362
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Real-time viral detection through electrolyte-gated field effect transistors: possibility of rapid COVID-19 detection

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Delcuve, G. P.; Lakowski, T. M.; Su, R.-C.; Beacon, T. H.; Davie, J. R. SARS-CoV-2 Multifaceted Interaction with Human Host. Part I: What We Have Learnt and Done so Far, and the Still Unknown Realities. IUBMB Life. 2020, 72, 2313–2330. doi:10.1002/iub.2380
  • World Health Organization. https://www.who.int/data#dashboards. 2021.
  • Noorden, R. V. COVID Death Tolls: Scientists Acknowledge Errors in WHO Estimates. Nature 2022, 606, 242–244. doi:10.1038/d41586-022-01526-0.
  • World Health Organization. Coronavirus: World Health Organization 2021. https://www.who.int/health-topics/coronavirus#tab=tab_3 (accessed July 15, 2021).
  • Taha, B. A.; Al Mashhadany, Y.; Bachok, N. N.; Ashrif A Bakar, A.; Hafiz Mokhtar, M. H.; Dzulkefly Bin Zan, M. S.; Arsad, N. Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives. Diagnostics 2021, 11, 1119. doi:10.3390/diagnostics11061119
  • Fani, M.; Zandi, M.; Soltani, S.; Abbasi, S. Future Developments in Biosensors for Field-Ready SARS-CoV-2 Virus Diagnostics. Biotechnol. Appl. Biochem. 2021, 68, 695–699. doi:10.1002/bab.2033
  • Aranha, C.; Patel, V.; Bhor, V.; Gogoi, D. Cycle Threshold Values in RT-PCR to Determine Dynamics of SARS-CoV-2 Viral Load: An Approach to Reduce the Isolation Period for COVID-19 Patients. J. Med. Virol. 2021, 93, 6794–6797. doi:10.1002/jmv.27206
  • Xu, Y.; Cheng, M.; Chen, X.; et al. Current approaches in laboratory testing for SARS-CoV-2. International Journal of Infectious Diseases. 2020, 100, 7–9. doi:10.1016/j.ijid.2020.08.041
  • Alafeef, M.; Dighe, K.; Moitra, P.; Pan, D. Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano. 2020, 14, 17028–17045. doi:10.1021/acsnano.0c06392
  • Boudet, A.; Stephan, R.; Bravo, S.; Sasso, M.; Lavigne, J.-P. Limitation of Screening of Different Variants of SARS-CoV-2 by RT-PCR. Diagnostics 2021, 11, 1241. doi:10.3390/diagnostics11071241
  • Gilanie, G.; Bajwa, U. I.; Waraich, M. M.; Asghar, M.; Kousar, R.; Kashif, A.; Aslam, R. S.; Qasim, M. M.; Rafique, H. Coronavirus (COVID-19) Detection from Chest Radiology Images Using Convolutional Neural Networks. Biomed. Signal Process. Control. 2021, 66, 102490. doi:10.1016/j.bspc.2021.102490
  • Martín, J.; Tena, N.; Asuero, A. G. Current state of Diagnostic, Screening and Surveillance Testing Methods for COVID-19 from an Analytical Chemistry Point of View. Microchem. J. 2021, 167, 106305. doi:10.1016/j.microc.2021.106305
  • Bernheim, A.; Mei, X.; Huang, M.; Yang, Y.; Fayad, Z. A.; Zhang, N.; Diao, K.; Lin, B.; Zhu, X.; Li, K.; et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology 2020, 295, 200463. doi:10.1148/radiol.2020200463
  • Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020, 296, E32–E40. doi:10.1148/radiol.2020200642
  • Tran, V. V.; Tran, N. H. T.; Hwang, H. S.; Chang, M. Development Strategies of Conducting Polymer-Based Electrochemical Biosensors for Virus Biomarkers: Potential for Rapid COVID-19 Detection. Biosens. Bioelectron. 2021, 182, 113192. doi:10.1016/j.bios.2021.113192
  • Li, X.; Qin, Z.; Fu, H.; Li, T.; Peng, R.; Li, Z.; Rini, J. M.; Liu, X. Enhancing the Performance of Paper-Based Electrochemical Impedance Spectroscopy Nanobiosensors: An Experimental Approach. Biosens. Bioelectron. 2021, 177, 112672. doi:10.1016/j.bios.2020.112672
  • Cesewski, E.; Johnson, B. N. Electrochemical Biosensors for Pathogen Detection. Biosens. Bioelectron. 2020, 159, 112214. doi:10.1016/j.bios.2020.112214
  • Martínez-Periñán, E.; García-Mendiola, T.; Enebral-Romero, E.; Del Caño, R.; Vera-Hidalgo, M.; Vázquez Sulleiro, M.; Navío, C.; Pariente, F.; Pérez, E. M.; Lorenzo, E.; et al. A MoS2 Platform and Thionine-Carbon Nanodots for Sensitive and Selective Detection of Pathogens. Biosens. Bioelectron. 2021, 189, 113375. doi:10.1016/j.bios.2021.113375
  • Yousefi, H.; Mahmud, A.; Chang, D.; Das, J.; Gomis, S.; Chen, J. B.; Wang, H.; Been, T.; Yip, L.; Coomes, E.; et al. Detection of SARS-CoV-2 Viral Particles Using Direct, Reagent-Free Electrochemical Sensing. J. Am. Chem. Soc. 2021, 143, 1722–1727. doi:10.1021/jacs.0c10810
  • Fabiani, L.; Saroglia, M.; Galatà, G.; De Santis, R.; Fillo, S.; Luca, V.; Faggioni, G.; D'Amore, N.; Regalbuto, E.; Salvatori, P.; et al. Magnetic Beads Combined with Carbon Black-Based Screen-Printed Electrodes for COVID-19: A Reliable and Miniaturized Electrochemical Immunosensor for SARS-CoV-2 Detection in Saliva. Biosens. Bioelectron. 2021, 171, 112686. doi:10.1016/j.bios.2020.112686
  • ElDin, N. B.; El-Rahman, M. K.; Zaazaa, H. E.; Moustafa, A. A.; Hassan, S. A. Microfabricated Potentiometric Sensor for Personalized Methacholine Challenge Tests during the COVID-19 Pandemic. Biosens. Bioelectron. 2021, 190, 113439. doi:10.1016/j.bios.2021.113439
  • Mavrikou, S.; Tsekouras, V.; Hatziagapiou, K.; Paradeisi, F.; Bakakos, P.; Michos, A.; Koutsoukou, A.; Konstantellou, E.; Lambrou, G. I.; Koniari, E.; et al. Clinical Application of the Novel Cell-Based Biosensor for the Ultra-Rapid Detection of the SARS-CoV-2 S1 Spike Protein Antigen: A Practical Approach. Biosensors 2021, 11, 224. doi:10.3390/bios11070224
