858
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in the development, design and mechanism of negative electrodes for asymmetric supercapacitor applications

, , &

References

  • Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Xie, S.; Ling, Y.; Liang, C.; Tong, Y.; Li, Y. Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors. Nano Lett. 2012, 12, 5376–5381. doi:10.1021/nl302761z
  • Wu, N.; Bai, X.; Pan, D.; Dong, B.; Wei, R.; Naik, N.; Patil, R. R.; Guo, Z. Recent Advances of Asymmetric Supercapacitors. Adv. Mater. Interface. 2021, 8, 2001710. doi:10.1002/admi.202001710
  • Mohanadas, D.; Mohd Abdah, M. A. A.; Azman, N. H. N.; Abdullah, J.; Sulaiman, Y. A Promising Negative Electrode of Asymmetric Supercapacitor Fabricated by Incorporating Copper-Based Metal-Organic Framework and Reduced Graphene Oxide. Int. J. Hydrogen Energy 2021, 46, 35385–35396. doi:10.1016/j.ijhydene.2021.08.081
  • Lamba, P.; Singh, P.; Singh, P.; Singh, P.; Kumar, A.; Gupta, M. Kumar.; Y.; Bharti. Recent Advancements in Supercapacitors Based on Different Electrode Materials: Classifications, Synthesis Methods and Comparative Performance. J. Energy Storage. 2022, 48, 103871. doi:10.1016/j.est.2021.103871
  • Liu, L.; Niu, Z.; Chen, J. Flexible Supercapacitors Based on Carbon Nanotubes. Chin. Chem. Lett. 2018, 29, 571–581. doi:10.1016/j.cclet.2018.01.013
  • Liang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials (Basel). 2021, 11, 1248. doi:10.3390/nano11051248
  • Zuo, W.; Li, R.; Zhou, C.; Li, Y.; Xia, J.; Liu, J. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Adv Sci (Weinh). 2017, 4, 1600539. doi:10.1002/advs.201600539
  • Zhou, P.; Fan, L.; Wu, J.; Gong, C.; Zhang, J.; Tu, Y. Facile Hydrothermal Synthesis of NiTe and Its Application as Positive Electrode Material for Asymmetric Supercapacitor. J. Alloys Compd. 2016, 685, 384–390. doi:10.1016/j.jallcom.2016.05.287
  • Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Adv. Funct. Mater. 2011, 21, 2366–2375. doi:10.1002/adfm.201100058
  • Yao, C.; Wei, B.; Tong, Y. Carbon Nanotubes Supported Conducting Polymer Electrode for Supercapacitor. In Carbon Nanotubes – Current Progress of Their Polymer Composites, InTech, Janeza Trdine 9, 51000 Rijeka, Croatia, 2016.
  • Islam, S.; Mia, M. M.; Shah, S. S.; Naher, S.; Shaikh, M. N.; Aziz, M. A.; Ahammad, A. J. S. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors. Chem. Rec. 2022, 22, e202200013.
  • Li, X.; Wei, B. Supercapacitors Based on Nanostructured Carbon. Nano Energy 2013, 2, 159–173. doi:10.1016/j.nanoen.2012.09.008
  • Hybrid Electrode Materials for Supercapacitors Based on Nanostructured Carbon Matrix Composites Filled with Chromium Oxides and Hydroxides. Chem. Sustain. Dev. 2018, 26(6), 609–618.
