3,151
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Process-microstructure-corrosion of additively manufactured steels: a review

, , &

References

  • Michla, J. R. J.; Nagarajan, R.; Krishnasamy, S.; Siengchin, S.; Ismail, S. O.; Prabhu, T. R. Conventional and Additively Manufactured Stainless Steels: A Review. Trans. Indian Inst. Met. 2021, 74, 1261–1278. doi:10.1007/s12666-021-02305-7.
  • Hamza, H. M.; Deen, K. M.; Khaliq, A.; Asselin, E.; Haider, W. Microstructural, Corrosion and Mechanical Properties of Additively Manufactured Alloys: A Review. Crit. Rev. Solid State Mater. Sci. 2022, 47, 46–98. doi:10.1080/10408436.2021.1886044.
  • Scopus Preview – Scopus – Welcome to Scopus. n.d. https://www.scopus.com/home.uri. (accessed May, 2023).
  • Zhang, D.; Liu, A.; Yin, B.; Wen, P. Additive Manufacturing of Duplex Stainless steels - A Critical Review. J. Manuf. Process 2022, 73, 496–517. doi:10.1016/j.jmapro.2021.11.036.
  • Wanwan, J.; Chaoqun, Z.; Shuoya, J.; Yingtao, T.; Daniel, W.; Wen, L. Wire Arc Additive Manufacturing of Stainless Steels. A Rev. Appl. Sci. 2020, 10, 1563.
  • Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review. Appl. Sci. 2020, 10, 3310. doi:10.3390/app10093310.
  • Dehgahi, S.; Ghoncheh, M. H.; Hadadzadeh, A.; Sanjari, M.; Amirkhiz, B. S.; Mohammadi, M. The Role of Titanium on the Microstructure and Mechanical Properties of Additively Manufactured C300 Maraging Steels. Mater. Des. 2020, 194, 108965. doi:10.1016/j.matdes.2020.108965.
  • Kong, D.; Dong, C.; Wei, S.; Ni, X.; Zhang, L.; Li, R.; Wang, L.; Man, C.; Li, X. About Metastable Cellular Structure in Additively Manufactured Austenitic Stainless Steels. Addit. Manuf. 2021, 38, 101804. doi:10.1016/j.addma.2020.101804.
  • Dehgahi, S.; Sanjari, M.; Ghoncheh, M. H.; Amirkhiz, B. S.; Mohammadi, M. Concurrent Improvement of Strength and Ductility in Heat-Treated C300 Maraging Steels Produced by Laser Powder Bed Fusion Technique. Addit. Manuf. 2021, 39, 101847. doi:10.1016/j.addma.2021.101847.
  • Sander, G.; Tan, J.; Balan, P.; Gharbi, O.; Feenstra, D. R.; Singer, L.; Thomas, S.; Kelly, R. G.; Scully, J. R.; Birbilis, N. Corrosion of Additively Manufactured Alloys: A Review. Corrosion 2018, 74, 1318–1350. doi:10.5006/2926.
  • Ko, G.; Kim, W.; Kwon, K.; Lee, T. K. The Corrosion of Stainless Steel Made by Additive Manufacturing: A Review. Metals 2021, 11, 516. doi:10.3390/met11030516.
  • Hemmasian Ettefagh, A.; Guo, S.; Raush, J. Corrosion Performance of Additively Manufactured Stainless Steel Parts: A Review. Addit. Manuf. 2021, 37, 101689. doi:10.1016/j.addma.2020.101689.
  • Cooke, A.; Slotwinski, J. Properties of Metal Powders for Additive Manufacturing: A Review of the State of the Art of Metal Powder Property Testing. Addit. Manuf. Mater. Stand. Test. Appl. 2012, 7873, 21–48. doi:10.6028/NIST.IR.7873.