  • Yakoh, A.; Pimpitak, U.; Rengpipat, S.; Hirankarn, N.; Chailapakul, O.; Chaiyo, S. Paper-Based Electrochemical Biosensor for Diagnosing COVID-19: Detection of SARS-CoV-2 Antibodies and Antigen. Biosens. Bioelectron. 2021, 176, 112912. doi:10.1016/j.bios.2020.112912
  • Udugama, B.; Kadhiresan, P.; Kozlowski, H. N.; Malekjahani, A.; Osborne, M.; Li, V. Y. C.; Chen, H.; Mubareka, S.; Gubbay, J. B.; Chan, W. C. W.; et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020, 14, 3822–3835. doi:10.1021/acsnano.0c02624
  • Madhurantakam, S.; Muthukumar, S.; Prasad, S. Emerging Electrochemical Biosensing Trends for Rapid Diagnosis of COVID-19 Biomarkers as Point-of-Care Platforms: A Critical Review. ACS Omega. 2022, 7, 12467–12473. doi:10.1021/acsomega.2c00638
  • Li, F.; Li, W.; Farzan, M.; Harrison, S. C. Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor. Science 2005, 309, 1864–1868. doi:10.1126/science.1116480
  • Wrapp, D.; Wang, N.; Corbett, K. S.; Goldsmith, J. A.; Hsieh, C.-L.; Abiona, O.; Graham, B. S.; McLellan, J. S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. doi:10.1126/science.abb2507
  • Xia, B.; Shen, X.; He, Y.; Pan, X.; Liu, F.-L.; Wang, Y.; Yang, F.; Fang, S.; Wu, Y.; Duan, Z.; et al. SARS-CoV-2 Envelope Protein Causes Acute Respiratory Distress Syndrome (ARDS)-like Pathological Damages and Constitutes an Antiviral Target. Cell Res. 2021, 31, 847–860. doi:10.1038/s41422-021-00519-4
  • Mariano, G.; Farthing, R. J.; Lale-Farjat, S. L. M.; Bergeron, J. R. C. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be [Review]. Front. Mol. Biosci. 2020, 7, 605236. doi:10.3389/fmolb.2020.605236
  • Boopathi, S.; Poma, A. B.; Kolandaivel, P. Novel 2019 Coronavirus Structure, Mechanism of Action, Antiviral Drug Promises and Rule out against Its Treatment. J. Biomol. Struct. Dyn. 2021, 39, 3409–3418. doi:10.1080/07391102.2020.1758788
  • Taha, B. A.; Al Mashhadany, Y.; Hafiz Mokhtar, M. H.; Dzulkefly Bin Zan, M. S.; Arsad, N. An Analysis Review of Detection Coronavirus Disease 2019 (COVID-19) Based on Biosensor Application. Sensors 2020, 20, 6764. doi:10.3390/s20236764
  • Selvarajan, R. S.; Gopinath, S. C. B.; Zin, N. M.; Hamzah, A. A. Infection-Mediated Clinical Biomarkers for a COVID-19 Electrical Biosensing Platform. Sensors 2021, 21, 3829. doi:10.3390/s21113829
  • Huang, Y.; Yang, C.; Xu, X.-F.; Xu, W.; Liu, S.-W. Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus Drug Development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. doi:10.1038/s41401-020-0485-4
  • Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.-C.; Turner, A. J.; Raizada, M. K.; Grant, M. B.; Oudit, G. Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ. Res. 2020, 126, 1456–1474. doi:10.1161/CIRCRESAHA.120.317015
  • Wang, K.; Gheblawi, M.; Oudit, G. Y. Angiotensin Converting Enzyme 2. Circulation 2020, 142, 426–428. doi:10.1161/CIRCULATIONAHA.120.047049
  • Rodriguez-Perez, A. I.; Labandeira, C. M.; Pedrosa, M. A.; Valenzuela, R.; Suarez-Quintanilla, J. A.; Cortes-Ayaso, M.; Mayán-Conesa, P.; Labandeira-Garcia, J. L. Autoantibodies Against ACE2 and Angiotensin Type-1 Receptors Increase Severity of COVID-19. J. Autoimmun. 2021, 122, 102683. doi:10.1016/j.jaut.2021.102683
  • Beniac, D. R.; Andonov, A.; Grudeski, E.; Booth, T. F. Architecture of the SARS Coronavirus Prefusion Spike. Nat. Struct. Mol. Biol. 2006, 13, 751–752. doi:10.1038/nsmb1123
  • Delmas, B.; Laude, H. Assembly of Coronavirus Spike Protein into Trimers and Its Role in Epitope Expression. J. Virol. 1990, 64, 5367–5375. doi:10.1128/JVI.64.11.5367-5375.1990
  • Cui, J.; Li, F.; Shi, Z.-L. Origin and Evolution of Pathogenic Coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. doi:10.1038/s41579-018-0118-9
  • Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: implications for Virus Origins and Receptor Binding. The Lancet 2020, 395, 565–574. doi:10.1016/S0140-6736(20)30251-8
  • Belouzard, S.; Millet, J. K.; Licitra, B. N.; Whittaker, G. R. Mechanisms of Coronavirus Cell Entry Mediated by the Viral Spike Protein. Viruses 2012, 4, 1011–1033. doi:10.3390/v4061011
  • Antiochia, R. Developments in Biosensors for CoV Detection and Future Trends. Biosens. Bioelectron. 2021, 173, 112777. doi:10.1016/j.bios.2020.112777
  • Bhattacharyya, I. M.; Shalev, G. Electrostatically Governed Debye Screening Length at the Solution-Solid Interface for Biosensing Applications. ACS Sens. 2020, 5, 154–161. doi:10.1021/acssensors.9b01939
  • Béraud, A.; Sauvage, M.; Bazán, C. M.; Tie, M.; Bencherif, A.; Bouilly, D. Graphene Field-Effect Transistors as Bioanalytical Sensors: Design, Operation and Performance. Analyst 2021, 146, 403–428. doi:10.1039/d0an01661f
  • Sun, C.; Wang, X.; Auwalu, M. A.; Cheng, S.; Hu, W. Organic Thin Film Transistors-Based Biosensors. EcoMat 2021, 3, e12094. doi:10.1002/eom2.12094
  • Kaisti, M. Detection Principles of Biological and Chemical FET Sensors. Biosens. Bioelectron. 2017, 98, 437–448. doi:10.1016/j.bios.2017.07.010
  • Sze, S. M.; Lee, M. K. Semiconductor Devices: Physics and Technology. 3rd ed. Chichester, UK: John Wiley and Sons Ltd; 2012.
