652
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

A review of residual stress effects on fatigue properties of friction stir welds

ORCID Icon, , ORCID Icon, , &

References

  • Thomas, W. M.; Nicholas, E. D.; Needham, J. C.; Murch, M. G.; Templesmith, P.; Dawes, C. J. Friction Stir Welding, International Patent Application No. PCT/GB92/02203 and GB Patent Application No. 9125978.8, December 6, 1991.
  • Thomas, W. M.; Nicholas, E. D. Friction Stir Welding for the Transportation Industries. Mater. Des. 1997, 18, 269–273. doi:10.1016/S0261-3069(97)00062-9
  • Jones, C. S.; Venable, R. Friction-Stir Welding of Large Scale Cryogenic Fuel Tanks for Aerospace Applications, Proceedings of 5th International Conference on Trends in Welding Research, Pine Mountain, GA, USA, 1-5 Jun, 1998, p. 553–557.
  • Thomas, W.; Nicholas, E.; Watts, E.; Staines, D. Friction Based Welding Technology for Aluminium. MSF. 2002, 396402, 1543–1548. doi:10.4028/www.scientific.net/MSF.396-402.1543
  • Meng, X.; Huang, Y.; Cao, J.; Shen, J.; dos Santos, J. F. Recent Progress on Control Strategies for Inherent Issues in Friction Stir Welding. Prog. Mater. Sci. 2021, 115, 100706. doi:10.1016/j.pmatsci.2020.100706
  • Aliasghari, S.; Rogov, A.; Skeldon, P.; Zhou, X.; Yerokhin, A.; Aliabadi, A.; Ghorbani, M. Plasma Electrolytic Oxidation and Corrosion Protection of Friction Stir Welded AZ31B Magnesium Alloy-Titanium Joints. Surf. Coat. Technol. 2020, 393, 125838. doi:10.1016/j.surfcoat.2020.125838
  • Ericsson, M.; Sandström, R. Influence of Welding Speed on the Fatigue of Friction Stir Welds, and Comparison with MIG and TIG. Int. J. Fatigue 2003, 25, 1379–1387. doi:10.1016/S0142-1123(03)00059-8
  • Mishra, R. S.; Ma, Z. Y. Friction Stir Welding and Processing. Mater. Sci. Eng. R 2005, 50, 1–78. doi:10.1016/j.mser.2005.07.001
  • Biro, A. L.; Chenelle, B. F.; Lados, D. A. Processing, Microstructure, and Residual Stress Effects on Strength and Fatigue Crack Growth Properties in Friction Stir Welding: A Review. Metall. Mater. Trans. B 2012, 43, 1622–1637. doi:10.1007/s11663-012-9716-5
  • Mironov, S.; Inagaki, K.; Sato, Y. S.; Kokawa, H. Effect of Welding Temperature on Microstructure of Friction-Stir Welded Aluminum Alloy 1050. Metall. Mater. Trans. A 2015, 46, 783–790. doi:10.1007/s11661-014-2651-0
  • Saravanakumar, R.; Rajasekaran, T.; Pandey, C.; Menaka, M. Mechanical and Microstructural Characteristics of Underwater Friction Stir Welded AA5083 Armor-Grade Aluminum Alloy Joints. J. Mater. Eng. Perform. 2022. doi:10.1007/s11665-022-06832-2
  • Saravanakumar, R.; Rajasekaran, T.; Pandey, C.; Menaka, M. Influence of Tool Probe Profiles on the Microstructure and Mechanical Properties of Underwater Friction Stir Welded AA5083 Material. J. Mater. Eng. Perform. 2022. doi:10.1007/s11665-022-06822-4
  • Lados, D. A.; Apelian, D. The Effect of Residual Stress on the Fatigue Crack Growth Behavior of Al-Si-Mg Cast Alloys—Mechanisms and Corrective Mathematical Models. Metall. Mater. Trans. A 2006, 37, 133–145. doi:10.1007/s11661-006-0159-y
  • Threadgill, P. L.; Leonard, A. J.; Shercliff, H. R.; Withers, P. J. Friction Stir Welding of Aluminium Alloys. Int. Mater. Rev. 2009, 54, 49–93. doi:10.1179/174328009X411136
  • Papahn, H.; Bahemmat, P.; Haghpanahi, M.; Valipour, A. Ultrasonic Measurements of Residual Stresses Caused by Severe Thermomechanical Deformation during FSW. Exp. Mech. 2014, 54, 1587–1596. doi:10.1007/s11340-014-9939-2
  • Bussu, G.; Irving, P. E. The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminium Joints. Int. J. Fatigue 2003, 25, 77–88. doi:10.1016/S0142-1123(02)00038-5
  • Prime, M. B.; Gnäupel-Herold, T.; Baumann, J. A.; Lederich, R. J.; Bowden, D. M.; Sebring, R. J. Residual Stress Measurements in a Thick, Dissimilar Aluminum Alloy Friction Stir Weld. Acta Mater. 2006, 54, 4013–4021. doi:10.1016/j.actamat.2006.04.034
  • Paulo, R. M. F.; Carlone, P.; Paradiso, V.; Valente, R. A. F.; Teixeira-Dias, F. Prediction of Friction Stir Welding Effects on AA2024-T3 Plates and Stiffened Panels Using a Shell-Based Finite Element Model. Thin-Walled Struct. 2017, 120, 297–306. doi:10.1016/j.tws.2017.09.009
  • Withers, P. J. Residual Stress and Its Role in Failure. Rep. Prog. Phys. 2007, 70, 2211–2264. doi:10.1088/0034-4885/70/12/R04
  • Taraphdar, P. K.; Kumar, R.; Giri, A.; Pandey, C.; Mahapatra, M. M.; Sridhar, K. Residual Stress Distribution in Thick double-V Butt Welds with Varying Groove Configuration, Restraints and Mechanical Tensioning. J. Manuf. Process. 2021, 68, 1405–1417. doi:10.1016/j.jmapro.2021.06.046
  • Labeas, G.; Diamantakos, I. Numerical Investigation of through Crack Behaviour under Welding Residual Stresses. Eng. Fract. Mech. 2009, 76, 1691–1702. doi:10.1016/j.engfracmech.2009.03.006
  • Nandan, R.; DebRoy, T.; Bhadeshia, H. Recent Advances in Friction-Stir welding - Process, Weldment Structure and Properties. Prog. Mater. Sci. 2008, 53, 980–1023. doi:10.1016/j.pmatsci.2008.05.001
  • Simar, A.; Bréchet, Y.; de Meester, B.; Denquin, A.; Gallais, C.; Pardoen, T. Integrated Modeling of Friction Stir Welding of 6xxx Series Al Alloys: Process, Microstructure and Properties. Prog. Mater. Sci. 2012, 57, 95–183. doi:10.1016/j.pmatsci.2011.05.003
  • He, X.; Gu, F.; Ball, A. A Review of Numerical Analysis of Friction Stir Welding. Prog. Mater. Sci. 2014, 65, 1–66. doi:10.1016/j.pmatsci.2014.03.003
  • Miranda, A.; Gerlich, A.; Walbridge, S. Aluminum Friction Stir Welds: Review of Fatigue Parameter Data and Probabilistic Fracture Mechanics Analysis. Eng. Fract. Mech. 2015, 147, 243–260. doi:10.1016/j.engfracmech.2015.09.007
  • Avettand-Fènoël, M.-N.; Simar, A. A Review about Friction Stir Welding of Metal Matrix Composites. Mater. Charact. 2016, 120, 1–17. doi:10.1016/j.matchar.2016.07.010
  • Heidarzadeh, A.; Mironov, S.; Kaibyshev, R.; Çam, G.; Simar, A.; Gerlich, A.; Khodabakhshi, F.; Mostafaei, A.; Field, D. P.; Robson, J. D.; et al. Friction Stir Welding/Processing of Metals and Alloys: A Comprehensive Review on Microstructural Evolution. Prog. Mater. Sci. 2021, 117, 100752. doi:10.1016/j.pmatsci.2020.100752
  • Singh, V. P.; Patel, S. K.; Kuriachen, B. Mechanical and Microstructural Properties Evolutions of Various Alloys Welded through Cooling Assisted Friction-Stir Welding: A Review. Intermetallics 2021, 133, 107122. doi:10.1016/j.intermet.2021.107122
  • Patel, V.; Li, W.; Vairis, A.; Badheka, V. Recent Development in Friction Stir Processing as a Solid-State Grain Refinement Technique: Microstructural Evolution and Property Enhancement. Crit. Rev. Solid State Mater. Sci. 2019, 44, 378–426. doi:10.1080/10408436.2018.1490251
  • Mironov, S.; Sato, Y. S.; Kokawa, H. Friction-Stir Welding and Processing of Ti-6Al-4V Titanium Alloy: A Review. J. Mater. Sci. Technol. 2018, 34, 58–72. doi:10.1016/j.jmst.2017.10.018
  • Liu, F. C.; Hovanski, Y.; Miles, M. P.; Sorensen, C. D.; Nelson, T. W. A Review of Friction Stir Welding of Steels: Tool, Material Flow, Microstructure, and Properties. J. Mater. Sci. Technol. 2018, 34, 39–57. doi:10.1016/j.jmst.2017.10.024
  • Gangwar, K.; Ramulu, M. Friction Stir Welding of Titanium Alloys: A Review. Mater. Des. 2018, 141, 230–255. doi:10.1016/j.matdes.2017.12.033
  • Çam, G.; Mistikoglu, S. Recent Developments in Friction Stir Welding of Al-Alloys. J. Mater. Eng. Perform. 2014, 23, 1936–1953. doi:10.1007/s11665-014-0968-x
  • Sergeeva, E. V. Friction Stir Welding in Aerospace Industry (Review). Paton Weld. J. 2013, May, p. 56–60.