  • Hoeges, S.; Zwiren, A.; Schade, C. Additive Manufacturing Using Water Atomized Steel Powders. Met. Powder Rep. 2017, 72, 111–117. doi:10.1016/j.mprp.2017.01.004
  • Ramirez, D. A.; Murr, L. E.; Martinez, E.; Hernandez, D. H.; Martinez, J. L.; MacHado, B. I.; Medina, F.; Frigola, P.; Wicker, R. B. Novel Precipitate-Microstructural Architecture Developed in the Fabrication of Solid Copper Components by Additive Manufacturing Using Electron Beam Melting. Acta Mater. 2011, 59, 4088–4099. doi:10.1016/j.actamat.2011.03.033
  • Letenneur, M.; Brailovski, V.; Kreitcberg, A.; Paserin, V.; Bailon-Poujol, I. Laser Powder Bed Fusion of Water-Atomized Iron-Based Powders: Process Optimization. JMMP 2017, 1, 23. doi:10.3390/jmmp1020023
  • Fedina, T.; Sundqvist, J.; Powell, J.; Kaplan, A. F. H. A Comparative Study of Water and Gas Atomized Low Alloy Steel Powders for Additive Manufacturing. Addit. Manuf. 2020, 36, 101675. doi:10.1016/j.addma.2020.101675
  • Briceño-Gutierrez, D.; Salinas-Barrera, V.; Vargas-Hernández, Y.; Gaete-Garretón, L.; Zanelli-Iglesias, C. On the Ultrasonic Atomization of Liquids. Phys. Procedia 2015, 63, 37–41. doi:10.1016/j.phpro.2015.03.006
  • Zhang, Y.; Yuan, S.; Wang, L. Investigation of Capillary Wave, Cavitation and Droplet Diameter Distribution during Ultrasonic Atomization. Exp. Therm. Fluid Sci. 2021, 120, 110219. doi:10.1016/j.expthermflusci.2020.110219
  • Lagutkin, S.; Achelis, L.; Sheikhaliev, S.; Uhlenwinkel, V.; Srivastava, V. Atomization Process for Metal Powder. Mater. Sci. Eng. A 2004, 383, 1–6. doi:10.1016/j.msea.2004.02.059
  • Zhao, Y.; Cui, Y.; Numata, H.; Bian, H.; Wako, K.; Yamanaka, K.; Aoyagi, K.; Chiba, A. Centrifugal Granulation Behavior in Metallic Powder Fabrication by Plasma Rotating Electrode Process. Sci. Rep. 2020, 10, 18446. doi:10.1038/s41598-020-75503-w
  • Asgarian, A.; Wu, C.; Li, D.; Bussmann, M.; Chattopadhyay, K.; Lemieux, S.; Girard, B.; Lavallee, F.; Paserin, V. Experimental and Computational Analysis of a Water Spray; Application to Molten Metal Atomization. Conference: POWDERMET, San Antonio, TX, USA, 2018.
  • Zwiren, A.; Schade C.; S.; Hoeges. Economic Additive Manufacturing using Water Atomized Stainless Steel Powder. 2017. https://www.gknpm.com/globalassets/downloads/hoeganaes/technical-library/technical-papers/am/zwiren_economic-additive-manufacturing-using-water-atomized-stainless-steel-powder.pdf/.
  • Warzel, R. T. Manufacture of Stainless Steel Powders (ASM Handbook V. 7); ASM International: Materials Park, OH, 2015; pp 421–426.
  • Dunkley, J. Atomization (ASM Handbook V. 7); ASM International: Materials Park, OH, pp 58–71 2015.
  • Persson, F.; Eliasson, A.; Jönsson, P. Prediction of Particle Size for Water Atomized Metal Powders: Parameter Study. Powder Metall. 2012, 55, 45–53. doi:10.1179/1743290111Y.0000000016
  • Bergquist, B. New Insights into Influencing Variables of Water Atomization of Iron. Powder Metall. 1999, 42, 331–343. doi:10.1179/003258999665684
  • Seki, Y.; Okamoto, S.; Takigawa, H.; Kawai, N. Effect of Atomization Variables on Powder Characteristics in the High-Pressured Water Atomization Process. Met. Powder Rep. 1990, 45, 38–40. doi:10.1016/S0026-0657(10)80014-1
  • Dietrich, S.; Wunderer, M.; Huissel, A.; Zaeh, M. F. A New Approach for a Flexible Powder Production for Additive Manufacturing. Procedia Manuf. 2016, 6, 88–95. doi:10.1016/j.promfg.2016.11.012
  • Anderson, I. E.; Terpstra, R. L. Progress toward Gas Atomization Processing with Increased Uniformity and Control. Mater. Sci. Eng. A 2002, 326, 101–109. doi:10.1016/S0921-5093(01)01427-7
  • de León, G. P.; Lamberti, V. E.; Seals, R. D.; Abu-Lebdeh, T. M.; Hamoush, S. A. Gas Atomization of Molten Metal: Part I. Numerical Modeling Conception. Am. J. Eng. Appl. Sci. 2016, 9, 303–322. doi:10.3844/ajeassp.2016.303.322
  • Neikov, O. D.; Lotsko, D. V.; Gopienko, V. G. Handbook of Non-Ferrous Metal Powders, Ch 1: Powder Characterization and Testing, 1st ed.; Elsevier Ltd: Amsterdam, 2009. doi:10.1016/C2014-0-03938-X.
  • IPMD. Nanoval Offers Extensive Range of Alloys to Metal Additive Manufacturing Market. 2016. https://www.metal-am.com/nanoval-offers-extensive-range-of-alloys-to-metal-additive-manufacturing-market/.
  • Lubanska, H. Correlation of Spray Ring Data for Gas Atomization of Liquid Metals. J. Miner. Met. Mater. Soc. 1970, 22, 45–49. doi:10.1007/BF03355938
  • Dombrowski, N.; Johns, W. R. The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets. Chem. Eng. Sci. 1963, 18, 470. doi:10.1016/0009-2509(63)80037-8
  • Wisutmethangoon, S.; Plookphol, T.; Sungkhaphaitoon, P. Production of SAC305 Powder by Ultrasonic Atomization. Powder Technol. 2011, 209, 105–111. doi:10.1016/j.powtec.2011.02.016
  • Deepu, P.; Peng, C.; Moghaddam, S. Dynamics of Ultrasonic Atomization of Droplets. Exp. Therm. Fluid Sci. 2017, 92, 243–247. doi:10.1016/j.expthermflusci.2017.11.021.