  • Lee, C.-S.; Kim, S. K.; Kim, M. Ion-Sensitive Field-Effect Transistor for Biological Sensing. Sensors (Basel) 2009, 9, 7111–7131. doi:10.3390/s90907111
  • Fromherz, P. Threshold Voltage of the EOSFET: Reference Electrode and Oxide–Electrolyte Interface. Phys. Status Solidi A 2012, 209, 1157–1162. doi:10.1002/pssa.201127766
  • Meyyappan, M.; Lee, J.-S. Nanowire BioFETs: An Overview. In Nanowire Field Effect Transistors: Principles and Applications, Kim, D. M., Jeong, Y.-H., Eds. New York, NY: Springer-Verlag 2014. p. 225–240
  • Ren, Y.; Yang, X.; Zhou, L.; Mao, J. ‐Y.; Han, S. ‐T.; Zhou, Y. Recent Advances in Ambipolar Transistors for Functional Applications. Adv. Funct. Mater. 2019, 29, 1902105. doi:10.1002/adfm.201902105
  • Yan, F.; Zhang, M.; Li, J. Solution-Gated Graphene Transistors for Chemical and Biological Sensors. Adv. Healthc. Mater. 2014, 3, 313–331. doi:10.1002/adhm.201300221
  • Jeon, J.-H.; Cho, W.-J. High-Performance Extended-Gate Ion-Sensitive Field-Effect Transistors with Multi-Gate Structure for Transparent, Flexible, and Wearable Biosensors. Sci. Technol. Adv. Mater. 2020, 21, 371–378. doi:10.1080/14686996.2020.1775477
  • Duan, X.; Rajan, N. K.; Izadi, M. H.; Reed, M. A. Complementary Metal Oxide Semiconductor-Compatible Silicon Nanowire Biofield-Effect Transistors as Affinity Biosensors. Nanomedicine (Lond) 2013, 8, 1839–1851. doi:10.2217/nnm.13.156
  • Zhang, D.; Liu, Q. Biosensors and Bioelectronics on Smartphone for Portable Biochemical Detection. Biosens. Bioelectron. 2016, 75, 273–284. doi:10.1016/j.bios.2015.08.037
  • Panahi, A.; Sadighbayan, D.; Forouhi, S.; Ghafar-Zadeh, E. Recent Advances of Field-Effect Transistor Technology for Infectious Diseases. Biosensors 2021, 11, 103. doi:10.3390/bios11040103
  • Lowe, B. M.; Sun, K.; Zeimpekis, I.; Skylaris, C.-K.; Green, N. G. Field-Effect Sensors – From pH Sensing to Biosensing: Sensitivity Enhancement Using Streptavidin–Biotin as a Model System. Analyst 2017, 142, 4173–4200. doi:10.1039/c7an00455a
  • He, R. X.; Lin, P.; Liu, Z. K.; Zhu, H. W.; Zhao, X. Z.; Chan, H. L. W.; Yan, F. Solution-Gated Graphene Field Effect Transistors Integrated in Microfluidic Systems and Used for Flow Velocity Detection. Nano Lett. 2012, 12, 1404–1409. doi:10.1021/nl2040805
  • Zhang, X.; Jing, Q.; Ao, S.; Schneider, G. F.; Kireev, D.; Zhang, Z.; Fu, W. Ultrasensitive Field-Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. Small 2020, 16, 1902820. doi:10.1002/smll.201902820
  • Poghossian, A.; Schöning, M. J. Label-Free Sensing of Biomolecules with Field-Effect Devices for Clinical Applications. Electroanalysis 2014, 26, 1197–1213. doi:10.1002/elan.201400073
  • Jimenez-Jorquera, C.; Orozco, J.; Baldi, A. ISFET Based Microsensors for Environmental Monitoring. Sensors (Basel) 2010, 10, 61–83. doi:10.3390/s100100061
  • Morales, M. A.; Halpern, J. M. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug. Chem. 2018, 29, 3231–3239. doi:10.1021/acs.bioconjchem.8b00592
  • Sadighbayan, D.; Hasanzadeh, M.; Ghafar-Zadeh, E. Biosensing Based on Field-Effect Transistors (FET): Recent Progress and Challenges. Trends Analyt. Chem. 2020, 133, 116067. doi:10.1016/j.trac.2020.116067
  • Arya, S. K.; Datta, M.; Malhotra, B. D. Recent Advances in Cholesterol Biosensor. Biosens. Bioelectron. 2008, 23, 1083–1100. doi:10.1016/j.bios.2007.10.018
  • Castillo-Henríquez, L.; Brenes-Acuña, M.; Castro-Rojas, A.; Cordero-Salmerón, R.; Lopretti-Correa, M.; Vega-Baudrit, J. R. Biosensors for the Detection of Bacterial and Viral Clinical Pathogens. Sensors 2020, 20, 6926. doi:10.3390/s20236926
  • Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. doi:10.1042/EBC20150001
  • Bergveld, P. The Development and Application of FET-Based Biosensors. Biosensors 1986, 2, 15–33. doi:10.1016/0265-928X(86)85010-6
  • Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71. doi:10.1109/tbme.1970.4502688
  • Yates, D. E.; Levine, S.; Healy, T. W. Site-Binding Model of the Electrical Double Layer at the Oxide/Water Interface. J. Chem. Soc, Faraday Trans. 1 1974, 70, 1807–1818. doi:10.1039/f19747001807
  • Yuqing, M.; Jianguo, G.; Jianrong, C. Ion Sensitive Field Effect Transducer-Based Biosensors. Biotechnol. Adv. 2003, 21, 527–534. doi:10.1016/S0734-9750(03)00103-4
  • Bergveld, P. Thirty Years of ISFETOLOGY: What Happened in the Past 30 Years and What May Happen in the Next 30 Years. Sens. Actuators, B 2003, 88, 1–20. doi:10.1016/S0925-4005(02)00301-5
  • Dutta, J. C. FET-Based Biosensors (BioFETs) Principle, Methods of Fabrication, Characteristics, and Applications. In Advanced Materials and Techniques for Biosensors and Bioanalytical Applications, 1st ed, Goswami, P., Ed. Boca Raton, USA: Taylor & Francis Group, LLC; 2021. pp 283–296
  • Schöning, M. J.; Poghossian, A. Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions. Electroanalysis 2006, 18, 1893–1900. doi:10.1002/elan.200603609
  • Schöning, M. J.; Poghossian, A. Recent Advances in Biologically Sensitive Field-Effect Transistors (BioFETs). Analyst 2002, 127, 1137–1151. doi:10.1039/b204444g
  • Sakata, T. Biologically Coupled Gate Field-Effect Transistors Meet in Vitro Diagnostics. ACS Omega 2019, 4, 11852–11862. doi:10.1021/acsomega.9b01629
  • Shkodra, B.; Petrelli, M.; Costa Angeli, M. A.; Garoli, D.; Nakatsuka, N.; Lugli, P.; Petti, L. Electrolyte-Gated Carbon Nanotube Field-Effect Transistor-Based Biosensors: Principles and Applications. Appl. Phys. Rev. 2021, 8, 041325. doi:10.1063/5.0058591
  • Chae, M.-S.; Park, J. H.; Son, H. W.; Hwang, K. S.; Kim, T. G. IGZO-Based Electrolyte-Gated Field-Effect Transistor for in Situ Biological Sensing Platform. Sens. Actuators, B 2018, 262, 876–883. doi:10.1016/j.snb.2018.02.090
  • Tibaldi, A.; Fillaud, L.; Anquetin, G.; Woytasik, M.; Zrig, S.; Piro, B.; Mattana, G.; Noël, V. Electrolyte-Gated Organic Field-Effect Transistors (EGOFETs) as Complementary Tools to Electrochemistry for the Study of Surface Processes. Electrochem. Commun. 2019, 98, 43–46. doi:10.1016/j.elecom.2018.10.022
  • Reiner-Rozman, C.; Larisika, M.; Nowak, C.; Knoll, W. Graphene-Based Liquid-Gated Field Effect Transistor for Biosensing: Theory and Experiments. Biosens. Bioelectron. 2015, 70, 21–27. doi:10.1016/j.bios.2015.03.013
  • Magliulo, M.; Mallardi, A.; Mulla, M. Y.; Cotrone, S.; Pistillo, B. R.; Favia, P.; Vikholm-Lundin, I.; Palazzo, G.; Torsi, L. Electrolyte-Gated Organic Field-Effect Transistor Sensors Based on Supported Biotinylated Phospholipid Bilayer. Adv. Mater. 2013, 25, 2090–2094. doi:10.1002/adma.201203587
  • Kawamura, A.; Miyata, T. Biosensors. In Biomaterials Nanoarchitectonics, Ebara, M., Ed. Cambridge, MA, USA: William Andrew Publishing; 2016. pp 157–176.
