieille, C.; Streich, D.; Trabesinger, S.; Novák, P. Rechargeable Batteries: Grasping for the Limits of Chemistry. J. Electrochem. Soc. 2015, 162, A2468–A2475. doi:10.1149/2.0081514jes
  • Yi, T. F.; Yang, S. Y.; Xie, Y. Recent Advances of Li4Ti5O12 as a Promising Next Generation Anode Material for High Power Lithium-Ion Batteries. J. Mater. Chem. A 2015, 3, 5750–5777. doi:10.1039/C4TA06882C
  • Zhang, J. C.; Ni, S. B.; Kang, T.; Tang, J.; Yang, X. L.; Zhang, L. L. Prominent Electrochemical Performance of a Li3VO4/C-Ni Anode via Hierarchically Porous Architecture Design. J. Mater. Chem. A 2016, 4, 14101–14105. doi:10.1039/C6TA05988K
  • Mo, J.; Zhang, X.; Liu, J.; Yu, J.; Wang, Z.; Liu, Z.; Yuan, X.; Zhou, C.; Li, R.; Wu, X.; Wu, Y. Progress on Li3VO4 as a Promising Anode Material for Li-Ion Batteries. Chin. J. Chem. 2017, 35, 1789–1796. doi:10.1002/cjoc.201700196
  • Yang, Y.; Li, J. Q.; He, X. Y.; Wang, J.; Sun, D.; Zhao, J. B. A Facile Spray Drying Route for Mesoporous Li3VO4/C Hollow Spheres as an Anode for Long Life Lithium Ion Batteries. J. Mater. Chem. A 2016, 4, 7165–7168. doi:10.1039/C6TA01996J
  • Zeng, J.; Yang, Y.; Li, C.; Li, J.; Huang, J.; Wang, J.; Zhao, J. Li3VO4: An Insertion Anode Material for Magnesium Ion Batteries with High Specific Capacity. Electrochim. Acta 2017, 247, 265–270. doi:10.1016/j.electacta.2017.06.143
  • Jiang, J.; Li, H.; Huang, J.; Li, K.; Zeng, J.; Yang, Y.; Li, J.; Wang, Y.; Wang, J.; Zhao, J. Investigation of the Reversible Intercalation/Deintercalation of Al into the Novel Li3VO4@C Microsphere Composite Cathode Material for Aluminum-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 28486–28494. doi:10.1021/acsami.7b07503.
  • Wu, F.; Liu, M.; Li, Y.; Feng, X.; Zhang, K.; Bai, Y.; Wang, X.; Wu, C. High-Mass-Loading Electrodes for Advanced Secondary Batteries and Supercapacitors. Electrochem. Energy Rev. 2021, 4, 382–446. doi:10.1007/s41918-020-00093-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.