  • Gao, H.; Xiao, F.; Ching, C. B.; Duan, H. Flexible All-Solid-State Asymmetric Supercapacitors Based on Free-Standing Carbon Nanotube/Graphene and Mn3O4 Nanoparticle/Graphene Paper Electrodes. ACS Appl. Mater. Interfaces. 2012, 4, 7020–7026. doi:10.1021/am302280b
  • Balducci, A.; Schroeder, M.; Zhang, X.; Kühnel, R.-S. Innovative Active Materials for Hybrid and High Power Devices. Meet. Abstr. 2014, MA2014-02, 169–169. doi:10.1149/MA2014-02/3/169
  • Yoo, H. D.; Han, S.-D.; Bayliss, R. D.; Gewirth, A. A.; Genorio, B.; Rajput, N. N.; Persson, K. A.; Burrell, A. K.; Cabana, J. “Rocking-Chair”-Type Metal Hybrid Supercapacitors. ACS Appl. Mater. Interfaces. 2016, 8, 30853–30862. doi:10.1021/acsami.6b08367
  • Drummond, R.; Huang, C.; Grant, P. S.; Duncan, S. R. Overcoming Diffusion Limitations in Supercapacitors Using Layered Electrodes. J. Power Sources. 2019, 433, 126579. doi:10.1016/j.jpowsour.2019.04.107
  • Wang, F.; Xiao, S.; Hou, Y.; Hu, C.; Liu, L.; Wu, Y. Electrode Materials for Aqueous Asymmetric Supercapacitors. RSC Adv. 2013, 3, 13059. doi:10.1039/c3ra23466e
  • Huang, J.; Yuan, K.; Chen, Y. Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Adv. Funct. Mater. 2022, 32, 2108107. doi:10.1002/adfm.202108107
  • Pu, Z.; Lan, Q.; Li, Y.; Liu, S.; Yu, D.; Lv, X.-J. Preparation of W-Doped Hierarchical Porous Li4Ti5O12/Brookite Nanocomposites for High Rate Lithium Ion Batteries at − 20 °C. J. Power Sources. 2019, 437, 226890. doi:10.1016/j.jpowsour.2019.226890
  • Han, X.; Zhang, D.; Qin, Y.; Kong, X.; Zhang, F.; Lei, X. Construction of Ta-Cu7S4 Negative Electrode for High-Performance All-Solid-State Asymmetric Supercapacitor. Chem. Eng. J. 2021, 403, 126471. doi:10.1016/j.cej.2020.126471
  • Zhang, N.; Li, Y.; Xu, J.; Li, J.; Wei, B.; Ding, Y.; Amorim, I.; Thomas, R.; Thalluri, S. M.; Liu, Y.; et al. High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals. ACS Nano. 2019, 13, 10612–10621. doi:10.1021/acsnano.9b04810
  • Liu, Z.; Qiu, Y.; Zhang, A.; Yang, W.; Barrow, C. J.; Razal, J. M.; Liu, J. In Situ Embedding of Cobalt Sulfide Quantum Dots among Transition Metal Layered Double Hydroxides for High Performance All-Solid-State Asymmetric Supercapacitors. J. Mater. Chem. A. 2021, 9, 22573–22584. doi:10.1039/D1TA06706K
  • Sharma, V.; Kim, S. J.; Kim, N. H.; Lee, J. H. All-Solid-State Asymmetric Supercapacitor with MWCNT-Based Hollow NiCo2O4 Positive Electrode and Porous Cu2WS4 Negative Electrode. Chem. Eng. J 2021, 415, 128188. doi:10.1016/j.cej.2020.128188
  • Zhao, J.; Gong, J.; Zhou, C.; Miao, C.; Hu, R.; Zhu, K.; Cheng, K.; Ye, K.; Yan, J.; Cao, D.; et al. Utilizing Human Hair for Solid-State Flexible Fiber-Based Asymmetric Supercapacitors. Appl. Surf. Sci. 2020, 508, 145260. doi:10.1016/j.apsusc.2020.145260
  • Wang, X.; Liu, B.; Liu, R.; Wang, Q.; Hou, X.; Chen, D.; Wang, R.; Shen, G. Fiber-Based Flexible All-Solid-State Asymmetric Supercapacitors for Integrated Photodetecting System. Angew. Chem. 2014, 126, 1880–1884. doi:10.1002/ange.201307581
  • Huang, C.; Hao, C.; Zheng, W.; Zhou, S.; Yang, L.; Wang, X.; Jiang, C.; Zhu, L. Synthesis of Polyaniline/Nickel Oxide/Sulfonated Graphene Ternary Composite for All-Solid-State Asymmetric Supercapacitor. Appl. Surf. Sci. 2020, 505, 144589. doi:10.1016/j.apsusc.2019.144589
  • da Silva, D. A. C.; Paulista Neto, A. J.; Pascon, A. M.; Fileti, E. E.; Fonseca, L. R. C.; Zanin, H. G. Exploring Doped or Vacancy-Modified Graphene-Based Electrodes for Applications in Asymmetric Supercapacitors. Phys. Chem. Chem. Phys. 2020, 22, 3906–3913. doi:10.1039/c9cp06495h
  • Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 2017, 29, 1605336. doi:10.1002/adma.201605336
  • Shalan, A. E.; Makhlouf, A. S. H.; Lanceros‐Méndez, S. Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications, Springer Nature, Switzerland AG, 2022.