  • Taylor, G. The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to. their Planes. I. Proc. R. Soc. A 1949, 201, 192–196. doi:10.1098/rspa.1950.0052.
  • Rajan, R.; Pandit, A. B. Correlations to Predict Droplet Size in Ultrasonic Atomisation. Ultrasonics 2001, 39, 235–255. doi:10.1016/S0041-624X(01)00054-3
  • Boguslavski, Y. Y. Physical Mechanism of the Acoustic Atomization of a Liquid. Sov. Phys. Acoust. 1969, 15, 14–21.
  • Avvaru, B.; Patil, M. N.; Gogate, P. R.; Pandit, A. B. Ultrasonic Atomization : Effect of Liquid Phase Properties. Ultrasonics 2006, 44, 146–158. doi:10.1016/j.ultras.2005.09.003
  • Rayleigh, L.; Strutt, J. W. On the Instability of Jets. Proc. London. Math. Soc. 1878, s1-10, 4–13. doi:10.1112/plms/s1-10.1.4
  • Walzel, P. Liquid Atomization. Int. Chem. Eng. (A Q. J. Transl. Russ. East. Eur. Asia) 1993, 33, 6387221.
  • Davies, J. T. Drop Sizes of Emulsions Related to Turbulent Energy Dissipation Rates. Chem. Eng. Sci. 1985, 40, 839–842. doi:10.1016/0009-2509(85)85036-3
  • Li, Y.; Sisoev, G. M.; Shikhmurzaev, Y. D. Spinning Disk Atomization: Theory of the Ligament Regime. Phys. Fluids 2018, 30, 092101. doi:10.1063/1.5044429
  • Dunkley, J. Advances in Powder Metallurgy, (Chapter 1): Advances in Atomisation Techniques for the Formation of Metal Powders; Woodhead Publishing Limited: Cambridge, 2013. doi:10.1016/s0026-0657(02)80370-8.
  • Purwanto, H.; Mizuochi, T.; Akiyama, T. Prediction of Granulated Slag Properties Produced from Spinning Disk Atomizer by Mathematical Model. Mater. Trans. 2005, 46, 1324–1330. doi:10.2320/matertrans.46.1324
  • Sungkhaphaitoon, P.; Wisutmethangoon, S.; Plookphol, T. Influence of Process Parameters on Zinc Powder Produced by Centrifugal Atomisation. Mat. Res. 2017, 20, 718–724. doi:10.1590/1980-5373-mr-2015-0674
  • Shemyakina, O. A.; Sheikhalieva, Z. I.; Sheikhaliev, S. M. Obtaining Solder Powders by Centrifugal Atomization of Melt. Russ. J. Non-Ferrous Met. 2010, 51, 250–254. doi:10.3103/S1067821210030107
  • Cheruvathur, S.; Lass, E. A.; Campbell, C. E. Additive Manufacturing of 17-4 PH Stainless Steel: Post-Processing Heat Treatment to Achieve Uniform Reproducible Microstructure. JOM 2016, 68, 930–942. doi:10.1007/s11837-015-1754-4
  • Roberts, D.; Zhang, Y.; Charit, I.; Zhang, J. A Comparative Study of Microstructure and High-Temperature Mechanical Properties of 15-5 PH Stainless Steel Processed via Additive Manufacturing and Traditional Manufacturing. Prog. Addit. Manuf. 2018, 3, 183–190. doi:10.1007/s40964-018-0051-5
  • Azizi, H.; Ghiaasiaan, R.; Prager, R.; Ghoncheh, M. H.; Samk, K. A.; Lausic, A.; Byleveld, W.; Phillion, A. B. Metallurgical and Mechanical Assessment of Hybrid Additively-Manufactured Maraging Tool Steels via Selective Laser Melting. Addit. Manuf. 2019, 27, 389–397. doi:10.1016/j.addma.2019.03.025
  • Wu, A. S.; Brown, D. W.; Kumar, M.; Gallegos, G. F.; King, W. E. An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel. Metall. Mater. Trans. A 2014, 45, 6260–6270. doi:10.1007/s11661-014-2549-x
  • Wang, Z.; Palmer, T. A.; Beese, A. M. Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304L Made by Directed Energy Deposition Additive Manufacturing. Acta Mater. 2016, 110, 226–235. doi:10.1016/j.actamat.2016.03.019
  • Narvan, M.; Al-Rubaie, K. S.; Elbestawi, M. Process-Structure-Property Relationships of AISI H13 Tool Steel Processed with Selective Laser Melting. Materials 2019, 12, 2284. doi:10.3390/ma12142284