  • Stock, D.; Müntze, G. M.; Figge, S.; Eickhoff, M. Ion Sensitive AlGaN/GaN Field-Effect Transistors with Monolithically Integrated Wheatstone Bridge for Temperature- and Drift Compensation in Enzymatic Biosensors. Sens. Actuators, B 2018, 263, 20–26. doi:10.1016/j.snb.2018.02.068
  • Liu, N.; Chen, R.; Wan, Q. Recent Advances in Electric-Double-Layer Transistors for Bio-Chemical Sensing Applications. Sensors 2019, 19, 3425. doi:10.3390/s19153425
  • Xu, J.-J.; Luo, X.-L.; Chen, H.-Y. Analytical Aspects of FET-Based Biosensors. Front. Biosci. 2005, 10, 420–430. doi:10.2741/1538
  • Vacic, A.; Criscione, J. M.; Rajan, N. K.; Stern, E.; Fahmy, T. M.; Reed, M. A. Determination of Molecular Configuration by Debye Length Modulation. J. Am. Chem. Soc. 2011, 133, 13886–13889. doi:10.1021/ja205684a
  • Sheikhzadeh, E.; Eissa, S.; Ismail, A.; Zourob, M. Diagnostic Techniques for COVID-19 and New Developments. Talanta 2020, 220, 121392. doi:10.1016/j.talanta.2020.121392
  • Jin, X.; Zhang, H.; Li, Y.-T.; Xiao, M.-M.; Zhang, Z.-L.; Pang, D.-W.; Wong, G.; Zhang, Z.-Y.; Zhang, G.-J. A Field Effect Transistor Modified with Reduced Graphene Oxide for Immunodetection of Ebola Virus. Mikrochim. Acta. 2019, 186, 223. doi:10.1007/s00604-019-3256-5
  • Brown, M. A.; Abbas, Z.; Kleibert, A.; Green, R. G.; Goel, A.; May, S.; Squires, T. M. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface. Phys. Rev. X 2016, 6, 011007. doi:10.1103/PhysRevX.6.011007
  • Du, H.; Lin, X.; Xu, Z.; Chu, D. Electric Double-Layer Transistors: A Review of Recent Progress. J. Mater. Sci. 2015, 50, 5641–5673. doi:10.1007/s10853-015-9121-y
  • Kang, H.; Wang, X.; Guo, M.; Dai, C.; Chen, R.; Yang, L.; Wu, Y.; Ying, T.; Zhu, Z.; Wei, D.; et al. Ultrasensitive Detection of SARS-CoV-2 Antibody by Graphene Field-Effect Transistors. Nano Lett. 2021, 21, 7897–7904. doi:10.1021/acs.nanolett.1c00837
  • Wang, G. Y.; Lian, K.; Chu, T. Y. Electrolyte-Gated Field Effect Transistors in Biological Sensing: A Survey of Electrolytes. IEEE J. Electron Devices Soc. 2021, 9, 939–950. doi:10.1109/JEDS.2021.3082420
  • Buth, F.; Kumar, D.; Stutzmann, M.; Garrido, J. A. Electrolyte-Gated Organic Field-Effect Transistors for Sensing Applications. Appl. Phys. Lett. 2011, 98, 153302. doi:10.1063/1.3581882
  • Uemura, T.; Yamagishi, M.; Ono, S.; Takeya, J. Low-Voltage Operation of n-Type Organic Field-Effect Transistors with Ionic Liquid. Appl. Phys. Lett. 2009, 95, 103301. doi:10.1063/1.3225153
  • Kergoat, L.; Herlogsson, L.; Braga, D.; Piro, B.; Pham, M.-C.; Crispin, X.; Berggren, M.; Horowitz, G. A Water-Gate Organic Field-Effect Transistor. Adv. Mater. 2010, 22, 2565–2569. doi:10.1002/adma.200904163
  • Delavari, N.; Tybrandt, K.; Berggren, M.; Piro, B.; Noël, V.; Mattana, G.; Zozoulenko, I. Nernst–Planck–Poisson Analysis of Electrolyte-Gated Organic Field-Effect Transistors. J. Phys. D: Appl. Phys. 2021, 54, 415101. doi:10.1088/1361-6463/ac14f3
  • Sonmez, B. G.; Ertop, O.; Mutlu, S. Modelling and Realization of a Water-Gated Field Effect Transistor (WG-FET) Using 16-nm-Thick Mono-Si Film. Sci. Rep. 2017, 7, 12190. doi:10.1038/s41598-017-12439-8
  • Campos, R.; Borme, J.; Guerreiro, J. R.; Machado, G.; Cerqueira, M. F.; Petrovykh, D. Y.; Alpuim, P. Attomolar Label-Free Detection of DNA Hybridization with Electrolyte-Gated Graphene Field-Effect Transistors. ACS Sens. 2019, 4, 286–293. doi:10.1021/acssensors.8b00344
  • Kesler, V.; Murmann, B.; Soh, H. T. Going Beyond the Debye Length: Overcoming Charge Screening Limitations in Next-Generation Bioelectronic Sensors. ACS Nano. 2020, 14, 16194–16201. doi:10.1021/acsnano.0c08622
  • Tabata, M.; Miyahara, Y. Biosensors Based on Field-Effect Transistors. In Novel Structured Metallic and Inorganic Materials, Setsuhara, Y., Kamiya, T., Yamaura, S.-I., Eds. Singapore: Springer Singapore; 2019. pp 557–571
  • Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano Lett. 2007, 7, 3405–3409. doi:10.1021/nl071792z
  • Zheng, Z.; Zhang, H.; Zhai, T.; Xia, F. Overcome Debye Length Limitations for Biomolecule Sensing Based on Field Effective Transistors. Chin. J. Chem. 2021, 39, 999–1008. doi:10.1002/cjoc.202000584
  • Rollo, S.; Rani, D.; Olthuis, W.; Pascual García, C. The Influence of Geometry and Other Fundamental Challenges for Bio-Sensing with Field Effect Transistors. Biophys. Rev. 2019, 11, 757–763. doi:10.1007/s12551-019-00592-5
  • A. Karim, S. S.; Nadzirah, S.; Kazmi, J.; A. Rahim, R.; Dee, C. F.; Hamzah, A. A.; Mohamed, M. A. Zinc Oxide Nanorods-Based Immuno-Field-Effect Transistor for Human Serum Albumin Detection. J. Mater. Sci. 2021, 56, 15344–15353. doi:10.1007/s10853-021-06288-0
  • Yoo, H.; Jo, H.; Oh, S. S. Detection and Beyond: Challenges and Advances in Aptamer-Based Biosensors. Mater. Adv. 2020, 1, 2663–2687. doi:10.1039/D0MA00639D
  • Palazzo, G.; De Tullio, D.; Magliulo, M.; Mallardi, A.; Intranuovo, F.; Mulla, M. Y.; Favia, P.; Vikholm-Lundin, I.; Torsi, L. Detection Beyond Debye’s Length with an Electrolyte-Gated Organic Field-Effect Transistor. Adv. Mater. 2015, 27, 911–916. doi:10.1002/adma.201403541
  • Nakatsuka, N.; Yang, K.-A.; Abendroth, J. M.; Cheung, K. M.; Xu, X.; Yang, H.; Zhao, C.; Zhu, B.; Rim, Y. S.; Yang, Y.; et al. Aptamer-Field-Effect Transistors Overcome Debye Length Limitations for Small-Molecule Sensing. Science 2018, 362, 319–324. doi:10.1126/science.aao6750
  • Matsumoto, A.; Miyahara, Y. Current and Emerging Challenges of Field Effect Transistor Based Bio-Sensing. Nanoscale 2013, 5, 10702–10718. doi:10.1039/c3nr02703a
  • Hwang, M. T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; van der Zande, A. M.; et al. Ultrasensitive Detection of Nucleic Acids Using Deformed Graphene Channel Field Effect Biosensors. Nat. Commun. 2020, 11, 1543. doi:10.1038/s41467-020-15330-9
  • Park, J.; Nguyen, H. H.; Woubit, A.; Kim, M. Applications of Field-Effect Transistor (FET)-Type Biosensors. Appl. Sci. Convergence Technol. 2014, 23, 61–71. doi:10.5757/ASCT.2014.23.2.61