  • Kashaev, N.; Ventzke, V.; Çam, G. Prospects of Laser Beam Welding and Friction Stir Welding Processes for Aluminum Airframe Structural Applications. J. Manuf. Process. 2018, 36, 571–600. doi:10.1016/j.jmapro.2018.10.005
  • Padhy, G. K.; Wu, C. S.; Gao, S. Friction Stir Based Welding and Processing Technologies - Processes, Parameters, Microstructures and Applications: A Review. J. Mater. Sci. Technol. 2018, 34, 1–38. doi:10.1016/j.jmst.2017.11.029
  • Çam, G.; İpekoğlu, G. Recent Developments in Joining of Aluminum Alloys. Int. J. Adv. Manuf. Technol. 2017, 91, 1851–1866. doi:10.1007/s00170-016-9861-0
  • Salih, O. S.; Ou, H.; Sun, W.; McCartney, D. G. A Review of Friction Stir Welding of Aluminium Matrix Composites. Mater. Des. 2015, 86, 61–71. doi:10.1016/j.matdes.2015.07.071
  • Withers, P. J.; Bhadeshia, H. Residual Stress. Part 2 – Nature and Origins. Mater. Sci. Technol. 2001, 17, 366–375. doi:10.1179/026708301101510087
  • Schajer, G. S.; Ruud, C. O. Overview of Residual Stresses and Their Measurement. In Practical Residual Stress Measurement Methods, 2013, p. 1–27. doi:10.1002/9781118402832.ch1
  • Schajer, G. S.; Whitehead, P. S. Hole Drilling and Ring Coring. In Practical Residual Stress Measurement Methods, 2013, p. 29–64. doi:10.1002/9781118402832.ch2.
  • Smith, D. J. Deep Hole Drilling. In Practical Residual Stress Measurement Methods, 2013, p. 65–87. doi:10.1002/9781118402832.ch3.
  • Hill, M. R. The Slitting Method. In Practical Residual Stress Measurement Methods, 2013, p. 89–108. doi:10.1002/9781118402832.ch4.
  • Prime, M. B.; DeWald, A. T. The Contour Method. In Practical Residual Stress Measurement Methods, 2013, p. 109–138. doi:10.1002/9781118402832.ch5.
  • Murray, C. E.; Cevdet Noyan, I. Applied and Residual Stress Determination Using X-Ray Diffraction. In Practical Residual Stress Measurement Methods, 2013, p. 139–161. doi:10.1002/9781118402832.ch6.
  • Withers, P. J. Synchrotron X-Ray Diffraction. In Practical Residual Stress Measurement Methods, 2013, p. 163–194. doi:10.1002/9781118402832.ch7.
  • Holden, T. M. Neutron Diffraction. In Practical Residual Stress Measurement Methods, 2013, p. 195–223. doi:10.1002/9781118402832.ch8.
  • Buttle, D. J. Magnetic Methods. In Practical Residual Stress Measurement Methods, 2013, p. 225–258. doi:10.1002/9781118402832.ch9.
  • Bray, D. E. Ultrasonics. In Practical Residual Stress Measurement Methods, 2013, p. 259–277. doi:10.1002/9781118402832.ch10.
  • Nelson, D. V. Optical Methods. In Practical Residual Stress Measurement Methods, 2013, p. 279–302. doi:10.1002/9781118402832.ch11.
  • Taraphdar, P. K.; Thakare, J. G.; Pandey, C.; Mahapatra, M. M. Novel Residual Stress Measurement Technique to Evaluate through Thickness Residual Stress Fields. Mater. Lett. 2020, 277, 128347. doi:10.1016/j.matlet.2020.128347
  • Pandey, C.; Mahapatra, M. M.; Kumar, P. A Comparative Study of Transverse Shrinkage Stresses and Residual Stresses in P91 Welded Pipe Including Plasticity Error. Arch. Civ. Mech. Eng. 2018, 18, 1000–1011. doi:10.1016/j.acme.2018.02.007
  • Jhunjhunwala, P.; Taraphdar, P.; Gupta, A.; Pandey, C. Numerical Simulation of Temperature Fields and Residual Stresses in Multi-Pass Weld Using the Novel Prescribed Temperature Approach with Experimental Validation. Trans. Indian Inst. Met. 2022, 75, 2713–2723. doi:10.1007/s12666-022-02625-2
  • Taraphdar, P. K.; Kumar, R.; Pandey, C.; Mahapatra, M. M. Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of Weld Induced Residual Stresses. Met. Mater. Int. 2021, 27, 3478–3492. doi:10.1007/s12540-020-00921-4
  • Bhanu, V.; Pandey, S. M.; Gupta, A.; Pandey, C. Dissimilar Weldments of P91 and Incoloy 800HT: Microstructure, Mechanical Properties, and Residual Stresses. Int. J. Press. Vessels Pip. 2022, 199, 104782. doi:10.1016/j.ijpvp.2022.104782
  • Dak, G.; Pandey, C. Study on Effect of Weld Groove Geometry on Mechanical Behavior and Residual Stresses Variation in Dissimilar Welds of P92/SS304L Steel for USC Boilers. Arch. Civ. Mech. Eng. 2022, 22, 140. doi:10.1007/s43452-022-00468-8
  • Fratini, L.; Zuccarello, B. An Analysis of through-Thickness Residual Stresses in Aluminium FSW Butt Joints. Int. J. Mach. Tools Manuf. 2006, 46, 611–619. doi:10.1016/j.ijmachtools.2005.07.013
  • Pouget, G.; Reynolds, A. P. Residual Stress and Microstructure Effects on Fatigue Crack Growth in AA2050 Friction Stir Welds. Int. J. Fatigue 2008, 30, 463–472. doi:10.1016/j.ijfatigue.2007.04.016
  • Steuwer, A.; Hattingh, D. G.; James, M. N.; Singh, U.; Buslaps, T. Residual Stresses, Microstructure and Tensile Properties in Ti-6Al-4V Friction Stir Welds. Sci. Technol. Weld Joining 2012, 17, 525–533. doi:10.1179/136217112X13439160184196
  • Guo, Y.; Ma, X.; Zhang, X.; Qian.; J.; Li. Study on Residual Stress Distribution of 2024-T3 and 7075-T6 Aluminum Dissimilar Friction Stir Welded Joints. Eng. Fail. Anal. 2020, 118, 104911. doi:10.1016/j.engfailanal.2020.104911
  • Staron, P.; Koçak, M.; Williams, S. Residual Stresses in Friction Stir Welded Al Sheets. Appl. Phys. A 2002, 74, s1161–s1162. doi:10.1007/s003390201830
  • Lakshminarayanan, A. K.; Balasubramanian, V. Assessment of Fatigue Life and Crack Growth Resistance of Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints. Mater. Sci. Eng. A 2012, 539, 143–153. doi:10.1016/j.msea.2012.01.071
  • Woo, W.; Choo, H.; Brown, D. W.; Feng, Z.; Liaw, P. K. Angular Distortion and through-Thickness Residual Stress Distribution in the Friction-Stir Processed 6061-T6 Aluminum Alloy. Mater. Sci. Eng. A 2006, 437, 64–69. doi:10.1016/j.msea.2006.04.066
  • Liu, C.; Yi, X. Residual Stress Measurement on AA6061-T6 Aluminum Alloy Friction Stir Butt Welds Using Contour Method. Mater. Des. 2013, 46, 366–371. doi:10.1016/j.matdes.2012.10.030
  • Steuwer, A.; Peel, M. J.; Withers, P. J. Dissimilar Friction Stir Welds in AA5083–AA6082: The Effect of Process Parameters on Residual Stress. Mater. Sci. Eng. A 2006, 441, 187–196. doi:10.1016/j.msea.2006.08.012
  • Lombard, H.; Hattingh, D. G.; Steuwer, A.; James, M. N. Effect of Process Parameters on the Residual Stresses in AA5083-H321 Friction Stir Welds. Mater. Sci. Eng. A 2009, 501, 119–124. doi:10.1016/j.msea.2008.09.078
  • Mishra, R.; De, P.; Kumar, N. Friction Stir Welding and Processing; Springer Cham Heidelberg New York Dordrecht London, 2014; p. 13–58.