  • Uke, S. J.; Mardikar, S. P.; Kumar, A.; Kumar, Y.; Gupta, M.; Kumar, Y. A Review of π-Conjugated Polymer-Based Nanocomposites for Metal-Ion Batteries and Supercapacitors. R. Soc. Open Sci. 2021, 8, 210567. doi:10.1098/rsos.210567
  • Kurra, N.; Wang, R.; Alshareef, H. N. All Conducting Polymer Electrodes for Asymmetric Solid-State Supercapacitors. J. Mater. Chem. A. 2015, 3, 7368–7374. doi:10.1039/C5TA00829H
  • Sharma, P. S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W. Electrochemically Synthesized Polymers in Molecular Imprinting for Chemical Sensing. Anal. Bioanal. Chem. 2012, 402, 3177–3204. doi:10.1007/s00216-011-5696-6
  • Yuan, W.; Han, G.; Xiao, Y.; Chang, Y.; Liu, C.; Li, M.; Li, Y.; Zhang, Y. Flexible Electrochemical Capacitors Based on Polypyrrole/Carbon Fibers via Chemical Polymerization of Pyrrole Vapor. Appl. Surf. Sci. 2016, 377, 274–282. doi:10.1016/j.apsusc.2016.03.114
  • Gvozdenovic, M.; Jugovic, B.; Stevanovic, J.; Grgur, B. Electrochemical Synthesis of Electroconducting Polymers. Hem. Ind. 2014, 68, 673–684. doi:10.2298/HEMIND131122008G
  • Dian, G.; Barbey, G.; Decroix, B. Electrochemical Synthesis of Polythiophenes and Polyselenophenes. Synth. Met. 1986, 13, 281–289. doi:10.1016/0379-6779(86)90189-X
  • Talu, M.; Kabasakalog¯lu, M.; Yıldırım, F.; Sarı, B. Electrochemical Synthesis and Characterization of Homopolymers of Polyfuran and Polythiophene and Bipolymer Films Polyfuran/Polythiophene and Polythiophene/Polyfuran. Appl. Surf. Sci. 2001, 181, 51–60. doi:10.1016/S0169-4332(01)00355-5
  • Effect of Ultrasounds on the Electrochemical Synthesis of Polypyrrole, Application to the Adhesion and Growth of Biological Cells. Bioelectrochemistry. 2009, 75, 148–157.
  • Sadasivuni, K. K.; Deshmukh, K.; Pasha, K.; Ing, T. K. MXenes and Their Composites: Synthesis. In Properties and Potential Applications, Elsevier, Amsterdam, Netherlands, 2021.