  • Kergoat, L.; Herlogsson, L.; Piro, B.; Pham, M. C.; Horowitz, G.; Crispin, X.; Berggren, M. Tuning the Threshold Voltage in Electrolyte-Gated Organic Field-Effect Transistors. Proc. Natl. Acad. Sci. U S A 2012, 109, 8394–8399. doi:10.1073/pnas.1120311109
  • Wang, X.; Kong, D.; Guo, M.; Wang, L.; Gu, C.; Dai, C.; Wang, Y.; Jiang, Q.; Ai, Z.; Zhang, C.; et al. Rapid SARS-CoV-2 Nucleic Acid Testing and Pooled Assay by Tetrahedral DNA Nanostructure Transistor. Nano Lett. 2021, 21, 9450–9457. doi:10.1021/acs.nanolett.1c02748
  • Liu, H.; Yang, A.; Song, J.; Wang, N.; Lam, P.; Li, Y.; Law, H. K.-W.; Yan, F. Ultrafast, Sensitive, and Portable Detection of COVID-19 IgG Using Flexible Organic Electrochemical Transistors. Sci. Adv. 2021, 7, eabg8387. doi:10.1126/sciadv.abg8387
  • Sarcina, L.; Macchia, E.; Tricase, A.; Scandurra, C.; Imbriano, A.; Torricelli, F.; Cioffi, N.; Torsi, L.; Bollella, P. Enzyme Based Field Effect Transistor: State-of-the-Art and Future Perspectives. Electrochemical Science Adv. 2022, e2100216. doi:10.1002/elsa.202100216
  • van Hal, R. E. G.; Eijkel, J. C. T.; Bergveld, P. A General Model to Describe the Electrostatic Potential at Electrolyte Oxide Interfaces. Adv. Colloid Interface Sci. 1996, 69, 31–62. doi:10.1016/S0001-8686(96)00307-7
  • Sinha, S.; Pal, T. A Comprehensive Review of FET-Based pH Sensors: Materials, Fabrication Technologies, and Modeling. Electrochemical Science Adv. 2022, 2, 2100147. doi:10.1002/elsa.202100147
  • Rollo, S.; Rani, D.; Leturcq, R.; Olthuis, W.; Pascual García, C. High Aspect Ratio Fin-Ion Sensitive Field Effect Transistor: Compromises toward Better Electrochemical Biosensing. Nano Lett. 2019, 19, 2879–2887. doi:10.1021/acs.nanolett.8b04988
  • Cao, S.; Sun, P.; Xiao, G.; Tang, Q.; Sun, X.; Zhao, H.; Zhao, S.; Lu, H.; Yue, Z. ISFET-Based Sensors for (Bio)Chemical Applications: A Review. Electrochemical Science Adv. 2022, e2100207. doi:10.1002/elsa.202100207
  • Ng, K. K. Ion-Sensitive Field-Effect Transistor. In Complete Guide to Semiconductor Devices, 2nd ed., Ng, K. K., Ed. New York, USA: Wiley-IEEE Press; 2009. pp 557–563.
  • Novodchuk, I.; Kayaharman, M.; Prassas, I.; Soosaipillai, A.; Karimi, R.; Goldthorpe, I. A.; Abdel-Rahman, E.; Sanderson, J.; Diamandis, E. P.; Bajcsy, M.; et al. Electronic field Effect Detection of SARS-CoV-2 N-Protein before the Onset of Symptoms. Biosens. Bioelectron. 2022, 210, 114331. doi:10.1016/j.bios.2022.114331
  • Manimekala, T.; Sivasubramanian, R.; Dharmalingam, G. Nanomaterial-Based Biosensors Using Field-Effect Transistors: A Review. J. Electron. Mater. 2022, 51, 1950–1973. doi:10.1007/s11664-022-09492-z
  • Sarkar, D.; Liu, W.; Xie, X.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS Nano. 2014, 8, 3992–4003. doi:10.1021/nn5009148
  • Li, L.; Wang, S.; Xiao, Y.; Wang, Y. Recent Advances in Immobilization Strategies for Biomolecules in Sensors Using Organic Field-Effect Transistors. Trans. Tianjin Univ. 2020, 26, 424–440. doi:10.1007/s12209-020-00234-y
  • Choi, J.; Jeon, H. G.; Kwon, O. E.; Bae, I.; Cho, J.; Kim, Y.; Park, B. Improved Output Characteristics of Organic Thin Film Transistors by Using an Insulator/Protein Overlayer and Their Applications. J. Mater. Chem. C 2015, 3, 2603–2613. doi:10.1039/C4TC02823F
  • Zhang, W.-H.; Jiang, B.-J.; Yang, P. Proteins as Functional Interlayer in Organic Field-Effect Transistor. Chin. Chem. Lett. 2016, 27, 1339–1344. doi:10.1016/j.cclet.2016.06.044
  • Burtscher, B.; Manco Urbina, P. A.; Diacci, C.; Borghi, S.; Pinti, M.; Cossarizza, A.; Salvarani, C.; Berggren, M.; Biscarini, F.; Simon, D. T.; et al. Sensing Inflammation Biomarkers with Electrolyte-Gated Organic Electronic Transistors. Adv. Healthcare Materials 2021, 10, 2100955. doi:10.1002/adhm.202100955
  • Fan, Q.; Wang, L.; Xu, D.; Duo, Y.; Gao, J.; Zhang, L.; Wang, X.; Chen, X.; Li, J.; Zhang, H.; et al. Solution-Gated Transistors of Two-Dimensional Materials for Chemical and Biological Sensors: Status and Challenges. Nanoscale 2020, 12, 11364–11394. doi:10.1039/d0nr01125h
  • Kharitonov, A. B.; Zayats, M.; Lichtenstein, A.; Katz, E.; Willner, I. Enzyme Monolayer-Functionalized Field-Effect Transistors for Biosensor Applications. Sens. Actuators, B 2000, 70, 222–231. doi:10.1016/S0925-4005(00)00573-6
  • Kharitonov, A. B.; Wasserman, J.; Katz, E.; Willner, I. The Use of Impedance Spectroscopy for the Characterization of Protein-Modified ISFET Devices: Application of the Method for the Analysis of Biorecognition Processes. J. Phys. Chem. B 2001, 105, 4205–4213. doi:10.1021/jp0045383
  • Kwon, D. W.; Lee, R.; Kim, S.; Mo, H.-S.; Kim, D. H.; Park, B.-G. A Novel Fabrication Method for Co-Integrating ISFET with Damage-Free Sensing Oxide and Threshold Voltage-Tunable CMOS Read-out Circuits. Sens. Actuators, B 2018, 260, 627–634. doi:10.1016/j.snb.2017.12.193
  • Chang, C. F.; Lu, M. S. C. CMOS Ion Sensitive Field Effect Transistors for Highly Sensitive Detection of DNA Hybridization. IEEE Sensors J. 2020, 20, 8930–8937. doi:10.1109/JSEN.2020.2986461
  • Vu, C.-A.; Hu, W.-P.; Yang, Y.-S.; Chan, H. W.-H.; Chen, W.-Y. Signal Enhancement of Silicon Nanowire Field-Effect Transistor Immunosensors by RNA Aptamer. ACS Omega. 2019, 4, 14765–14771. doi:10.1021/acsomega.9b01264
  • Rani, D.; Singh, Y.; Salker, M.; Vu, X. T.; Ingebrandt, S.; Pachauri, V. Point-of-Care-Ready Nanoscale ISFET Arrays for Sub-Picomolar Detection of Cytokines in Cell Cultures. Anal. Bioanal. Chem. 2020, 412, 6777–6788. doi:10.1007/s00216-020-02820-4
  • Schmoltner, K.; Kofler, J.; Klug, A.; List-Kratochvil, E. J. W. Electrolyte-Gated Organic Field-Effect Transistor for Selective Reversible Ion Detection. Adv. Mater. 2013, 25, 6895–6899. doi:10.1002/adma.201303281
  • Alhalaili, B.; Popescu, IN.; Kamoun, O.; Alzubi, F.; Alawadhia, S.; Vidu, R. Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review. Sensors 2020, 20, 6591–6635. doi:10.3390/s20226591
  • Durmuş, S.; Ülgen, K. Ö. Comparative Interactomics for Virus–Human Protein–Protein Interactions: DNA Viruses versus RNA Viruses. FEBS Open Bio. 2017, 7, 96–107. doi:10.1002/2211-5463.12167