  • Haase, C.; Bültmann, J.; Hof, J.; Ziegler, S.; Bremen, S.; Hinke, C.; Schwedt, A.; Prahl, U.; Bleck, W. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel. Materials 2017, 10, 56. doi:10.3390/ma10010056
  • Khodabakhshi, F.; Farshidianfar, M. H.; Gerlich, A. P.; Nosko, M.; Trembošová, V.; Khajepour, A. Effects of Laser Additive Manufacturing on Microstructure and Crystallographic Texture of Austenitic and Martensitic Stainless Steels. Addit. Manuf. 2020, 31, 100915. doi:10.1016/j.addma.2019.100915
  • Boes, J.; Röttger, A.; Theisen, W.; Cui, C.; Uhlenwinkel, V.; Schulz, A.; Zoch, H. W.; Stern, F.; Tenkamp, J.; Walther, F. Gas Atomization and Laser Additive Manufacturing of Nitrogen-Alloyed Martensitic Stainless Steel. Addit. Manuf. 2020, 34, 101379. doi:10.1016/j.addma.2020.101379
  • Davidson, K. P.; Singamneni, S. Magnetic Characterization of Selective Laser-Melted Saf 2507 Duplex Stainless Steel. JOM 2017, 69, 569–574. doi:10.1007/s11837-016-2193-6
  • Walker, J. C.; Berggreen, K. M.; Jones, A. R.; Sutcliffe, C. J. Fabrication of Fe-Cr-Al Oxide Dispersion Strengthened pm2000 Alloy Using Selective Laser Melting. Adv. Eng. Mater. 2009, 11, 541–546. doi:10.1002/adem.200800407
  • Yang, X.; Liu, J.; Cui, X.; Jin, G.; Liu, Z.; Chen, Y.; Feng, X. Effect of Remelting on Microstructure and Magnetic Properties of Fe-Co-Based Alloys Produced by Laser Additive Manufacturing. J. Phys. Chem. Solids 2019, 130, 210–216. doi:10.1016/j.jpcs.2019.03.001
  • Garibaldi, M.; Ashcroft, I.; Lemke, J. N.; Simonelli, M.; Hague, R. Effect of Annealing on the Microstructure and Magnetic Properties of Soft Magnetic Fe-Si Produced via Laser Additive Manufacturing. Scr. Mater. 2018, 142, 121–125. doi:10.1016/j.scriptamat.2017.08.042
  • Harrison, N. J.; Todd, I.; Mumtaz, K. Thermal Expansion Coefficients in Invar Processed by Selective Laser Melting. J. Mater. Sci. 2017, 52, 10517–10525. doi:10.1007/s10853-017-1169-4
  • Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E. A. Steels in Additive Manufacturing: A Review of Their Microstructure and Properties. Mater. Sci. Eng. A 2020, 772, 138633. doi:10.1016/j.msea.2019.138633
  • Ziętala, M.; Durejko, T.; Polański, M.; Kunce, I.; Płociński, T.; Zieliński, W.; Łazińska, M.; Stępniowski, W.; Czujko, T.; Kurzydłowski, K. J.; Bojar, Z. The Microstructure, Mechanical Properties and Corrosion Resistance of 316 L Stainless Steel Fabricated Using Laser Engineered Net Shaping. Mater. Sci. Eng. A 2016, 677, 1–10. doi:10.1016/j.msea.2016.09.028
  • Yadollahi, A.; Shamsaei, N.; Thompson, S. M.; Seely, D. W. Effects of Process Time Interval and Heat Treatment on the Mechanical and Microstructural Properties of Direct Laser Deposited 316L Stainless Steel. Mater. Sci. Eng. A 2015, 644, 171–183. doi:10.1016/j.msea.2015.07.056
  • Abd-Elghany, K.; Bourell, D. L. Property Evaluation of 304L Stainless Steel Fabricated by Selective Laser Melting, Rapid. Prototyp. J. 2012, 18, 420–428. doi:10.1108/13552541211250418
  • Di Schino, A.; Mecozzi, M. G.; Barteri, M.; Kenny, J. M. Solidification Mode and Residual Ferrite in Low-Ni Austenitic Stainless Steels. J. Mater. Sci. 2000, 35, 375–380. doi:10.1023/A:1004774130483
  • Inoue, H.; Koseki, T. Solidification Mechanism of Austenitic Stainless Steels Solidified with Primary Ferrite. Acta Mater. 2017, 124, 430–436. doi:10.1016/j.actamat.2016.11.030
  • Suutala, N.; Takalo, T.; Moisio, T. Ferritic-Austenitic Solidification Mode in Austenitic Stainless Steel Welds. Metall. Trans. A 1980, 11, 717–725. doi:10.1007/BF02661201/METRICS.