  • Wang, W.; Xiao, Y.; Li, X.; Cheng, Q.; Wang, G. Bismuth Oxide Self-Standing Anodes with Concomitant Carbon Dots Welded Graphene Layer for Enhanced Performance Supercapacitor-Battery Hybrid Devices. Chem. Eng. J. 2019, 371, 327–336. doi:10.1016/j.cej.2019.04.048
  • Shinde, N. M.; Xia, Q. X.; Yun, J. M.; Shinde, P. V.; Shaikh, S. M.; Sahoo, R. K.; Mathur, S.; Mane, R. S.; Kim, K. H. Ultra-Rapid Chemical Synthesis of Mesoporous Bi2O3 Micro-Sponge-Balls for Supercapattery Applications. Electrochim. Acta. 2019, 296, 308–316. doi:10.1016/j.electacta.2018.11.044
  • Wen, J.; Sun, S.; Zhang, B.; Shi, N.; Liao, X.; Yin, G.; Huang, Z.; Chen, X.; Pu, X. Facile Synthesis of a BiMoO/TiO Nanotube Arrays Composite by the Solvothermal Method and Its Application for High-Performance Supercapacitor. RSC Adv. 2019, 9, 4693–4699. doi:10.1039/c8ra08604d
  • William, J. J.; Babu, I. M.; Muralidharan, G. Lithium Ferrite (α-LiFe5O8) Nanorod Based Battery-Type Asymmetric Supercapacitor with NiO Nanoflakes as the Counter Electrode. New J. Chem. 2019, 43, 15375–15388. doi:10.1039/C9NJ03774H
  • Johnson William, J.; Manohara Babu, I.; Muralidharan, G. Nickel Bismuth Oxide as Negative Electrode for Battery-Type Asymmetric Supercapacitor. Chem. Eng. J. 2021, 422, 130058. doi:10.1016/j.cej.2021.130058
  • An, C.; Zhang, Y.; Guo, H.; Wang, Y. Metal Oxide-Based Supercapacitors: progress and Prospectives. Nanoscale Adv. 2019, 1, 4644–4658. doi:10.1039/c9na00543a
  • Lin, J.; Du, X. High Performance Asymmetric Supercapacitor Based on Hierarchical Carbon Cloth in Situ Deposited with h-WO3 Nanobelts as Negative Electrode and Carbon Nanotubes as Positive Electrode. Micromachines. 2021, 12, 1195. doi:10.3390/mi12101195
  • Shi, Z.; Liu, J.; Gao, Y.; Xu, Y. Asymmetric Supercapacitors Based on La-Doped MoO3 Nanobelts as Advanced Negative Electrode and VOR Nanosheets as Positive Electrode. J. Mater. Sci. 2021, 56, 1612–1629. doi:10.1007/s10853-020-05284-0
  • Wang, S.; Wang, S.; Guo, X.; Wang, Z.; Mao, F.; Su, L.; Wu, H.; Wang, K.; Zhang, Q. An Asymmetric Supercapacitor with an Interpenetrating Crystalline Fe-MOF as the Positive Electrode and Its Congenetic Derivative as the Negative Electrode. Inorg. Chem. Front. 2021, 8, 4878–4886. doi:10.1039/D1QI00864A
  • Shi, Z.; Liu, J.; Gao, Y.; Li, L.; Cao, Z. Boosted Charge Transfer in p-n Heterojunctions LaMoO3/GQDs Negative Electrode for All-Solid-State Asymmetric Supercapacitor. Appl. Surf. Sci 2020, 532, 147384. doi:10.1016/j.apsusc.2020.147384
  • He, X.; Mao, X.; Zhang, C.; Yang, W.; Zhou, Y.; Yang, Y.; Xu, J. Flexible Binder-Free Hierarchical Copper Sulfide/Carbon Cloth Hybrid Supercapacitor Electrodes and the Application as Negative Electrodes in Asymmetric Supercapacitor. J. Mater. Sci: Mater. Electron. 2020, 31, 2145–2152. doi:10.1007/s10854-019-02737-4
  • Vandana, M.; Nagaraju, Y. S.; Ganesh, H.; Veeresh, S.; Vijeth, H.; Basappa, M.; Devendrappa, H. A SnOQDs/GO/PPY Ternary Composite Film as Positive and Graphene Oxide/Charcoal as Negative Electrodes Assembled Solid State Asymmetric Supercapacitor for High Energy Storage Applications. RSC Adv. 2021, 11, 27801–27811. doi:10.1039/d1ra03423e
  • Chodankar, N. R.; Dubal, D. P.; Ji, S.-H.; Kim, D.-H. Highly Efficient and Stable Negative Electrode for Asymmetric Supercapacitors Based on Graphene/FeCo2O4 Nanocomposite Hybrid Material. Electrochim. Acta 2019, 295, 195–203. doi:10.1016/j.electacta.2018.10.125