  • Watanabe, T.; Watanabe, S.; Kawaoka, Y. Cellular Networks Involved in the Influenza Virus Life Cycle. Cell Host Microbe. 2010, 7, 427–439. doi:10.1016/j.chom.2010.05.008
  • Poghossian, A.; Jablonski, M.; Molinnus, D.; Wege, C.; Schöning, M. J. Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers. Front. Plant Sci. 2020, 11, 598103. doi:10.3389/fpls.2020.598103
  • Iweala, O. I. HIV Diagnostic Tests: An Overview. Contraception 2004, 70, 141–147. doi:10.1016/j.contraception.2004.03.012
  • Hwang, M. T.; Park, I.; Heiranian, M.; Taqieddin, A.; You, S.; Faramarzi, V.; Pak, A. A.; van der Zande, A. M.; Aluru, N. R.; Bashir, R.; et al. Ultrasensitive Detection of Dopamine, IL-6 and SARS-CoV-2 Proteins on Crumpled Graphene FET Biosensor. Adv. Mater. Technol. 2021, 6, 2100712. doi:10.1002/admt.202100712
  • Wang, L.; Wang, X.; Wu, Y.; Guo, M.; Gu, C.; Dai, C.; Kong, D.; Wang, Y.; Zhang, C.; Qu, D.; et al. Rapid and Ultrasensitive Electromechanical Detection of Ions, Biomolecules and SARS-CoV-2 RNA in Unamplified Samples. Nat. Biomed. Eng. 2022, 6, 276–285. doi:10.1038/s41551-021-00833-7
  • Li, J.; Wu, D.; Yu, Y.; Li, T.; Li, K.; Xiao, M.-M.; Li, Y.; Zhang, Z.-Y.; Zhang, G.-J. Rapid and Unamplified Identification of COVID-19 with Morpholino-Modified Graphene Field-Effect Transistor Nanosensor. Biosens. Bioelectron. 2021, 183, 113206. doi:10.1016/j.bios.2021.113206
  • Abraham, J. E.; Maranian, M. J.; Spiteri, I.; Russell, R.; Ingle, S.; Luccarini, C.; Earl, H. M.; Pharoah, P. P. D.; Dunning, A. M.; Caldas, C.; et al. Saliva Samples are a Viable Alternative to Blood Samples as a Source of DNA for High Throughput Genotyping. BMC Med. Genomics. 2012, 5, 19. doi:10.1186/1755-8794-5-19
  • Hou, H.; Wang, T.; Zhang, B.; Luo, Y.; Mao, L.; Wang, F.; Wu, S.; Sun, Z. Detection of IgM and IgG Antibodies in Patients with Coronavirus Disease 2019. Clin. Transl. Immunol. 2020, 9, e1136. doi:10.1002/cti2.1136
  • NHGRI. National Human Genome Research Institute (NHGRI) websites 2021. Available from: https://www.genome.gov/genetics-glossary/Nucleic-Acid. 2021.
  • Minchin, S.; Lodge, J. Understanding Biochemistry: Structure and Function of Nucleic Acids. Essays Biochem. 2019, 63, 433–456. doi:10.1042/EBC20180038
  • Ménard-Moyon, C.; Bianco, A.; Kalantar-Zadeh, K. Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sens. 2020, 5, 3739–3769. doi:10.1021/acssensors.0c01961
  • Deng, M.; Li, J.; Xiao, B.; Ren, Z.; Li, Z.; Yu, H.; Li, J.; Wang, J.; Chen, Z.; Wang, X.; et al. Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots. Anal. Chem. 2022, 94, 3320–3327. doi:10.1021/acs.analchem.1c05309
  • Rahim Ruslinda, A.; Tanabe, K.; Ibori, S.; Wang, X.; Kawarada, H. Effects of Diamond-FET-Based RNA Aptamer Sensing for Detection of Real Sample of HIV-1 Tat Protein. Biosens. Bioelectron. 2013, 40, 277–282. doi:10.1016/j.bios.2012.07.048
  • Bagashev, A.; Sawaya, B. E. Roles and Functions of HIV-1 Tat Protein in the CNS: An Overview. Virol. J. 2013, 10, 358. doi:10.1186/1743-422X-10-358
  • Majd, S. M.; Salimi, A.; Astinchap, B. The Development of Radio Frequency Magnetron Sputtered p-Type Nickel Oxide Thin Film Field-Effect Transistor Device Combined with Nucleic Acid Probe for Ultrasensitive Label-Free HIV-1 Gene Detection. Sens. Actuators, B 2018, 266, 178–186. doi:10.1016/j.snb.2018.03.111
  • Cheung, K. M.; Abendroth, J. M.; Nakatsuka, N.; Zhu, B.; Yang, Y.; Andrews, A. M.; Weiss, P. S. Detecting DNA and RNA and Differentiating Single-Nucleotide Variations via Field-Effect Transistors. Nano Lett. 2020, 20, 5982–5990. doi:10.1021/acs.nanolett.0c01971
  • Lemme, M. C.; Akinwande, D.; Huyghebaert, C.; Stampfer, C. 2D Materials for Future Heterogeneous Electronics. Nat. Commun. 2022, 13, 1392. doi:10.1038/s41467-022-29001-4
  • Zheng, C.; Huang, L.; Zhang, H.; Sun, Z.; Zhang, Z.; Zhang, G.-J. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene. ACS Appl. Mater. Interfaces. 2015, 7, 16953–16959. doi:10.1021/acsami.5b03941
  • Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Electrochemistry of Graphene and Related Materials. Chem. Rev. 2014, 114, 7150–7188. doi:10.1021/cr500023c
  • Piccinini, E.; Fenoy, G. E.; Cantillo, A. L.; Allegretto, J. A.; Scotto, J.; Piccinini, J. M.; Marmisollé, W. A.; Azzaroni, O. Biofunctionalization of Graphene-Based FET Sensors through Heterobifunctional Nanoscaffolds: Technology Validation toward Rapid COVID-19 Diagnostics and Monitoring. Adv. Mater. Interfaces. 2022, 9, 2102526. doi:10.1002/admi.202102526
  • Gao, J.; Gao, Y.; Han, Y.; Pang, J.; Wang, C.; Wang, Y.; Liu, H.; Zhang, Y.; Han, L. Ultrasensitive Label-Free MiRNA Sensing Based on a Flexible Graphene Field-Effect Transistor without Functionalization. ACS Appl. Electron. Mater. 2020, 2, 1090–1098. doi:10.1021/acsaelm.0c00095
  • Chen, T.-Y.; Loan, P. T. K.; Hsu, C.-L.; Lee, Y.-H.; Tse-Wei Wang, J.; Wei, K.-H.; Lin, C.-T.; Li, L.-J. Label-Free Detection of DNA Hybridization Using Transistors Based on CVD Grown Graphene. Biosens. Bioelectron. 2013, 41, 103–109. doi:10.1016/j.bios.2012.07.059
  • Lee, D.-W.; Lee, J.; Sohn, I. Y.; Kim, B.-Y.; Son, Y. M.; Bark, H.; Jung, J.; Choi, M.; Kim, T. H.; Lee, C.; et al. Field-Effect Transistor with a Chemically Synthesized MoS2 Sensing Channel for Label-Free and Highly Sensitive Electrical Detection of DNA Hybridization. Nano Res. 2015, 8, 2340–2350. doi:10.1007/s12274-015-0744-8
  • Aspermair, P.; Mishyn, V.; Bintinger, J.; Happy, H.; Bagga, K.; Subramanian, P.; Knoll, W.; Boukherroub, R.; Szunerits, S. Reduced Graphene Oxide–Based Field Effect Transistors for the Detection of E7 Protein of Human Papillomavirus in Saliva. Anal. Bioanal. Chem. 2021, 413, 779–787. doi:10.1007/s00216-020-02879-z
  • Dastagir, T.; Forzani, E. S.; Zhang, R.; Amlani, I.; Nagahara, L. A.; Tsui, R.; Tao, N. Electrical detection of Hepatitis C Virus RNA on Single Wall Carbon Nanotube-Field Effect Transistors. Analyst 2007, 132, 738–740. doi:10.1039/b707025j
  • Wong, R. S. Y. COVID-19 Testing and Diagnosis: A Comparison of Current Approaches. Malays. J. Pathol. 2021, 43, 3– 8. http://www.mjpath.org.my/2021/v43n1/index.php.