  • Peel, M.; Steuwer, A.; Preuss, M.; Withers, P. J. Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminium AA5083 Friction Stir Welds. Acta Mater. 2003, 51, 4791–4801. doi:10.1016/S1359-6454(03)00319-7
  • Alinaghian, I.; Amini, S.; Honarpisheh, M. Residual Stress, Tensile Strength, and Macrostructure Investigations on Ultrasonic Assisted Friction Stir Welding of AA6061-T6. J. Strain. Anal. Eng. Des. 2018, 53, 494–503. doi:10.1177/0309324718789768
  • Lemmen, H.; Alderliesten, R.; Pieters, R.; Benedictus, R.; Pineault, J. Yield Strength and Residual Stress Measurements on Friction-Stir-Welded Aluminum Alloys. J. Aircr. 2010, 47, 1570–1583. doi:10.2514/1.C000212
  • Sutton, M. A.; Reynolds, A. P.; Wang, D. Q.; Hubbard, C. R. A Study of Residual Stresses and Microstructure in 2024-T3 Aluminum Friction Stir Butt Welds. J. Eng. Mater. Technol. 2002, 124, 215–221. doi:10.1115/1.1429639
  • Hatamleh, O.; Singh, P. M.; Garmestani, H. Corrosion Susceptibility of Peened Friction Stir Welded 7075 Aluminum Alloy Joints. Corros. Sci. 2009, 51, 135–143. doi:10.1016/j.corsci.2008.09.031
  • Wang, X.; Feng, Z.; David, S.; Spooner, S.; Hubbard, C. Diffraction Study of Residual Stresses in Friction Stir Welds, The 6th International Conference on Residual Stresses (ICRS-6), London, UK, 2000, p. 1408–1415.
  • Oosterkamp, L.; Webster, P.; Browne, P.; Vaughan, G. B. M.; Withers, P. J. Residual Stress Field in a Friction Stir Welded Aluminium Extrusion. MSF. 2000, 347349, 678–683. doi:10.4028/www.scientific.net/MSF.347-349.678
  • Jata, K. V.; Sankaran, K. K.; Ruschau, J. J. Friction Stir Welding Effects on Microstructure and Fatigue of Aluminum Alloy 7050-T7451. Metall. Mater. Trans. A 2000, 31, 2181–2192. doi:10.1007/s11661-000-0136-9
  • Dalle Donne, C.; Lima, E.; Wegener, J.; Kaysser-Pyzalla, A.; Buslaps, T. 2001 Investigations on Residual Stresses in Friction Stir Welds. 3rd International Symposium on Friction Stir Welding, Kobe, Japan, Sept 27–28.
  • Milan, M. T.; Bose Filho, W. W.; Ruckert, C.; Tarpani, J. R. Fatigue Behaviour of Friction Stir Welded AA2024-T3 Alloy: Longitudinal and Transverse Crack Growth. Fatigue Fract. Eng. Mater. Struct. 2008, 31, 526–538. doi:10.1111/j.1460-2695.2008.01234.x
  • Pasta, S.; Reynolds, A. P. Residual Stress Effects on Fatigue Crack Growth in a Ti-6Al-4V Friction Stir Weld. Fatigue Fract. Eng. Mater. Struct. 2008, 31, 569–580. doi:10.1111/j.1460-2695.2008.01258.x
  • Deplus, K.; Simar, A.; Haver, W. V.; Meester, B. Residual Stresses in Aluminium Alloy Friction Stir Welds. Int. J. Adv. Manuf. Technol. 2011, 56, 493–504. doi:10.1007/s00170-011-3210-0
  • Steuwer, A.; Barnes, S. J.; Altenkirch, J.; Johnson, R.; Withers, P. J. Friction Stir Welding of HSLA-65 Steel: Part II. The Influence of Weld Speed and Tool Material on the Residual Stress Distribution and Tool Wear. Metall. Mater. Trans. A 2012, 43, 2356–2365. doi:10.1007/s11661-011-0643-x
  • Reynolds, A. P.; Tang, W.; Gnäupel-Herold, T.; Prask, H. Structure, Properties, and Residual Stress of 304L Stainless Steel Friction Stir Welds. Scr. Mater. 2003, 48, 1289–1294. doi:10.1016/S1359-6462(03)00024-1
  • Woo, W.; An, G. B.; Em, V. T.; De Wald, A. T.; Hill, M. R. Through-Thickness Distributions of Residual Stresses in an 80 mm Thick Weld Using Neutron Diffraction and Contour Method. J. Mater. Sci. 2015, 50, 784–793. doi:10.1007/s10853-014-8638-9
  • Altenkirch, J.; Steuwer, A.; Peel, M.; Richards, D. G.; Withers, P. J. The Effect of Tensioning and Sectioning on Residual Stresses in Aluminium AA7749 Friction Stir Welds. Mater. Sci. Eng. A 2008, 488, 16–24. doi:10.1016/j.msea.2007.10.055
  • Lemmen, H. J. K.; Alderliesten, R. C.; Benedictus, R. Fatigue Initiation Behaviour throughout Friction Stir Welded Joints in AA2024-T3. Int. J. Fatigue 2010, 32, 1928–1936. doi:10.1016/j.ijfatigue.2010.06.001
  • Peel, M. J.; Steuwer, A.; Withers, P. J. Dissimilar Friction Stir Welds in AA5083-AA6082. Part II: Process Parameter Effects on Microstructure. Metall. Mater. Trans. A 2006, 37, 2195–2206. doi:10.1007/BF02586139
  • Charitidis, C. A.; Dragatogiannis, D. A.; Koumoulos, E. P.; Kartsonakis, I. A. Residual Stress and Deformation Mechanism of Friction Stir Welded Aluminum Alloys by Nanoindentation. Mater. Sci. Eng. A 2012, 540, 226–234. doi:10.1016/j.msea.2012.01.129
  • Abdulstaar, M. A.; Al-Fadhalah, K. J.; Wagner, L. Microstructural Variation through Weld Thickness and Mechanical Properties of Peened Friction Stir Welded 6061 Aluminum Alloy Joints. Mater. Charact. 2017, 126, 64–73. doi:10.1016/j.matchar.2017.02.011
  • Dong, P.; Liu, Z.; Zhai, X.; Yan, Z.; Wang, W.; Liaw, P. Incredible Improvement in Fatigue Resistance of Friction Stir Welded 7075-T651 Aluminum Alloy via Surface Mechanical Rolling Treatment. Int. J. Fatigue 2019, 124, 15–25. doi:10.1016/j.ijfatigue.2019.02.023
  • Sunder, R. 2016 Why and How Residual Stress Affects Metal Fatigue. Advanced Materials, 489–504. doi:10.1007/978-3-319-26324-3_34
  • Xie, X-F.; Jiang, W.; Luo, Y.; Xu, S.; Gong, J.-M.; Tu, S.-T. A Model to Predict the Relaxation of Weld Residual Stress by Cyclic Load: Experimental and Finite Element Modeling. Int. J. Fatigue 2017, 95, 293–301. doi:10.1016/j.ijfatigue.2016.11.011
  • Edwards, P.; Ramulu, M. Fracture Toughness and Fatigue Crack Growth in Ti-6Al-4V Friction Stir Welds. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 970–982. doi:10.1111/ffe.12291
  • Vasudevan, A. K.; Sadananda, K.; Glinka, G. Critical Parameters for Fatigue Damage. Int. J. Fatigue 2001, 23, 39–53. doi:10.1016/S0142-1123(01)00171-2
  • Harry I. McHenry and John M. Potter (ed.), Fatigue and fracture testing of weldment. West Conshohocken, PA: ASTM International, 1990. doi:10.1520/STP1058-EB
  • Lee, Y.-B.; Chung, C.-S.; Park, Y.-K.; Kim, H.-K. Effects of Redistributing Residual Stress on the Fatigue Behavior of ss330 Weldment. Int. J. Fatigue 1998, 20, 565–573. doi:10.1016/S0142-1123(98)00024-3
  • John, R.; Jata, K. V.; Sadananda, K. Residual Stress Effects on near-Threshold Fatigue Crack Growth in Friction Stir Welds in Aerospace Alloys. Int. J. Fatigue 2003, 25, 939–948. doi:10.1016/j.ijfatigue.2003.08.002
  • Parker, A. P. An Overview of the Mechanics of Fracture and Fatigue in the Presence of Residual Stress. J. Mech. Work Technol. 1984, 10, 165–174. doi:10.1016/0378-3804(84)90064-0
  • Ma, Y.; Staron, P.; Fischer, T.; Irving, P. E. Size Effects on Residual Stress and Fatigue Crack Growth in Friction Stir Welded 2195-T8 Aluminium – Part II: Modelling. Int. J. Fatigue 2011, 33, 1426–1434. doi:10.1016/j.ijfatigue.2011.05.008
  • Itoh, Y. Z.; Suruga, S.; Kashiwaya, H. Prediction of Fatigue Crack Growth Rate in Welding Residual Stress Field. Eng. Fract. Mech. 1989, 33, 397–407. doi:10.1016/0013-7944(89)90089-1
  • Feddersen, C. E. Evaluation and Prediction of the Residual Strength of Center Cracked Tension Panels. Damage Tolerance in Aircraft Structures; ASTM International: West Conshohocken, PA, 1971, p. 50–78. doi:10.1520/STP26673S
  • Swift, T. Damage Tolerance in Pressurized Fuselages. In Proceedings of the 14th ICAF Symposium (Ottawa, June 1987), New Materials and Fatigue Resistant Aircraft Design (ed.D. L. Simpson). EMAS, London, 1987, p. 1–78.