  • Zhang, N.; Xu, J.; Wei, B.; Li, J.; Amorim, I.; Thomas, R.; Thalluri, S. M.; Wang, Z.; Zhou, W.; Xie, S.; Liu, L. Mille-Crêpe-like Metal Phosphide Nanocrystals/Carbon Nanotube Film Composites as High-Capacitance Negative Electrodes in Asymmetric Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 4580–4588. doi:10.1021/acsaem.0c00263
  • Shi, T.-Z.; Feng, Y.-L.; Peng, T.; Yuan, B.-G. Sea Urchin-Shaped Fe2O3 Coupled with 2D MXene Nanosheets as Negative Electrode for High-Performance Asymmetric Supercapacitors. Electrochim. Acta 2021, 381, 138245. doi:10.1016/j.electacta.2021.138245
  • Bera, A.; Maitra, A.; Das, A. K.; Halder, L.; Paria, S.; Si, S. K.; De, A.; Ojha, S.; Khatua, B. B. A Quasi-Solid-State Asymmetric Supercapacitor Device Based on Honeycomb-like Nickel–Copper–Carbonate–Hydroxide as a Positive and Iron Oxide as a Negative Electrode with Superior Electrochemical Performances. ACS Appl. Electron. Mater. 2020, 2, 177–185. doi:10.1021/acsaelm.9b00677
  • Van Ngo, T.; Moussa, M.; Tung, T. T.; Coghlan, C.; Losic, D. Hybridization of MOFs and Graphene: A New Strategy for the Synthesis of Porous 3D Carbon Composites for High Performing Supercapacitors. Electrochim. Acta. 2020, 329, 135104. doi:10.1016/j.electacta.2019.135104
  • Srimuk, P.; Luanwuthi, S.; Krittayavathananon, A.; Sawangphruk, M. Solid-Type Supercapacitor of Reduced Graphene Oxide-Metal Organic Framework Composite Coated on Carbon Fiber Paper. Electrochim. Acta. 2015, 157, 69–77. doi:10.1016/j.electacta.2015.01.082
  • Mohd Abdah, M. A. A.; Azman, N. H. N.; Kulandaivalu, S.; Abdul Rahman, N.; Abdullah, A. H.; Sulaiman, Y. Potentiostatic Deposition of Poly(3, 4-Ethylenedioxythiophene) and Manganese Oxide on Porous Functionalised Carbon Fibers as an Advanced Electrode for Asymmetric Supercapacitor. J. Power Sources. 2019, 444, 227324. doi:10.1016/j.jpowsour.2019.227324
  • Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of Crystalline 2D Covalent Organic Frameworks with Remarkable Chemical (Acid/Base) Stability via a Combined Reversible and Irreversible Route. J. Am. Chem. Soc. 2012, 134, 19524–19527. doi:10.1021/ja308278w
  • Kandambeth, S.; Jia, J.; Wu, H.; Kale, V. S.; Parvatkar, P. T.; Czaban-Jóźwiak, J.; Zhou, S.; Xu, X.; Ameur, Z. O.; Abou-Hamad, E.; et al. Covalent Organic Frameworks as Negative Electrodes for High‐Performance Asymmetric Supercapacitors. Adv. Energy Mater. 2020, 10, 2001673. doi:10.1002/aenm.202001673
  • Wu, Z.-S.; Sun, Y.; Tan, Y.-Z.; Yang, S.; Feng, X.; Müllen, K. Three-Dimensional Graphene-Based Macro- and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage. J. Am. Chem. Soc. 2012, 134, 19532–19535. doi:10.1021/ja308676h
  • Wang, G.; Chen, T.; Gómez-García, C. J.; Zhang, F.; Zhang, M.; Ma, H.; Pang, H.; Wang, X.; Tan, L. A High-Capacity Negative Electrode for Asymmetric Supercapacitors Based on a PMo Coordination Polymer with Novel Water-Assisted Proton Channels. Small. 2020, 16, e2001626. doi:10.1002/smll.202001626
  • Peng, H.; Cui, S.; Xie, X.; Wei, G.; Sun, K.; Ma, G.; Lei, Z. Binary Tungsten-Molybdenum Oxides Nanoneedle Arrays as an Advanced Negative Electrode Material for High Performance Asymmetric Supercapacitor. Electrochim. Acta. 2019, 322, 134759. doi:10.1016/j.electacta.2019.134759
  • Effects of Conductive Binder on the Electrochemical Performance of Lithium Titanate Anodes. Solid State Ionics. 2019, 333, 18–29.