  • Sela-Culang, I.; Kunik, V.; Ofran, Y. The Structural Basis of Antibody-Antigen Recognition. Front. Immunol. 2013, 4, 302. doi:10.3389/fimmu.2013.00302
  • Katz, H. E. Antigen sensing via Nanobody-Coated Transistors. Nat. Biomed. Eng. 2021, 5, 639–640. doi:10.1038/s41551-021-00765-2
  • Antiochia, R. Nanobiosensors as New Diagnostic Tools for SARS, MERS and COVID-19: From past to Perspectives. Mikrochim. Acta. 2020, 187, 639. doi:10.1007/s00604-020-04615-x
  • de Freitas Martins, E.; Pinotti, L. F.; de Carvalho Castro Silva, C.; Rocha, A. R. Addressing the Theoretical and Experimental Aspects of Low-Dimensional-Materials-Based FET Immunosensors: A Review. Chemosensors 2021, 9, 162–192. doi:10.3390/chemosensors9070162
  • Macchia, E.; Sarcina, L.; Picca, R. A.; Manoli, K.; Di Franco, C.; Scamarcio, G.; Torsi, L. Ultra-Low HIV-1 p24 Detection Limits with a Bioelectronic Sensor. Anal. Bioanal. Chem. 2020, 412, 811–818. doi:10.1007/s00216-019-02319-7
  • Kwon, O. S.; Lee, S. H.; Park, S. J.; An, J. H.; Song, H. S.; Kim, T.; Oh, J. H.; Bae, J.; Yoon, H.; Park, T. H.; et al. Large-Scale Graphene Micropattern Nano-Biohybrids: High-Performance Transducers for FET-Type Flexible Fluidic HIV Immunoassays. Adv. Mater. 2013, 25, 4177–4185. doi:10.1002/adma.201301523
  • Afsahi, S.; Lerner, M. B.; Goldstein, J. M.; Lee, J.; Tang, X.; Bagarozzi, D. A.; Pan, D.; Locascio, L.; Walker, A.; Barron, F.; et al. Novel Graphene-Based Biosensor for Early Detection of Zika Virus Infection. Biosens. Bioelectron. 2018, 100, 85–88. doi:10.1016/j.bios.2017.08.051
  • Sung, D.; Koo, J. A Review of BioFET’s Basic Principles and Materials for Biomedical Applications. Biomed. Eng. Lett. 2021, 11, 85–96. doi:10.1007/s13534-021-00187-8
  • Chakraborty, B.; Ghosh, S.; Das, N.; RoyChaudhuri, C. Liquid Gated ZnO Nanorod FET Sensor for Ultrasensitive Detection of Hepatitis B Surface Antigen with Vertical Electrode Configuration. Biosens. Bioelectron. 2018, 122, 58–67. doi:10.1016/j.bios.2018.09.019
  • Zahan, M. N.; Habibi, H.; Pencil, A.; Abdul-Ghafar, J.; Ahmadi, S. A.; Juyena, N. S.; Rahman, M. T.; Parvej, M. S. Diagnosis of COVID-19 in Symptomatic Patients: An Updated Review. Vacunas 2022, 23, 55–61. doi:10.1016/j.vacun.2021.06.002
  • Yüce, M.; Filiztekin, E.; Özkaya, K. G. COVID-19 Diagnosis—A Review of Current Methods. Biosens. Bioelectron. 2021, 172, 112752. doi:10.1016/j.bios.2020.112752
  • Healy, B.; Khan, A.; Metezai, H.; Blyth, I.; Asad, H. The Impact of False Positive COVID-19 Results in an Area of Low Prevalence. Clin Med (Lond) 2021, 21, e54–e56. doi:10.7861/clinmed.2020-0839
  • Ji, T.; Liu, Z.; Wang, G.; Guo, X.; Akbar Khan, S.; Lai, C.; Chen, H.; Huang, S.; Xia, S.; Chen, B.; et al. Detection of COVID-19: A Review of the Current Literature and Future Perspectives. Biosens. Bioelectron. 2020, 166, 112455. doi:10.1016/j.bios.2020.112455
  • Kevadiya, B. D.; Machhi, J.; Herskovitz, J.; Oleynikov, M. D.; Blomberg, W. R.; Bajwa, N.; Soni, D.; Das, S.; Hasan, M.; Patel, M.; et al. Diagnostics for SARS-CoV-2 Infections. Nat. Mater. 2021, 20, 593–605. doi:10.1038/s41563-020-00906-z
  • Ishikawa, F. N.; Chang, H.-K.; Curreli, M.; Liao, H.-I.; Olson, C. A.; Chen, P.-C.; Zhang, R.; Roberts, R. W.; Sun, R.; Cote, R. J.; et al. Label-Free, Electrical Detection of the SARS Virus N-Protein with Nanowire Biosensors Utilizing Antibody Mimics as Capture Probes. ACS Nano. 2009, 3, 1219–1224. doi:10.1021/nn900086c
  • Ishikawa, F. N.; Curreli, M.; Olson, C. A.; Liao, H.-I.; Sun, R.; Roberts, R. W.; Cote, R. J.; Thompson, M. E.; Zhou, C. Importance of Controlling Nanotube Density for Highly Sensitive and Reliable Biosensors Functional in Physiological Conditions. ACS Nano. 2010, 4, 6914–6922. doi:10.1021/nn101198u
  • Seo, G.; Lee, G.; Kim, M. J.; Baek, S.-H.; Choi, M.; Ku, K. B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H. G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano. 2020, 14, 5135–5142. doi:10.1021/acsnano.0c02823
  • Fu, W.; Nef, C.; Knopfmacher, O.; Tarasov, A.; Weiss, M.; Calame, M.; Schönenberger, C. Graphene Transistors are Insensitive to pH Changes in Solution. Nano Lett. 2011, 11, 3597–3600. doi:10.1021/nl201332c
  • Al-Hardan, N. H.; Hamid, M. A. A.; Keng, L. K.; Al-Khalqi, E. M.; Jalar, A.; Chiu, W. S. Low-Cost Fabrication of a pH Sensor Based on Writing Directly over Parchment-Type Paper with Pencil. J. Mater. Sci: Mater. Electron. 2021, 32, 9431–9439. doi:10.1007/s10854-021-05607-0
  • Kong, D.; Wang, X.; Gu, C.; Guo, M.; Wang, Y.; Ai, Z.; Zhang, S.; Chen, Y.; Liu, W.; Wu, Y.; et al. Direct SARS-CoV-2 Nucleic Acid Detection by Y-Shaped DNA Dual-Probe Transistor Assay. J. Am. Chem. Soc. 2021, 143, 17004–17014. doi:10.1021/jacs.1c06325
  • Liu, W.; Liu, L.; Kou, G.; Zheng, Y.; Ding, Y.; Ni, W.; Wang, Q.; Tan, L.; Wu, W.; Tang, S.; et al. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020, 58, e00461-20. doi:10.1128/JCM.00461-20
  • Gao, J.; Wang, C.; Wang, C.; Chu, Y.; Wang, S.; Sun, M. Y.; Ji, H.; Gao, Y.; Wang, Y.; Han, Y.; et al. Poly-l-Lysine-Modified Graphene Field-Effect Transistor Biosensors for Ultrasensitive Breast Cancer miRNAs and SARS-CoV-2 RNA Detection. Anal. Chem. 2022, 94, 1626–1636. doi:10.1021/acs.analchem.1c03786
  • Sitterley, G. Poly-L-Lysine Cell Attachment Protocol. Biofiles 2008, 3, 12.