  • Tiller, W. A.; Jackson, K. A.; Rutter, J. W.; Chalmers, B. The Redistribution of Solute Atoms during the Solidification of Metals. Acta Metall. 1953, 1, 428–437. doi:10.1016/0001-6160(53)90126-6
  • Hung, T. S.; Chen, T. C.; Chen, H. Y.; Tsay, L. W. The Effects of Cr and Ni Equivalents on the Microstructure and Corrosion Resistance of Austenitic Stainless Steels Fabricated by Laser Powder Bed Fusion. J. Manuf. Process 2023, 90, 69–79. doi:10.1016/j.jmapro.2023.01.081
  • Tarasov, S. Y.; Filippov, A. V.; Savchenko, N. L.; Fortuna, S. V.; Rubtsov, V. E.; Kolubaev, E. A.; Psakhie, S. G. Effect of Heat Input on Phase Content, Crystalline Lattice Parameter, and Residual Strain in Wire-Feed Electron Beam Additive Manufactured 304 Stainless Steel. Int. J. Adv. Manuf. Technol. 2018, 99, 2353–2363. doi:10.1007/s00170-018-2643-0
  • Heiden, M. J.; Deibler, L. A.; Rodelas, J. M.; Koepke, J. R.; Tung, D. J.; Saiz, D. J.; Jared, B. H. Evolution of 316L Stainless Steel Feedstock Due to Laser Powder Bed Fusion Process. Addit. Manuf. 2019, 25, 84–103. doi:10.1016/j.addma.2018.10.019
  • Super Duplex Stainless Steel EN 1.4410 - UNS S32750, Valbruna Nord. n.d.; pp 1–2. https://www.valbrunanordic.se/en/.
  • Kies, F.; Köhnen, P.; Wilms, M. B.; Brasche, F.; Pradeep, K. G.; Schwedt, A.; Richter, S.; Weisheit, A.; Schleifenbaum, J. H.; Haase, C. Design of High-Manganese Steels for Additive Manufacturing Applications with Energy-Absorption Functionality. Mater. Des. 2018, 160, 1250–1264. doi:10.1016/j.matdes.2018.10.051
  • Niendorf, T.; Brenne, F.; Hoyer, P.; Schwarze, D.; Schaper, M.; Grothe, R.; Wiesener, M.; Grundmeier, G.; Maier, H. J. Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications. Metall. Mater. Trans. A 2015, 46, 2829–2833. doi:10.1007/s11661-015-2932-2
  • Shahriari, A.; Khaksar, L.; Nasiri, A.; Hadadzadeh, A.; Amirkhiz, B. S.; Mohammadi, M. Microstructure and Corrosion Behavior of a Novel Additively Manufactured Maraging Stainless Steel. Electrochim. Acta 2020, 339, 135925. doi:10.1016/j.electacta.2020.135925
  • Hadadzadeh, A.; Shahriari, A.; Amirkhiz, B. S.; Li, J.; Mohammadi, M. Additive Manufacturing of an Fe–Cr–Ni–Al Maraging Stainless Steel: Microstructure Evolution, Heat Treatment, and Strengthening Mechanisms. Mater. Sci. Eng. A 2020, 787, 139470. doi:10.1016/j.msea.2020.139470
  • Bodziak, S.; Al-Rubaie, K. S.; Valentina, L. D.; Lafratta, F. H.; Santos, E. C.; Zanatta, A. M.; Chen, Y. Precipitation in 300 Grade Maraging Steel Built by Selective Laser Melting: Aging at 510 °C for 2 h. Mater. Charact. 2019, 151, 73–83. doi:10.1016/j.matchar.2019.02.033
  • Jägle, E. A.; Sheng, Z.; Kürnsteiner, P.; Ocylok, S.; Weisheit, A.; Raabe, D. Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser Additive Manufacturing. Materials 2016, 10, 8. doi:10.3390/ma10010008
  • Xue, L.; Chen, J.; Wang, S.-H. Freeform Laser Consolidated H13 and CPM 9V Tool Steels. Metallogr. Microstruct. Anal. 2013, 2, 67–78. doi:10.1007/s13632-013-0061-0
  • Tatlock, G. J.; Dawson, K.; Boegelein, T.; Moustoukas, K.; Jones, A. R. ScienceDirect High Resolution Microstructural Studies of the Evolution of Nano- Scale, Yttrium-Rich Oxides in ODS Steels Subjected to Ball Milling, Selective Laser Melting or Friction Stir Welding. Mater. Today Proc. 2016, 3, 3086–3093. doi:10.1016/j.matpr.2016.09.024
  • Borkar, T.; Conteri, R.; Chen, X.; Ramanujan, R. V.; Banerjee, R.; Conteri, R.; Chen, X.; Ramanujan, R. V.; Laser, R. B. Laser Additive Processing of Functionally-Graded Fe – Si – B – Cu – Nb Soft Magnetic Materials. Mater. Manuf. Process 2017, 32, 1581–1587. doi:10.1080/10426914.2016.1244849
  • Zhang, Y. R.; Ramanujan, R. V. Microstructural Observations of the Crystallization of Amorphous Fe – Si – B Based Magnetic Alloys. Thin Solid Films 2006, 505, 97–102. doi:10.1016/j.tsf.2005.10.016
  • Lashgari, H. R.; Chu, D.; Xie, S.; Sun, H.; Ferry, M.; Li, S. Composition Dependence of the Microstructure and Soft Magnetic Properties of Fe-Based Amorphous/Nanocrystalline Alloys : A Review Study. J. Non-Cryst. Solids 2014, 391, 61–82. doi:10.1016/j.jnoncrysol.2014.03.010
  • Rancourt, D. G.; Dang, M. Relation between Anomalous Magnetovolume Behavior and Magnetic Frustration in Invar Alloys. Phys. Rev. B Condens. Matter. 1996, 54, 12225–12231. doi:10.1103/physrevb.54.12225
  • Sutton, A. T.; Kriewall, C. S.; Leu, M. C.; Newkirk, J. W. Powder Characterisation Techniques and Effects of Powder Characteristics on Part Properties in Powder-Bed Fusion Processes. Virtual Phys. Prototyp. 2017, 12, 3–29. doi:10.1080/17452759.2016.1250605
  • ASTM. B243: Standard Terminology of Powder Metallurgy. 2019. doi:10.1520/B0243-19.