  • Hsieh, M.-C.; Chen, B.-H.; Hong, Z.-Y.; Liu, J.-K.; Huang, P.-C.; Huang, C.-M. Fabrication of 5 V High-Performance Solid-State Asymmetric Supercapacitor Device Based on MnO2/Graphene/Ni Electrodes. Catalysts. 2022, 12, 572. doi:10.3390/catal12050572
  • Engineering the Performance of Negative Electrode for Supercapacitor by Polyaniline Coated Fe3O4 Nanoparticles Enables High Stability up to 25,000 Cycles. Int. J. Hydrogen Energy. 2021, 46, 9976–9987.
  • Li, H.; Liu, T.; He, Y.; Song, J.; Meng, A.; Sun, C.; Hu, M.; Wang, L.; Li, G.; Zhang, Z.; et al. Interfacial Engineering and a Low-Crystalline Strategy for High-Performance Supercapacitor Negative Electrodes: FePO Nanoplates Anchored on N/P Co-Doped Graphene Nanotubes. ACS Appl. Mater. Interfaces. 2022, 14, 3363–3373. doi:10.1021/acsami.1c17356
  • Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer Science & Business Media, Plenum publishers, New York, 2013.
  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. doi:10.1038/nmat2297
  • Cao, J.; Wang, Y.; Zhou, Y.; Ouyang, J.-H.; Jia, D.; Guo, L. High Voltage Asymmetric Supercapacitor Based on MnO2 and Graphene Electrodes. J. Electroanal. Chem. 2013, 689, 201–206. doi:10.1016/j.jelechem.2012.10.024
  • Velayutham, R.; Manikandan, R.; Raj, C. J.; Kale, A. M.; Kaya, C.; Palanisamy, K.; Kim, B. C. Electrodeposition of Vanadium Pentoxide on Carbon Fiber Cloth as a Binder-Free Electrode for High-Performance Asymmetric Supercapacitor. J. Alloys Compd. 2021, 863, 158332. doi:10.1016/j.jallcom.2020.158332
  • Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2(2), 1–17. doi:10.1038/natrevmats.2016.98
  • Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. doi:10.1021/acs.chemmater.7b02847
  • Chen, R.; Yu, M.; Sahu, R. P.; Puri, I. K.; Zhitomirsky, I. The Development of Pseudocapacitor Electrodes and Devices with High Active Mass Loading. Adv. Energy Mater. 2020, 10, 1903848. doi:10.1002/aenm.201903848
  • Liang, W.; Zhitomirsky, I. MXene–Carbon Nanotube Composite Electrodes for High Active Mass Asymmetric Supercapacitors. J. Mater. Chem. A. 2021, 9, 10335–10344. doi:10.1039/D0TA12485K
  • Sha, R.; Maity, P. C.; Rajaji, U.; Liu, T.-Y.; Bhattacharyya, T. K. Review—MoSe2 Nanostructures and Related Electrodes for Advanced Supercapacitor Developments. J. Electrochem. Soc. 2022, 169, 013503. doi:10.1149/1945-7111/ac4aad
  • Zhang, M.; Liu, H.; Ma, T.; Song, Z.; Shao, S. Ultrathin Porous Mn(PO3)2 Nanosheets and MoO2 Nanocrystal Arrays on N, P-Dual-Doped Graphene for High-Energy Asymmetric Supercapacitors. Chem. Eng. J. 2021, 403, 126379. doi:10.1016/j.cej.2020.126379