  • Dawes, M.; Karger, S. Strength and Fracture Toughness of Friction Stir Welds in Aluminum Alloys, 2nd International Symposium on Friction Stir Welding, Gothenburg, Sweden, June 2000.
  • Kroninger, H.; Reynolds, A. P. R-Curve Behaviour of Friction Stir Welds in Aluminium-Lithium Alloy 2195. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 283–290. doi:10.1046/j.1460-2695.2002.00466.x
  • Heinz, B.; Skrotzki, B. Characterization of a Friction-Stir-Welded Aluminum Alloy 6013. Metall. Mater. Trans. B 2002, 33, 489–498. doi:10.1007/s11663-002-0059-5
  • Nitschke-Pagel, T.; Wohlfahrt, H. Residual Stresses in Welded Joints - Sources and Consequences. MSF. 2002, 404407, 215–226. doi:10.4028/www.scientific.net/MSF.404-407.215
  • Rhodes, C. G.; Mahoney, M. W.; Bingel, W. H.; Calabrese, M. Fine-Grain Evolution in Friction-Stir Processed 7050 Aluminum. Scr. Mater. 2003, 48, 1451–1455. doi:10.1016/S1359-6462(03)00082-4
  • Su, J. Q.; Nelson, T. W.; Mishra, R.; Mahoney, M. Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium. Acta Mater. 2003, 51, 713–729. doi:10.1016/S1359-6454(02)00449-4
  • Edwards, P.; Ramulu, M. Comparative Study of Fatigue and Fracture in Friction Stir and Electron Beam Welds of 24 mm Thick Titanium Alloy Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 1226–1240. doi:10.1111/ffe.12434
  • Edwards, L.; Fitzpatrick, M.; Irving, P.; Sinclair, I.; Zhang, X.; Yapp, D. An Integrated Approach to the Determination and Consequences of Residual Stress on the Fatigue Performance of Welded Aircraft Structures, J. ASTM. Int., 2006, 3, 1-17. doi:10.1520/jai12547
  • Lemmen, H. J. K.; Alderliesten, R. C.; Benedictus, R. Evaluating the Fatigue Initiation Location in Friction Stir Welded AA2024-T3 Joints. Int. J. Fatigue 2011, 33, 466–476. doi:10.1016/j.ijfatigue.2010.10.002
  • Webster, G. A. Ezeilo, A. N. A Residual Stress Distributions and Their Influence on Fatigue Lifetimes. Int. J. Fatigue 2001, 23, 375–383. doi:10.1016/S0142-1123(01)00133-5
  • Hatamleh, O.; Lyons, J. E. D.; Forman, R. Laser Peening and Shot Peening Effects on Fatigue Life and Surface Roughness of Friction Stir Welded 7075-T7351 Aluminum. Fatigue Fract. Eng. Mater. Struct. 2007, 30, 115–130. doi:10.1111/j.1460-2695.2006.01093.x
  • Hatamleh, O.; Rivero, I. V.; Swain, S. E. An Investigation of the Residual Stress Characterization and Relaxation in Peened Friction Stir Welded Aluminum–Lithium Alloy Joints. Mater. Des. 2009, 30, 3367–3373. doi:10.1016/j.matdes.2009.03.038
  • James, M. N.; Hattingh, D. G.; Bradley, G. R. Weld Tool Travel Speed Effects on Fatigue Life of Friction Stir Welds in 5083 Aluminium. Int. J. Fatigue 2003, 25, 1389–1398. doi:10.1016/S0142-1123(03)00061-6
  • He, C.; Liu, Y.; Dong, J.; Wang, Q.; Wagner, D.; Bathias, C. Through Thickness Property Variations in Friction Stir Welded AA6061 Joint Fatigued in Very High Cycle Fatigue Regime. Int. J. Fatigue 2016, 82, 379–386. doi:10.1016/j.ijfatigue.2015.08.013
  • Polezhayeva, H.; Toumpis, A. I.; Galloway, A. M.; Molter, L.; Ahmad, B.; Fitzpatrick, M. E. Fatigue Performance of Friction Stir Welded Marine Grade Steel. Int. J. Fatigue 2015, 81, 162–170. doi:10.1016/j.ijfatigue.2015.08.003
  • Kadlec, M.; Růžek, R.; Nováková, L. Mechanical Behaviour of AA7475 Friction Stir Welds with the Kissing Bond Defect. Int. J. Fatigue 2015, 74, 7–19. doi:10.1016/j.ijfatigue.2014.12.011
  • James, M.; Hughes, D.; Hattingh, D. G.; Bradley, G.; Mills, G.; Webster, P. Synchrotron Diffraction Measurement of Residual Stresses in Friction Stir Welded 5383‐H321 Aluminium Butt Joints and Their Modification by Fatigue Cycling. Fatigue Fract. Eng. Mater. Struct. 2004, 27, 187–202. doi:10.1111/j.1460-2695.2004.00736.x
  • Maggiolini, E.; Tovo, R.; Susmel, L.; James, M. N.; Hattingh, D. G. Crack Path and Fracture Analysis in FSW of Small Diameter 6082-T6 Aluminium Tubes under Tension–Torsion Loading. Int. J. Fatigue 2016, 92, 478–487. doi:10.1016/j.ijfatigue.2016.02.043
  • Tan, J. M.-L.; Fitzpatrick, M. E.; Edwards, L. Stress Intensity Factors for through-Thickness Cracks in a Wide Plate: Derivation and Application to Arbitrary Weld Residual Stress Fields. Eng. Fract. Mech. 2007, 74, 2030–2054. doi:10.1016/j.engfracmech.2006.10.017
  • Fratini, L.; Pasta, S.; Reynolds, A. P. Fatigue Crack Growth in 2024-T351 Friction Stir Welded Joints: Longitudinal Residual Stress and Microstructural Effects. Int. J. Fatigue 2009, 31, 495–500. doi:10.1016/j.ijfatigue.2008.05.004
  • Pao, P. S.; Gill, S. J.; Feng, C. R.; Sankaran, K. K. Corrosion Fatigue Crack Growth in Friction Stir Welded Al 7050. Scr. Mater. 2001, 45, 605–612. doi:10.1016/S1359-6462(01)01070-3
  • Hong, S.; Kim, S.; Lee, C.; Kim, S.-J. Fatigue Crack Propagation Behavior of Friction Stir Welded Al-Mg-Si Alloy. Scr. Mater. 2006, 55, 1007–1010. doi:10.1016/j.scriptamat.2006.08.012
  • Ma, Y. E.; Staron, P.; Fischer, T.; Irving, P. E. Size Effects on Residual Stress and Fatigue Crack Growth in Friction Stir Welded 2195-T8 Aluminium – Part I: Experiments. Int. J. Fatigue 2011, 33, 1417–1425. doi:10.1016/j.ijfatigue.2011.05.006
  • Ma, Y.; Liu, B. Q.; Zhao, Z. Q. Crack Paths in a Friction Stir-Welded Pad-up for Fuselage Applications. J. Aircr. 2013, 50, 879–885. doi:10.2514/1.C032016
  • Zhang, X.; Zhang, H.; Bao, R. 2013 Mode I fatigue crack growth behaviour in a welded cruciform joint under biaxial stresses. 13th International Conference on Fracture, Beijing, China, Jun 16 –21.