  • Anderson, I. E.; White, E. M. H.; Dehoff, R. Feedstock Powder Processing Research Needs for Additive Manufacturing Development. Curr. Opin. Solid State Mater. Sci. 2018, 22, 8–15. doi:10.1016/j.cossms.2018.01.002
  • Mirzababaei, S.; Pasebani, S. A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. J. Manuf. JMMP 2019, 3, 82. doi:10.3390/jmmp3030082
  • Sames, W. J.; List, F. A.; Pannala, S.; Dehoff, R. R.; Babu, S. S. The Metallurgy and Processing Science of Metal Additive Manufacturing. Int. Mater. Rev. 2016, 61, 315–360. doi:10.1080/09506608.2015.1116649
  • Scipioni Bertoli, U.; Guss, G.; Wu, S.; Matthews, M. J.; Schoenung, J. M. In-Situ Characterization of Laser-Powder Interaction and Cooling Rates through High-Speed Imaging of Powder Bed Fusion Additive Manufacturing. Mater. Des. 2017, 135, 385–396. doi:10.1016/j.matdes.2017.09.044
  • Klar, E.; Fesko, J. W. Powder Metallurgy Handbook; American Society for Metals, Material Park, OH, 1984; Vol. 7.
  • Anderson, I. E.; White, E. M. H.; Tiarks, J. A.; Riedemann, T.; Byrd, D. J.; Anderson, R. D.; Regele, J. D. Fundamental Progress toward Increased Powder Yields from Gas Atomization for Additive Manufacturing. Adv. Powder Metall. Part Mater. 2017 - Proc. 2017 Int. Conf. Powder Metall. Part. Mater., 2017, 138–146.
  • Riabov, D.; Hryha, E.; Rashidi, M.; Bengtsson, S.; Nyborg, L. Effect of Atomization on Surface Oxide Composition in 316L Stainless Steel Powders for Additive Manufacturing. Surf. Interface Anal. 2020, 52, 694–706. doi:10.1002/sia.6846
  • Hryha, E.; Shvab, R.; Gruber, H.; Leicht, A.; Nyborg, L. Surface Oxide State on Metal Powder and Its Changes during Additive Manufacturing: An Overview. Proc. Euro PM 2017 Int. Powder Metall. Congr. Exhib., 2018.
  • Tunberg, T.; Nyborg, L. Surface Reactions during Water Atomisation and Sintering of Austenitic Stainless Steel Powder. Powder Metall. 1995, 38, 120–130. doi:10.1179/pom.1995.38.2.120
  • Morrow, B. M.; Lienert, T. J.; Knapp, C. M.; Sutton, J. O.; Brand, M. J.; Pacheco, R. M.; Livescu, V.; Carpenter, J. S.; Gray, G. T. Impact of Defects in Powder Feedstock Materials on Microstructure of 304L and 316L Stainless Steel Produced by Additive Manufacturing. Metall. Mater. Trans. A 2018, 49, 3637–3650. doi:10.1007/s11661-018-4661-9
  • Yan, J.; Zhou, Y.; Gu, R.; Zhang, X.; Quach, W. M.; Yan, M. A Comprehensive Study of Steel Powders (316L, H13, P20 and 18Ni300) for Their Selective Laser Melting Additive Manufacturing. Metals 2019, 9, 86. doi:10.3390/met9010086
  • Opatová, K.; Zetková, I.; Kucerová, L. Particles of Virgin and Re-Used MS1 Maraging Steel. Materials 2020, 13, 15. doi:10.3390/ma13040956
  • AlMangour, B.; Yang, J. M. Improving the Surface Quality and Mechanical Properties by Shot-Peening of 17-4 Stainless Steel Fabricated by Additive Manufacturing. Mater. Des. 2016, 110, 914–924. doi:10.1016/j.matdes.2016.08.037
  • Cui, C.; Uhlenwinkel, V.; Schulz, A.; Zoch, H. W. Austenitic Stainless Steel Powders with Increased Nitrogen Content for Laser Additive Manufacturing. Metals 2019, 10, 61. doi:10.3390/met10010061
  • Dilip, J. J. S.; Ram, G. D. J.; Starr, T. L.; Stucker, B. Selective Laser Melting of HY100 Steel: Process Parameters, Microstructure and Mechanical Properties. Addit. Manuf. 2017, 13, 49–60. doi:10.1016/j.addma.2016.11.003
  • Benson, J. M.; Snyders, E. The Need for Powder Characterisation in the Additive Manufacturing. sajie 2015, 26, 104–114. doi:10.7166/26-2-951
  • Karapatis, N. P.; Egger, G.; Gygax, P. E.; Glardon, R.; Karapatis, N. P. Optimization of Powder Layer Density in Selective Laser Sintering. 10th Solid Free. Fabr. Symp. (SFF), Univ. Texas, Austin 1999; pp 255–263. http://infoscience.epfl.ch/record/153069.