  • Wu, Y.; Ji, D.; Dai, C.; Kong, D.; Chen, Y.; Wang, L.; Guo, M.; Liu, Y.; Wei, D. Triple-Probe DNA Framework-Based Transistor for SARS-CoV-2 10-in-1 Pooled Testing. Nano Lett. 2022, 22, 3307–3316. doi:10.1021/acs.nanolett.2c00415
  • Fathi-Hafshejani, P.; Azam, N.; Wang, L.; Kuroda, M. A.; Hamilton, M. C.; Hasim, S.; Mahjouri-Samani, M. Two-Dimensional-Material-Based Field-Effect Transistor Biosensor for Detecting COVID-19 Virus (SARS-CoV-2). ACS Nano. 2021, 15, 11461–11469. doi:10.1021/acsnano.1c01188
  • Shao, W.; Shurin, M. R.; Wheeler, S. E.; He, X.; Star, A. Rapid Detection of SARS-CoV-2 Antigens Using High-Purity Semiconducting Single-Walled Carbon Nanotube-Based Field-Effect Transistors. ACS Appl. Mater. Interfaces. 2021, 13, 10321–10327. doi:10.1021/acsami.0c22589
  • Gao, J.; Wang, C.; Chu, Y.; Han, Y.; Gao, Y.; Wang, Y.; Wang, C.; Liu, H.; Han, L.; Zhang, Y.; et al. Graphene oxide-Graphene Van Der Waals Heterostructure Transistor Biosensor for SARS-CoV-2 Protein Detection. Talanta 2022, 240, 123197. doi:10.1016/j.talanta.2021.123197
  • Aftab, S. O.; Ghouri, M. Z.; Masood, M. U.; Haider, Z.; Khan, Z.; Ahmad, A.; Munawar, N. Analysis of SARS-CoV-2 RNA-Dependent RNA Polymerase as a Potential Therapeutic Drug Target Using a Computational Approach. J. Transl. Med. 2020, 18, 275. doi:10.1186/s12967-020-02439-0
  • Hillen, H. S. Structure and Function of SARS-CoV-2 Polymerase. Curr. Opin. Virol. 2021, 48, 82–90. doi:10.1016/j.coviro.2021.03.010
  • Li, Y.; Peng, Z.; Holl, N. J.; Hassan, M. R.; Pappas, J. M.; Wei, C.; Izadi, O. H.; Wang, Y.; Dong, X.; Wang, C.; et al. MXene–Graphene Field-Effect Transistor Sensing of Influenza Virus and SARS-CoV-2. ACS Omega 2021, 6, 6643–6653. doi:10.1021/acsomega.0c05421
  • Liu, T.; Hsiung, J.; Zhao, S.; Kost, J.; Sreedhar, D.; Hanson, C. V.; Olson, K.; Keare, D.; Chang, S. T.; Bliden, K. P.; et al. Quantification of Antibody Avidities and Accurate Detection of SARS-CoV-2 Antibodies in Serum and Saliva on Plasmonic Substrates. Nat. Biomed. Eng. 2020, 4, 1188–1196. doi:10.1038/s41551-020-00642-4
  • Chen, M.; Cui, D.; Zhao, Z.; Kang, D.; Li, Z.; Albawardi, S.; Alsageer, S.; Alamri, F.; Alhazmi, A.; Amer, M. R.; et al. Highly Sensitive, Scalable, and Rapid SARS-CoV-2 Biosensor Based on In2O3 Nanoribbon Transistors and Phosphatase. Nano Res. 2022, 15, 5510–5516. doi:10.1007/s12274-022-4190-0
  • Lin, Y. ‐H.; Han, Y.; Sharma, A.; AlGhamdi, W. S.; Liu, C. ‐H.; Chang, T. ‐H.; Xiao, X. ‐W.; Lin, W. ‐Z.; Lu, P. ‐Y.; Seitkhan, A.; et al. A Tri-Channel Oxide Transistor Concept for the Rapid Detection of Biomolecules Including the SARS-CoV-2 Spike Protein. Adv. Mater. 2022, 34, 2104608. doi:10.1002/adma.202104608
  • Chiang, P.-L.; Chou, T.-C.; Wu, T.-H.; Li, C.-C.; Liao, C.-D.; Lin, J.-Y.; Tsai, M.-H.; Tsai, C.-C.; Sun, C.-J.; Wang, C.-H.; et al. Nanowire Transistor-Based Ultrasensitive Virus Detection with Reversible Surface Functionalization. Chem. Asian J. 2012, 7, 2073–2079. doi:10.1002/asia.201200222
  • Park, S.; Choi, J.; Jeun, M.; Kim, Y.; Yuk, S.-S.; Kim, S. K.; Song, C.-S.; Lee, S.; Lee, K. H. Detection of Avian Influenza Virus from Cloacal Swabs Using a Disposable Well Gate FET Sensor. Adv. Healthcare Mater. 2017, 6, 1700371. doi:10.1002/adhm.201700371
  • Park, I.; Lim, J.; You, S.; Hwang, M. T.; Kwon, J.; Koprowski, K.; Kim, S.; Heredia, J.; Stewart de Ramirez, S. A.; Valera, E.; et al. Detection of SARS-CoV-2 Virus Amplification Using a Crumpled Graphene Field-Effect Transistor Biosensor. ACS Sens. 2021, 6, 4461–4470. doi:10.1021/acssensors.1c01937
  • Ozer, T.; Geiss, B. J.; Henry, C. S. Review—Chemical and Biological Sensors for Viral Detection. J. Electrochem. Soc. 2020, 167, 037523. doi:10.1149/2.0232003JES
  • Kim, J. P.; Lee, B. Y.; Hong, S.; Sim, S. J. Ultrasensitive Carbon Nanotube-Based Biosensors Using Antibody-Binding Fragments. Anal. Biochem. 2008, 381, 193–198. doi:10.1016/j.ab.2008.06.040
  • Jin, J.-H.; Kim, J.; Jeon, T.; Shin, S.-K.; Sohn, J.-R.; Yi, H.; Lee, B. Y. Real-Time Selective Monitoring of Allergenic Aspergillus Molds Using Pentameric Antibody-Immobilized Single-Walled Carbon Nanotube-Field Effect Transistors. RSC Adv. 2015, 5, 15728–15735. doi:10.1039/C4RA15815F
  • Matsumoto, K.; Maehashi, K.; Ohno, Y.; Inoue, K. Recent Advances in Functional Graphene Biosensors. J. Phys. D: Appl. Phys. 2014, 47, 094005. doi:10.1088/0022-3727/47/9/094005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.