  • Richter-Trummer, V.; Zhang, X.; Irving, P. E.; Pacchione, M.; Beltrão, M.; dos Santos, J. F. Fatigue Crack Growth Behaviour in Friction Stir Welded Aluminium-Lithium Alloy Subjected to Biaxial Loads. Exp. Tech. 2016, 40, 921–935. doi:10.1007/s40799-016-0091-z
  • Salvati, E.; Everaerts, J.; Kageyama, K.; Korsunsky, A. M. Transverse Fatigue Behaviour and Residual Stress Analyses of Double Sided FSW Aluminium Alloy Joints. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1980–1990. doi:10.1111/ffe.13068
  • McClung, R. C. A Literature Survey on the Stability and Significance of Residual Stresses during Fatigue. Fatigue Fract. Eng. Mater. Struct. 2007, 30, 173–205. doi:10.1111/j.1460-2695.2007.01102.x
  • Lombard, H.; Hattingh, D. G.; Steuwer, A.; James, M. N. Optimising FSW Process Parameters to Minimise Defects and Maximise Fatigue Life in 5083-H321 Aluminium Alloy. Eng. Fract. Mech. 2008, 75, 341–354. doi:10.1016/j.engfracmech.2007.01.026
  • James, M. R. The Relaxation of Residual Stresses during Fatigue. In: Residual Stress and Stress Relaxation, Proceedings of the 28th Sagamore Army Materials Research Conference, Lake Placid, New York, 1982, p. 297–314.
  • Zhuang, W. Z.; Halford, G. R. Investigation of Residual Stress Relaxation under Cyclic Load. Int. J. Fatigue 2001, 23, 31–37. doi:10.1016/S0142-1123(01)00132-3
  • Wallace, W. P.; Frankel, J. P. Relief of Residual Stresses by Single Fatigue Cycle. Weld J. 1949, 38, p. 565–574.
  • Zaroog, O. S.; Ali, A.; Sahari, B. B.; Zahari, R. Modeling of Residual Stress Relaxation of Fatigue in 2024-T351 Aluminium Alloy. Int. J. Fatigue 2011, 33, 279–285. doi:10.1016/j.ijfatigue.2010.08.012
  • Han, S.; Lee, T.; Shin, B. Residual Stress Relaxation of Welded Steel Components under Cyclic Load. Steel Res. 2002, 73, 414–420. doi:10.1002/srin.200200008
  • Holzapfel, H.; Schulze, V.; Vohringer, O.; Macherauch, E. Residual Stress Relaxation in an AISI 4140 Steel Due to Quasistatic and Cyclic Loading at Higher Temperatures. Mater. Sci. Eng. A 1998, 248, 9–18. doi:10.1016/S0921-5093(98)00522-X
  • Landgraf, R. W. The Resistance of Metals to Cyclic Deformation. Achievement of High Fatigue Resistance in Metals and Alloys. ASTM STP 467, 1970, p. 3–36.
  • Zaroog, O. S.; Ali, A.; Sahari, B.; Zahari, R. Modelling of Residual Stress Relaxation: A Review. Pertanika J. Sci. Technol. 2009, 17, p. 325–336.
  • Liljedahl, C. D. M.; Tan, M. L.; Zanellato, O.; Ganguly, S.; Fitzpatrick, M. E.; Edwards, L. Evolution of Residual Stresses with Fatigue Loading and Subsequent Crack Growth in a Welded Aluminium Alloy Middle Tension Specimen. Eng. Fract. Mech. 2008, 75, 3881–3894. doi:10.1016/j.engfracmech.2008.02.005
  • Morrow, J.; Sinclair, G. M. Cycle-Dependent Stress Relaxation. In Symposium on Basic Mechanisms of Fatigue, ASTM Committee E-9, West Conshohocken, PA: ASTM International, 1959, p. 83–109. doi:10.1520/STP39312S.
  • Kodama, S. 1972 The Behavior of Residual Stress during Fatigue Stress Cycles. Proceedings of the International Conference on Mechanical Behavior of Metals II; Society of Material Science: Kyoto, p. 111–118.
  • Jhansale, H. R.; Topper, T. H. Engineering Analysis of the Inelastic Stress Response of a Structural Metal under Variable Cyclic Strains. In Coffin, L. F., Krempl, E., Eds. Cyclic Stress-Strain Behavior - Analysis, Experimentation, and Failure Prediction; West Conshohocken: ASTM International, PA, 1971, p. 246–270.
  • John, R.; Buchanan, D. J.; Caton, M. J.; Jha, S. K. Stability of Shot Peen Residual Stresses in IN100 Subjected to Creep and Fatigue Loading. Proc. Eng. 2010, 2, 1887–1893. doi:10.1016/j.proeng.2010.03.203
  • Dalaei, K.; Karlsson, B.; Svensson, L. E. Stability of Shot Peening Induced Residual Stresses and Their Influence on Fatigue Lifetime. Mater. Sci. Eng. A 2011, 528, 1008–1015. doi:10.1016/j.msea.2010.09.050
  • Navid Chakherlou, T.; Yaghoobi, A. Numerical Simulation of Residual Stress Relaxation around a Cold-Expanded Fastener Hole under Longitudinal Cyclic Loading Using Different Kinematic Hardening Models. Fatigue Fract. Eng. Mater. Struct. 2010, 33, p. 740–751. DOI: 10.1111/j.1460-2695.2010.01485.x.
  • Golestaneh, A. F.; Ali, A.; Zadeh, M. Modelling the Fatigue Crack Growth in Friction Stir Welded Joint of 2024-T351 Al Alloy. Mater. Des. 2009, 30, 2928–2937. doi:10.1016/j.matdes.2009.01.006
  • Sutton, M. A.; Reynolds, A. P.; Yang, B.; Taylor, R. Mixed Mode I/II Fracture of 2024-T3 Friction Stir Welds. Eng. Fract. Mech. 2003, 70, 2215–2234. doi:10.1016/S0013-7944(02)00236-9
  • Scheider, I.; Barbini, A.; dos Santos, J. F. Numerical Residual Strength Prediction of Stationary Shoulder Friction Stir Welding Structures. Eng. Fract. Mech. 2020, 230, 107010. doi:10.1016/j.engfracmech.2020.107010
  • Lemmen, H. J. K.; Alderliesten, R. C.; Benedictus, R. Macro and Microscopic Observations of Fatigue Crack Growth in Friction Stir Welded Aluminum Joints. Eng. Fract. Mech. 2011, 78, 930–943. doi:10.1016/j.engfracmech.2011.01.018
  • Ainsworth, R. A. The Treatment of Thermal and Residual Stresses in Fracture Assessments. Eng. Fract. Mech. 1986, 24, 65–76. doi:10.1016/0013-7944(86)90008-1
  • Zerbst, U.; Heinimann, M.; Donne, C. D.; Steglich, D. Fracture and Damage Mechanics Modelling of Thin-Walled Structures – An Overview. Eng. Fract. Mech. 2009, 76, 5–43. doi:10.1016/j.engfracmech.2007.10.005
  • Yang, Y. P. Recent Advances in the Prediction of Weld Residual Stress and Distortion - Part 1. WJ. 2021, 100, 151–170. doi:10.29391/2021.100.013
  • Gould, J. E.; Feng, Z. Heat Flow Model for Friction Stir Welding of Aluminum Alloys. J. Mater. Process. Manuf. Sci. 1998, 7, 185–194. doi:10.1106/648R-2CNE-2PD0-45L6
  • Schmidt, H.; Hattel, J.; Wert, J. An Analytical Model for the Heat Generation in Friction Stir Welding. Model. Simul. Mater. Sci. Eng. 2004, 12, 143–157. doi:10.1088/0965-0393/12/1/013
  • Chen, C. M.; Kovacevic, R. Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis. Int. J. Mach. Tools Manuf. 2003, 43, 1319–1326. doi:10.1016/S0890-6955(03)00158-5
  • Zhu, X. K.; Chao, Y. J. Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304L Stainless Steel. J. Mater. Process. Technol. 2004, 146, 263–272. doi:10.1016/j.jmatprotec.2003.10.025
  • Khandkar, M. Z. H.; Khan, J. A.; Reynolds, A. P.; Sutton, M. A. Predicting Residual Thermal Stresses in Friction Stir Welded Metals. J. Mater. Process. Technol. 2006, 174, 195–203. doi:10.1016/j.jmatprotec.2005.12.013
  • Dubourg, L.; Doran, P.; Gharghouri, M. A.; Larose, S.; Jahazi, M. Prediction and Measurements of Thermal Residual Stresses in AA2024-T3 Friction Stir Welds as a Function of Welding Parameters. MSF. 2010, 638642, 1215–1220. doi:10.4028/www.scientific.net/MSF.638-642.1215
  • Jin, L.-Z.; Sandström, R. Numerical Simulation of Residual Stresses for Friction Stir Welds in Copper Canisters. J. Manuf. Process. 2012, 14, 71–81. doi:10.1016/j.jmapro.2011.10.001