  • Gong, X.; Cheng, B.; Price, S.; Chou, K. Powder-Bed Electronbeam-Melting Additive Manufacturing: Powder Characterization, Process Simulation and Metrology. ASME Early Career Tech. Conf. (ECTC), Birmingham, AL, USA, 2013; pp 59–66.
  • Slotwinski, J. A.; Garboczi, E. J.; Stutzman, P. E.; Ferraris, C. F.; Watson, S. S.; Peltz, M. A. Characterization of Metal Powders Used for Additive Manufacturing. J. Res. Natl. Inst. Stand. Technol. 2014, 119, 460–493. doi:10.6028/jres.119.018.
  • Fonseca, E. B.; Gabriel, A. H. G.; Araújo, L. C.; Santos, P. L. L.; Campo, K. N.; Lopes, E. S. N. Assessment of Laser Power and Scan Speed Influence on Microstructural Features and Consolidation of AISI H13 Tool Steel Processed by Additive Manufacturing. Addit. Manuf. 2020, 34, 101250. doi:10.1016/j.addma.2020.101250
  • Irrinki, H.; Jangam, J. S. D.; Pasebani, S.; Badwe, S.; Stitzel, J.; Kate, K.; Gulsoy, O.; Atre, S. V. Effects of Particle Characteristics on the Microstructure and Mechanical Properties of 17-4 PH Stainless Steel Fabricated by Laser-Powder Bed Fusion. Powder Technol. 2018, 331, 192–203. doi:10.1016/j.powtec.2018.03.025
  • Sutton, A. T.; Kriewall, C. S.; Leu, M. C.; Newkirk, J. W. Powders for Additive Manufacturing Processes: Characterization Techniques and Effects on Part Properties, Solid Free. Fabr. 2016 Proc. 26th Annu. Int. Solid Free. Fabr. Symp. – An Addit. Manuf. Conf., 2016; pp 1004–1030.
  • Bai, Y.; Yang, Y.; Wang, D.; Zhang, M. Influence Mechanism of Parameters Process and Mechanical Properties Evolution Mechanism of Maraging Steel 300 by Selective Laser Melting. Mater. Sci. Eng. A 2017, 703, 116–123. doi:10.1016/j.msea.2017.06.033
  • Bhardwaj, T.; Shukla, M. Effect of Laser Scanning Strategies on Texture, Physical and Mechanical Properties of Laser Sintered Maraging Steel. Mater. Sci. Eng. A 2018, 734, 102–109. doi:10.1016/j.msea.2018.07.089
  • Vock, S.; Klöden, B.; Kirchner, A.; Weißgärber, T.; Kieback, B. Powders for Powder Bed Fusion: A Review. Prog. Addit. Manuf. 2019, 4, 383–397. doi:10.1007/s40964-019-00078-6
  • ASTM D7481: Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders using a Graduated Cylinder, 2018. doi:10.1520/D7481-18.
  • Metallic Powders-Determination of Apparent Density. ISO, D., 3923, 2008.
  • Metallic Powders-Determination of Tap Density. ISO, D., 3953, 2011.
  • ASTM B703: Standard Test Method for Apparent Density of Metal Powders and Related Compounds Using the Arnold Meter, 2017. doi:10.1520/B0703-17.
  • ASTM B329: Standard Test Method for Apparent Density of Metal Powders and Compounds Using the Scott Volumeter, 2020. doi:10.1520/B0329-20.
  • ASTM B213: Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel, 2020. doi:10.1520/B0213-20.
  • ASTM B964: Standard Test Methods for Flow Rate of Metal Powders Using the Carney Funnel, 2016. doi:10.1520/B0964-16.
  • Powderlab Analytical Services: Carney Flow Testing for Metal Powders, 2020; pp 1–2. www.lpwtechnology.com/.
  • Kulkarni, P. A.; Berry, R. J.; Bradley, M. S. A. Review of the Flowability Measuring Techniques for Powder Metallurgy Industry. Proc. Inst. Mech. Eng. E J. Process Mech. Eng. 2010, 224, 159–168. doi:10.1243/09544089JPME299
  • Spierings, A. B.; Voegtlin, M.; Bauer, T.; Wegener, K. Powder Flowability Characterisation Methodology for Powder-Bed-Based Metal Additive Manufacturing. Prog. Addit. Manuf. 2016, 1, 9–20. doi:10.1007/s40964-015-0001-4
  • ISO 13517. Metallic Powders-Determination of Flow Rate by Means of a Calibrated Funnel (Gustavsson Flowmeter); 2020.