  • Han, G. H.; Duong, D. L.; Keum, D. H.; Yun, S. J.; Lee, Y. H. Van Der Waals Metallic Transition Metal Dichalcogenides. Chem. Rev. 2018, 118, 6297–6336. doi:10.1021/acs.chemrev.7b00618
  • Luo, Y.; Yang, C.; Tian, Y.; Tang, Y.; Yin, X.; Que, W. A Long Cycle Life Asymmetric Supercapacitor Based on Advanced Nickel-Sulfide/Titanium Carbide (MXene) Nanohybrid and MXene Electrodes. J. Power Sources. 2020, 450, 227694. doi:10.1016/j.jpowsour.2019.227694
  • Zhao, D.; Zhao, R.; Dong, S.; Miao, X.; Zhang, Z.; Wang, C.; Yin, L. Alkali-Induced 3D Crinkled Porous Ti3C2 MXene Architectures Coupled with NiCoP Bimetallic Phosphide Nanoparticles as Anodes for High-Performance Sodium-Ion Batteries. Energy Environ. Sci. 2019, 12, 2422–2432. doi:10.1039/C9EE00308H
  • Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All Pseudocapacitive MXene-RuO 2 Asymmetric Supercapacitors. Adv. Energy Mater 2018, 8, 1703043. doi:10.1002/aenm.201703043
  • Wei, B.; Ming, F.; Liang, H.; Qi, Z.; Hu, W.; Wang, Z. All Nitride Asymmetric Supercapacitors of Niobium Titanium Nitride-Vanadium Nitride. J. Power Sources 2021, 481, 228842. doi:10.1016/j.jpowsour.2020.228842
  • Nurunnabi, M.; McCarthy, J. Biomedical Applications of Graphene and 2D Nanomaterials, Elsevier, Amsterdam, Netherlands, 2019.
  • Adalati, R.; Kumar, A.; Kumar, Y.; Chandra, R. A High‐Performing Asymmetric Supercapacitor of Molybdenum Nitride and Vanadium Nitride Thin Films as Binder‐Free Electrode Grown through Reactive Sputtering. Energy Technol. 2020, 8, 2000466. doi:10.1002/ente.202000466
  • Aulice Scibioh, M.; Viswanathan, B. Materials for Supercapacitor Applications, Elsevier, Amsterdam, Netherlands, 2020.
  • Matricardi, P.; Alhaique, F.; Coviello, T. Polysaccharide Hydrogels: Characterization and Biomedical Applications, CRC Press, Taylor and Francis group, Boca Raton, FL 33487-2742, 2016.
  • Abouelamaiem, D. I. Exploring the Synergy of Functionalised Bio-Carbons and Their Performance in Supercapacitor Devices. CRC Press, Taylor and Francis group, Boca Raton, FL 33487-2742, 2018.
  • Kebede, M. A.; Ezema, F. I. Electrode Materials for Energy Storage and Conversion, CRC Press, Taylor and Francis group, Boca Raton, FL 33487-2742, 2021.
  • Zhu, H. Graphene: Fabrication, Characterizations, Properties and Applications, Academic Press, Cambridge, Massachusetts, United State, 2017.
  • Zhai, T.; Lu, X.; Ling, Y.; Yu, M.; Wang, G.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. A New Benchmark Capacitance for Supercapacitor Anodes by Mixed-Valence Sulfur-Doped V6O(13-x). Adv. Mater. 2014, 26, 5869–5875. doi:10.1002/adma.201402041
  • Liu, J.; Lu, D.; Wang, X. Nanomaterials and Nanofabrication for Electrochemical Energy Storage, MDPI, 4052 Basel, Switzerland, 2020.