  • Bastier, A.; Maitournam, M. H.; Dang Van, K.; Roger, F. Steady State Thermomechanical Modelling of Friction Stir Welding. Sci. Technol. Weld Joining 2006, 11, 278–288. doi:10.1179/174329306X102093
  • Fratini, L.; Buffa, G.; Monaco, L. L. Improved FE Model for Simulation of Friction Stir Welding of Different Materials. Sci. Technol. Weld Joining 2010, 15, 199–207. doi:10.1179/136217110X12665048207575
  • Sadeghi, S.; Najafabadi, M. A.; Javadi, Y.; Mohammadisefat, M. Using Ultrasonic Waves and Finite Element Method to Evaluate through-Thickness Residual Stresses Distribution in the Friction Stir Welding of Aluminum Plates. Mater. Des. 2013, 52, 870–880. doi:10.1016/j.matdes.2013.06.032
  • Fratini, L.; Macaluso, G.; Pasta, S. Residual Stresses and FCP Prediction in FSW through a Continuous FE Model. J. Mater. Process. Technol. 2009, 209, 5465–5474. doi:10.1016/j.jmatprotec.2009.05.001
  • Schmidt, H.; Hattel, J. H. A Local Model for the Thermomechanical Conditions in Friction Stir Welding. Model. Simul. Mater. Sci. Eng. 2005, 13, 77–93. doi:10.1088/0965-0393/13/1/006
  • Feng, Z.; Wang, X. L.; David, S. A.; Sklad, P. S. Modelling of Residual Stresses and Property Distributions in Friction Stir Welds of Aluminium Alloy 6061-T6. Sci. Technol. Weld Joining 2007, 12, 348–356. doi:10.1179/174329307X197610
  • Grujicic, M.; Arakere, G.; Yalavarthy, H. V.; He, T.; Yen, C. F.; Cheeseman, B. A. Modeling of AA5083 Material-Microstructure Evolution during Butt Friction-Stir Welding. J. Mater. Eng. Perform. 2010, 19, 672–684. doi:10.1007/s11665-009-9536-1
  • Bastier, A.; Maitournam, M. H.; Roger, F.; Van, K. D. Modelling of the Residual State of Friction Stir Welded Plates. J. Mater. Process. Technol. 2008, 200, 25–37. doi:10.1016/j.jmatprotec.2007.10.083
  • Sonne, M.; Carlone, P.; Palazzo, G.; Hattel, J. H. Numerical Modeling of AA2024-T3 Friction Stir Welding Process for Residual Stress Evaluation, Including Softening Effects. KEM. 2014, 611612, 1675–1682. doi:10.4028/www.scientific.net/KEM.611-612.1675
  • Sonne, M. R.; Tutum, C. C.; Hattel, J. H.; Simar, A.; Meester, B. D. The Effect of Hardening Laws and Thermal Softening on Modeling Residual Stresses in FSW of Aluminum Alloy 2024-T3. J. Mater. Process. Technol. 2013, 213, 477–486. doi:10.1016/j.jmatprotec.2012.11.001
  • Zhang, S.; Chen, G.; Liu, Q.; Li, H.; Zhang, G.; Wang, G.; Shi, Q. Numerical Analysis and Analytical Modeling of the Spatial Distribution of Heat Flux during Friction Stir Welding. J. Manuf. Process. 2018, 33, 245–255. doi:10.1016/j.jmapro.2018.05.021
  • Qu, J.; Blau, P. J. A New Model to Calculate Friction Coefficients and Shear Stresses in Thermal Drilling. J. Manuf. Sci. Eng. 2008, 130, 014502. doi:10.1115/1.2815341
  • Kumar, K.; Kalyan, C.; Kailas, S. V.; Srivatsan, T. S. An Investigation of Friction during Friction Stir Welding of Metallic Materials. Mater. Manuf. Process. 2009, 24, 438–445. doi:10.1080/10426910802714340
  • Ge, Y. Z.; Sutton, M.; Deng, X.; Reynolds, A. P. Limited Weld Residual Stress Measurements in Fatigue Crack Propagation: Part I. Complete Field Representation through Least-Squares Finite-Element Smoothing. Fatigue Fract. Eng. Mater. Struct. 2006, 29, 524–536. doi:10.1111/j.1460-2695.2006.01022.x
  • Sutton, M.; Reynolds, A. P.; Ge, Y. Z.; Deng, X. Limited Weld Residual Stress Measurements in Fatigue Crack Propagation: Part II. FEM‐Based Fatigue Crack Propagation with Complete Residual Stress Fields. Fatigue Fract. Eng. Mater. Struct. 2006, 29, 537–545. doi:10.1111/j.1460-2695.2006.01023.x
  • Bao, R.; Zhang, X. An Inverse Method for Evaluating Weld Residual Stresses via Fatigue Crack Growth Test Data. Eng. Fract. Mech. 2010, 77, 3143–3156. doi:10.1016/j.engfracmech.2010.08.010
  • Dong, Y.; Garbatov, Y.; Soares, C. G. Fatigue Crack Initiation Assessment of Welded Joints Accounting for Residual Stress. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1823–1837. doi:10.1111/ffe.12824
  • Nelson, D. V. Effects of Residual Stress on Fatigue Crack Propagation. In Residual Stress Effects in Fatigue. ASTM International, ASTM STP 776: Washington, DC, 1982; p. 172–194.
  • Schindler, H., Experimental Determination of Crack Closure by the Cut Compliance Technique. Advances in Fatigue Crack Closure Measurement and Analysis, ASTM STP 1343, R.C. McClung and J.C. Newman, Jr., Eds., American Society for Testing and Materials, West Conshohocken, PA, 1998, p. 175–187.
  • Krueger, R. Virtual Crack Closure Technique: History, Approach and Applications. Appl. Mech. Rev. 2004, 57, 109–143. doi:10.1115/1.1595677
  • Servetti, G.; Zhang, X. Predicting Fatigue Crack Growth Rate in a Welded Butt Joint: The Role of Effective R Ratio in Accounting for Residual Stress Effect. Eng. Fract. Mech. 2009, 76, 1589–1602. doi:10.1016/j.engfracmech.2009.02.015
  • Rybicki, E. F.; Kanninen, M. F. A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral. Eng. Fract. Mech. 1977, 9, 931–938. doi:10.1016/0013-7944(77)90013-3
  • Schnubel, D.; Huber, N. The Influence of Crack Face Contact on the Prediction of Fatigue Crack Propagation in Residual Stress Fields. Eng. Fract. Mech. 2012, 84, 15–24. doi:10.1016/j.engfracmech.2011.12.008
  • Zhang, X.; Ma, Y.; Peng, Y.; Yang, M.; Du; Y.; Wang, Z. Effects of Residual Stress Induced by Laser Shock Peening on Mixed-Mode Crack Propagation Behavior in 7075-T6 Aluminum Alloy Panel. Theor. Appl. Fract. Mech. 2022, 119, 103358. doi:10.1016/j.tafmec.2022.103358
  • Zhang, X.; Ma, Y.; Yang, M.; Huang; W., Peng, Y.; Wang, Z. Effects of Biaxial Residual Stress Components on Mixed-Mode Fatigue Crack Propagation Behavior in Friction Stir Welded 7075-T6 Aluminium Alloy Panel. Theor. Appl. Fract. Mech. 2022, 121, 103437. doi:10.1016/j.tafmec.2022.103437
  • Ayatollahi, M. R.; Saboori, B. A New Fixture for Fracture Tests under Mixed Mode I/III Loading. Eur. J. Mech. A Solids 2015, 51, 67–76. doi:10.1016/j.euromechsol.2014.09.012
  • Gadallah, R.; Osawa, N.; Tanaka, S.; Tsutsumi, S. A Novel Approach to Evaluate Mixed-Mode SIFs for a through-Thickness Crack in a Welding Residual Stress Field Using an Effective Welding Simulation Method. Eng. Fract. Mech. 2018, 197, 48–65. doi:10.1016/j.engfracmech.2018.04.040
  • Le Jolu, T.; Morgeneyer, T. F.; Denquin, A.; Sennour, M.; Laurent, A.; Besson, J.; Gourgues-Lorenzon, A.-F. Microstructural Characterization of Internal Welding Defects and Their Effect on the Tensile Behavior of FSW Joints of AA2198 Al-Cu-Li Alloy. Metall. Mater. Trans. A 2014, 45, 5531–5544. doi:10.1007/s11661-014-2537-1
  • Glinka, G. Effect of Residual Stresses on Fatigue Crack Growth in Steel Weldments Under Constant and Variable Amplitude Loads, Fracture Mechanics, ASTM STP 677, C. W. Smith, Ed., 1979, p. 198–214.
  • Parker, A. Stress Intensity Factors, Crack Profiles, and Fatigue Crack Growth Rates in Residual Stress Fields, In: Throop J, Reemsnyder H, eds. Residual Stress Effects in Fatigue. West Conshohocken: ASTM International, 1982, p. 13–31.
  • Smyth, N. A.; Toparli, M. B.; Fitzpatrick, M. E.; Irving, P. E. Recovery of Fatigue Life Using Laser Peening on 2024‐T351 Aluminium Sheet Containing Scratch Damage: The Role of Residual Stress. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1161–1174. doi:10.1111/ffe.12981
  • Elber, W. The Significance of Fatigue Crack Closure. ASTM STP 486, 1971, p. 230–242.
  • Newman, J. C. A Crack Opening Stress Equation for Fatigue Crack Growth. Int. J. Fract. 1984, 24, R131–R135. doi:10.1007/BF00020751
  • Lam, Y. C.; Lian, K. S. The Effect of Residual Stress and Its Redistribution of Fatigue Crack Growth. Theor. Appl. Fract. Mech. 1989, 12, 59–66. doi:10.1016/0167-8442(89)90015-3
  • Newman, J. C. FASTRAN-2: A Fatigue Crack Growth Structural Analysis Program. NASA STI/Recon Technical Report N, Vol. 92, 1992.
  • Solanki, K.; Daniewicz, S. R.; Newman, J. C. Finite Element Analysis of Plasticity-Induced Fatigue Crack Closure: An Overview. Eng. Fract. Mech. 2004, 71, 149–171. doi:10.1016/S0013-7944(03)00099-7
  • LaRue, J. E.; Daniewicz, S. R. Predicting the Effect of Residual Stress on Fatigue Crack Growth. Int. J. Fatigue 2007, 29, 508–515. doi:10.1016/j.ijfatigue.2006.05.008
  • Forman, R.; Mettu, S. Behavior of Surface and Corner Cracks Subjected to Tensile and Bending Loads in Ti-6Al-4V Alloy. Fracture Mechanics 22nd Symposium, H. A. Ernst, A. Saxena, and D. L. McDowell, Eds., West Conshohocken Philadelphia, ASTM, 1992, p. 519–546.
  • Richard C. Rice (ed.), SAE Fatigue Design Handbook, 3rd ed., Society of Automotive Engineers, Inc., Warrendale, PA, USA, 1997.
  • Walker, E. K. The Effect of Stress Ratio during Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum. Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462M. Philadelphia, 1970, p. 1–14.
  • Harter, J. AFGROW User Guide and Technical Manual, AFRLVA-WP-TR-1999-3016, Air Force Research Laboratory, Air Vehicles Directorate (AFRL/VASM). Wright-Patterson AFB, OH. Available from: http://fibec.flight.wpafb.af.mil/fibec/afgrow.html, February, 1999.
  • Ma, Y. E.; Z.; Zhao, Z.; Liu, B.; Li, W. Mechanical Properties and Fatigue Crack Growth Rates in Friction Stir Welded Nugget of 2198-T8 Al–Li Alloy Joints. Mater. Sci. Eng. A 2013, 569, 41–47. doi:10.1016/j.msea.2013.01.044
  • Zhang, X.; Ma, Y.; Wang, Z.; Guo, Y. The Effect of Residual Stress on Mixed-Mode Crack Propagation Behaviour in Friction Stir Welded 7075-T6 Aluminium Alloy Panel under Biaxial Loading. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 805–821. doi:10.1111/ffe.13395
  • Häusler, S. M.; Horst, P. Fast Analytical Algorithm for Fatigue Crack Life Estimations of Integrally Stiffened Metallic Panels. KEM. 2008, 385387, 529–532. doi:10.4028/www.scientific.net/KEM.385-387.529
  • Zadeh, M.; Ali, A.; Golestaneh, A.; Sahari, B. Three Dimensional Simulation of Fatigue Crack Growth in Friction Stir Welded Joints of 2024-T351 Al Alloy. J. Sci. Ind. Res. 2009, 68, 775–782.
  • Citarella, R.; Carlone, P.; Lepore, M.; Palazzo, G. S. Numerical–Experimental Crack Growth Analysis in AA2024-T3 FSWed Butt Joints. Adv. Eng. Software 2015, 80, 47–57. doi:10.1016/j.advengsoft.2014.09.018
  • Carlone, P.; Citarella, R.; Lepore, M.; Palazzo, G. S. A FEM-DBEM Investigation of the Influence of Process Parameters on Crack Growth in Aluminum Friction Stir Welded Butt Joints. Int. J. Mater. Form. 2015, 8, 591–599. doi:10.1007/s12289-014-1186-7
  • Citarella, R.; Carlone, P.; Lepore, M.; Sepe, R. Hybrid Technique to Assess the Fatigue Performance of Multiple Cracked FSW Joints. Eng. Fract. Mech. 2016, 162, 38–50. doi:10.1016/j.engfracmech.2016.05.005
  • Citarella, R.; Carlone, P.; Sepe, R.; Lepore, M. DBEM Crack Propagation in Friction Stir Welded Aluminum Joints. Adv. Eng. Softw. 2016, 101, 50–59. doi:10.1016/j.advengsoft.2015.12.002
  • Carlone, P.; Citarella, R.; Sonne, M. R.; Hattel, J. H. Multiple Crack Growth Prediction in AA2024-T3 Friction Stir Welded Joints, Including Manufacturing Effects. Int. J. Fatigue 2016, 90, 69–77. doi:10.1016/j.ijfatigue.2016.04.004
  • Sadananda, K.; Vasudevan, A. K. Short Crack Growth and Internal Stresses. Int. J. Fatigue 1997, 19, 99–108. doi:10.1016/S0142-1123(97)00057-1
  • Lampman, S. R. ASM Handbook (Vol. 19): Fatigue and Fracture, 10th ed.; ASM International: Metal Park (Ohio), 1996.
  • Farrahi, G. H.; Lebrijin, J. L.; Couratin, D. Effect of Shot Peening on Residual Stress and Fatigue Life of a Spring Steel. Fatigue Fract. Eng. Mater. Struct. 1995, 18, 211–220. doi:10.1111/j.1460-2695.1995.tb00156.x
  • Marchionni, M.; Osinkolu, G. A.; Maldini, M. High Temperature Cyclic Deformation of a Directionally Solidified ni-Base Superalloy. Fatigue Fract. Eng. Mater. Struct. 1996, 19, 955–962. doi:10.1111/j.1460-2695.1996.tb01031.x
  • Hassanifard, S.; Mohammadpour, M.; Rashid, H. A. A Novel Method for Improving Fatigue Life of Friction Stir Spot Welded Joints Using Localized Plasticity. Mater. Des. 2014, 53, 962–971. doi:10.1016/j.matdes.2013.07.098
  • Smith, K. N.; Topper, T.; Watson, P. A Stress–Strain Function for the Fatigue of Metals. J. Mater. 1970, 5, 767–778.