  • Chen, P.-C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano. 2010, 4, 4403–4411. doi:10.1021/nn100856y
  • Wang, R.; Yan, X. Superior Asymmetric Supercapacitor Based on Ni-Co Oxide Nanosheets and Carbon Nanorods. Sci. Rep. 2014, 4, 3712. doi:10.1038/srep03712
  • Yang, Y.; Yang, L.; Li, G.; Ruan, H.; Fei, C.; Xiang, X. Fan.; J. M.; Tour. Hydrothermally Formed Three-Dimensional Nanoporous Ni(OH)2 Thin-Film Supercapacitors. ACS Nano. 2014, 8, 9622–9628. doi:10.1021/nn5040197
  • Chen, H.; Jiang, J.; Zhang, L.; Xia, D.; Zhao, Y.; Guo, D.; Qi, T.; Wan, H. In Situ Growth of NiCo2S4 Nanotube Arrays on Ni Foam for Supercapacitors: Maximizing Utilization Efficiency at High Mass Loading to Achieve Ultrahigh Areal Pseudocapacitance. J. Power Sources. 2014, 254, 249–257. doi:10.1016/j.jpowsour.2013.12.092
  • Hsu, C.-T.; Hu, C.-C.; Wu, T.-H.; Chen, J.-C.; Rajkumar, M. How the Electrochemical Reversibility of a Battery-Type Material Affects the Charge Balance and Performances of Asymmetric Supercapacitors. Electrochim. Acta. 2014, 146, 759–768. doi:10.1016/j.electacta.2014.09.041
  • Krishnan, S. G.; Harilal, M.; Pal, B.; Misnon, I. I.; Karuppiah, C.; Yang, C.-C.; Jose, R. Improving the Symmetry of Asymmetric Supercapacitors Using Battery-Type Positive Electrodes and Activated Carbon Negative Electrodes by Mass and Charge Balance. Electroanal. Chem. 2017, 805, 126–132. doi:10.1016/j.jelechem.2017.10.029
  • Lv, Y.; Wang, H.; Xu, X.; Shi, J.; Liu, W.; Wang, X. Balanced Mesoporous Nickle Cobaltite-Graphene and Doped Carbon Electrodes for High-Performance Asymmetric Supercapacitor. Chem. Eng. J. 2017, 326, 401–410. doi:10.1016/j.cej.2017.05.167
  • Poudel, M. B.; Ojha, G. P.; Kim, A. A.; Kim, H. J. Manganese-Doped Tungsten Disulfide Microcones as Binder-Free Electrode for High Performance Asymmetric Supercapacitor. J. Energy Storage. 2022, 47, 103674. doi:10.1016/j.est.2021.103674
  • Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications, CRC Press, 2013.
  • Deng, L.; Gao, Y.; Ma, Z.; Fan, G. Free-Standing Graphene/Vanadium Oxide Composite as Binder-Free Electrode for Asymmetrical Supercapacitor. J. Colloid Interface Sci. 2017, 505, 556–565. doi:10.1016/j.jcis.2017.06.048
  • Hsieh, C.-E.; Chang, C.; Gupta, S.; Hsiao, C.-H.; Lee, C.-Y.; Tai, N.-H. Binder-Free CoMn2O4/Carbon Nanotubes Composite Electrodes for High-Performance Asymmetric Supercapacitor. J. Alloys Compd. 2022, 897, 163231. doi:10.1016/j.jallcom.2021.163231
  • Kumar Das, A.; Ramulu, B.; Girija Shankar, E.; Su Yu, J. Binder-Free CuS@PEDOT and Co–V–Se Electrodes for Flexible Quasi-Solid-State Asymmetric Supercapacitor. Chem. Eng. J. 2022, 429, 132486. doi:10.1016/j.cej.2021.132486
  • Li, X.; Ma, Y.; Shen, P.; Zhang, C.; Cao, M.; Xiao, S.; Yan, J.; Luo, S.; Gao, Y. An Ultrahigh Energy Density Flexible Asymmetric Microsupercapacitor Based on Ti3C2Tx and PPy/MnO2 with Wide Voltage Window. Adv. Mater. Technol. 2020, 5, 2000272. doi:10.1002/admt.202000272
  • Lv, X.; Zhang, Y.; Li, X.; Fan, Z.; Liu, G.; Zhang, W.; Zhou, J.; Xie, E.; Zhang, Z. High-Performance Magnesium Ion Asymmetric Ppy@FeOOH//Mn3O4 Micro-Supercapacitor. J. Energy Chem. 2022, 72, 352–360. doi:10.1016/j.jechem.2022.03.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.