  • Fatemi, A.; Socie, D. F. A Critical Plane Approach to Multiaxial Fatigue Damage Including out-of-Phase Loading. Fatigue Fract. Eng. Mater. Struct. 1988, 11, 149–165. doi:10.1111/j.1460-2695.1988.tb01169.x
  • Hassanifard, S.; Mousavi, H.; Varvani-Farahani, A. The Influence of Low-Plasticity Burnishing Process on the Fatigue Life of Friction-Stir-Processed Al 7075-T6 Samples. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 764–772. doi:10.1111/ffe.12950
  • Lepore, M. A.; Berto, F. On the Fatigue Propagation of Multiple Cracks in Friction Stir Weldments Using Linear and Non-Linear Models under Cyclic Tensile Loading. Eng. Fract. Mech. 2019, 206, 463–484. doi:10.1016/j.engfracmech.2018.12.015
  • Noroozi, A. H.; Glinka, G.; Lambert, S. A Two Parameter Driving Force for Fatigue Crack Growth Analysis. Int. J. Fatigue 2005, 27, 1277–1296. doi:10.1016/j.ijfatigue.2005.07.002
  • Mahdavi Shahri, M.; Sandström, R.; Osikowicz, W. Critical Distance Method to Estimate the Fatigue Life Time of Friction Stir Welded Profiles. Int. J. Fatigue 2012, 37, 60–68. doi:10.1016/j.ijfatigue.2011.10.003
  • Mahdavi Shahri, M.; Höglund, T.; Sandström, R. Eurocode 9 to Estimate the Fatigue Life of Friction Stir Welded Aluminium Panels. Eng. Struct. 2012, 45, 307–313. doi:10.1016/j.engstruct.2012.06.039
  • Mahdavi Shahri, M.; Sandström, R. Influence of Fabrication Stresses on Fatigue Life of Friction Stir Welded Aluminium Profiles. J. Mater. Process. Technol. 2012, 212, 1488–1494. doi:10.1016/j.jmatprotec.2012.02.008
  • Susmel, L.; Hattingh, D. G.; James, M. N.; Tovo, R. Multiaxial Fatigue Assessment of Friction Stir Welded Tubular Joints of Al 6082-T6. Int. J. Fatigue 2017, 101, 282–296. doi:10.1016/j.ijfatigue.2016.08.010
  • Yang, Y. P. Recent Advances in Prediction of Weld Residual Stress and Distortion - Part 2. WJ. 2021, 100, 193–205. doi:10.29391/2021.100.016
  • He, C.; Yang, K.; Liu, Y.; Wang, Q.; Cai, M. Improvement of Very High Cycle Fatigue Properties in an AA7075 Friction Stir Welded Joint by Ultrasonic Peening Treatment. Fatigue Fract. Eng. Mater. Struct. 2017, 40, 460–468. doi:10.1111/ffe.12516
  • Alinaghian, I.; Honarpisheh, M.; Amini, S. The Influence of Bending Mode Ultrasonic-Assisted Friction Stir Welding of Al-6061-T6 Alloy on Residual Stress, Welding Force and Macrostructure. Int. J. Adv. Manuf. Technol. 2018, 95, 2757–2766. doi:10.1007/s00170-017-1431-6
  • Singh, R. K. R.; Prasad, R.; Pandey, S.; Sharma, S. K. Effect of Cooling Environment and Welding Speed on Fatigue Properties of Friction Stir Welded Al-Mg-Cr Alloy. Int. J. Fatigue 2019, 127, 551–563. doi:10.1016/j.ijfatigue.2019.06.043
  • Hatamleh, O.; Lyons, J.; Forman, R. Laser and Shot Peening Effects on Fatigue Crack Growth in Friction Stir Welded 7075-T7351 Aluminum Alloy Joints. Int. J. Fatigue 2007, 29, 421–434. doi:10.1016/j.ijfatigue.2006.05.007
  • Hatamleh, O. A Comprehensive Investigation on the Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welded AA2195 Joints. Int. J. Fatigue 2009, 31, 974–988. doi:10.1016/j.ijfatigue.2008.03.029
  • Hatamleh, O.; Mishra, R. S.; Oliveras, O. Peening Effects on Mechanical Properties in Friction Stir Welded AA2195 at Elevated and Cryogenic Temperatures. Mater. Des. 2009, 30, 3165–3173. doi:10.1016/j.matdes.2008.11.010
  • Iordachescu, M.; Valiente, A.; Caballero, L.; Iordachescu, D.; Ocaña, J. L.; Porro, J. A. Laser Shock Processing Influence on Local Properties and Overall Tensile Behavior of Friction Stir Welded Joints. Surf. Coat. Technol. 2012, 206, 2422–2429. doi:10.1016/j.surfcoat.2011.10.044
  • Sano, Y.; Masaki, K.; Gushi, T.; Sano, T. Improvement in Fatigue Performance of Friction Stir Welded A6061-T6 Aluminum Alloy by Laser Peening without Coating. Mater. Des. 2012, 36, 809–814. doi:10.1016/j.matdes.2011.10.053
  • Liu, P.; Sun, S.; Xu, S.; Li, Y.; Ren, G. Microstructure and Properties in the Weld Surface of Friction Stir Welded 7050-T7451 Aluminium Alloys by Laser Shock Peening. Vacuum 2018, 152, 25–29. doi:10.1016/j.vacuum.2018.03.002
  • Mutoh, Y.; Fair, G. H.; Noble, B.; Waterhouse, R. B. The Effect of Residual Stress Induced by Shot-Peening on Fatigue Crack Propagation in Two High Strength Aluminium Alloys. Fatigue Fract. Eng. Mater. Struct. 1987, 10, 261–272. doi:10.1111/j.1460-2695.1987.tb00205.x
  • DeWald, A.; Rankin, J.; Hill, M.; Lee, M.; Chen, H.-L. Assessment of Tensile Residual Stress Mitigation in Alloy 22 Welds Due to Laser Peening. J. Eng. Mater. Technol. 2004, 126, 465–473. doi:10.1115/1.1789957
  • Liu, Q.; Yang, C. H.; Ding, K.; Barter, S. A.; Ye, L. The Effect of Laser Power Density on the Fatigue Life of Laser-Shock-Peened 7050 Aluminium Alloy. Fatigue Fract. Eng. Mater. Struct. 2007, 30, 1110–1124. doi:10.1111/j.1460-2695.2007.01180.x
  • Zhang, X. C.; Zhang, Y. K.; Lu, J. Z.; Xuan, F. Z.; Wang, Z. D.; Tu, S. T. Improvement of Fatigue Life of Ti–6Al–4V Alloy by Laser Shock Peening. Mater. Sci. Eng. A 2010, 527, 3411–3415. doi:10.1016/j.msea.2010.01.076
  • Zhang, X.; Ma, Y.; Yang, M.; Zhou, C.; Fu, N.; Huang, W.; Wang, Z. A Comprehensive Review of Fatigue Behavior of Laser Shock Peened Metallic Materials. Theor. Appl. Fract. Mech. 2022, 122, 103642. doi:10.1016/j.tafmec.2022.103642.
  • Elangovan, K.; Balasubramanian, V. Influences of Post-Weld Heat Treatment on Tensile Properties of Friction Stir-Welded AA6061 Aluminum Alloy Joints. Mater. Charact. 2008, 59, 1168–1177. doi:10.1016/j.matchar.2007.09.006
  • Edwards, P.; Ramulu, M. Fatigue Performance of Friction Stir Welded Ti–6Al–4V Subjected to Various Post Weld Heat Treatment Temperatures. Int. J. Fatigue 2015, 75, 19–27. doi:10.1016/j.ijfatigue.2015.01.012
  • Chen, Y. C.; Liu, H. J.; Feng, J. C. Effect of Post-Weld Heat Treatment on the Mechanical Properties of 2219-O Friction Stir Welded Joints. J. Mater. Sci. 2005, 40, 4657–4659. doi:10.1007/s10853-005-4085-y
  • Sharma, C.; Dwivedi, D. K.; Kumar, P. Effect of Post Weld Heat Treatments on Microstructure and Mechanical Properties of Friction Stir Welded Joints of Al-Zn-Mg Alloy AA7039. Mater. Des. 2013, 43, 134–143. doi:10.1016/j.matdes.2012.06.018
  • Krishnan, M.; Marimuthu, K. Effect of Post-Weld Heat Treatment on Dissimilar Friction Stir Welded AA6063 and A319 Aluminium Alloys. Int. J. Mater. Res. 2014, 105, 507–511. doi:10.3139/146.111054
  • Sticchi, M.; Schnubel, D.; Kashaev, N.; Huber, N. Review of Residual Stress Modification Techniques for Extending the Fatigue Life of Metallic Aircraft Components. Appl. Mech. Rev. 2015, 67, 010801. doi:10.1115/1.4028160
  • Aghaie-Khafri, M.; Amin, M.; Momeni, A. Life Assessment and Life Extension of An Aircraft Wheel, Adv Mech Eng, 4, 2012. doi:10.1155/2012/326971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.