  • Rabin, B. H.; Smolik, G. R.; Korth, G. E. Characterization of Entrapped Gases in Rapidly Solidified Powders. Mater. Sci. Eng. A 1990, 124, 1–7. doi:10.1016/0921-5093(90)90328-Z
  • Dunning, J. S.; Doan, R. C. Microstructural Characteristics and Gas Content of Rapidly Solidified Powders. J. Mater. Sci. 1994, 29, 4268–4272. doi:10.1007/BF00414209
  • Sola, A.; Nouri, A. Microstructural Porosity in Additive Manufacturing: The Formation and Detection of Pores in Metal Parts Fabricated by Powder Bed Fusion. J. Adv. Manuf. Process 2019, 1, 1–21. doi:10.1002/amp2.10021.
  • Charles, A.; Elkaseer, A.; Thijs, L.; Hagenmeyer, V.; Scholz, S. Effect of Process Parameters on the Generated Surface Roughness of down-Facing Surfaces in Selective Laser Melting. Appl. Sci. 2019, 9, 1256. doi:10.3390/app9061256
  • Yakout, M.; Cadamuro, A.; Elbestawi, M. A.; Veldhuis, S. C. The Selection of Process Parameters in Additive Manufacturing for Aerospace Alloys. Int. J. Adv. Manuf. Technol. 2017, 92, 2081–2098. doi:10.1007/s00170-017-0280-7
  • Leach, R.; Carmignato, S. Precision Metal Additive Manufacturing, 1st ed.; CRC Press: Boca Raton, FL, 2020. doi:10.1201/9780429436543.
  • Oliveira, J. P.; Lalonde, A. D.; Ma, J. Processing Parameters in Laser Powder Bed Fusion Metal Additive Manufacturing. Mater. Des. 2020, 193, 108762. doi:10.1016/j.matdes.2020.108762
  • Shamsaei, N.; Yadollahi, A.; Bian, L.; Thompson, S. M. An Overview of Direct Laser Deposition for Additive Manufacturing ; Part II : Mechanical Behavior, Process Parameter Optimization and Control. Addit. Manuf. 2015, 8, 12–35. doi:10.1016/j.addma.2015.07.002
  • Singh, P.; Dutta, D. Multi-Direction Slicing for. J. Comput. Inf. Sci. Eng. 2001, 1, 129–142. doi:10.1115/1.1375816
  • Choi, J.; Chang, Y. Characteristics of Laser Aided Direct Metal/Material Deposition Process for Tool Steel. Int. J. Mach. Tools Manuf. 2005, 45, 597–607. doi:10.1016/j.ijmachtools.2004.08.014
  • Shamsdini, S. A. R.; Ghoncheh, M. H.; Sanjari, M.; Pirgazi, H.; Amirkhiz, B. S.; Kestens, L.; Mohammadi, M. Plastic Deformation throughout Strain-Induced Phase Transformation in Additively Manufactured Maraging Steels. Mater. Des. 2021, 198, 109289. doi:10.1016/j.matdes.2020.109289
  • Ma, M.; Wang, Z.; Gao, M.; Zeng, X. Layer Thickness Dependence of Performance in High-Power Selective Laser Melting of 1Cr18Ni9Ti Stainless Steel. J. Mater. Process. Technol. 2015, 215, 142–150. doi:10.1016/j.jmatprotec.2014.07.034
  • Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties. Mater. Des. 2018, 144, 98–128. doi:10.1016/j.matdes.2018.02.018
  • Dourandish, M.; Godlinski, D.; Simchi, A. 3D Printing of Biocompatible PM-Materials, Mater. MSF 2007, 534–536, 453–456. doi:10.4028/www.scientific.net/MSF.534-536.453
  • Safronov, V. A.; Khmyrov, R. S.; Kotoban, D. V.; Gusarov, A. V. Distortions and Residual Stresses at Layer-by-Layer Additive Manufacturing by Fusion. J. Manuf. Sci. Eng. Trans. ASME 2017, 139, 3–8. doi:10.1115/1.4034714
  • Majumdar, J. D.; Manna, I. Laser-Assisted Fabrication of Materials, 1st ed.; Springer-Verlag: Berlin Heidelberg, 2013. doi:10.1007/978-3-642-28359-8.
  • Lee, H.; Lim, C. H. J.; Low, M. J.; Tham, N.; Murukeshan, V. M.; Kim, Y. J. Lasers in Additive Manufacturing: A Review. Int. J. Precis. Eng. Manuf. Green. Tech. 2017, 4, 307–322. doi:10.1007/s40684-017-0037-7
  • Tolochko, N.; Laoui, T.; Khlopkov, Y.; Mozzharov, S.; Titov, V.; Ignatiev, M. Absorptance of Powder Materials Suitable for Laser Sintering, Rapid. Prototyp. J. 2000, 6, 155–161. doi:10.1108/13552540010337029
  • Peretyagin, P. Y.; Zhirnov, I. V.; Vladimirov, Y. G.; Tarasova, T. V.; Okun’kova, A. A. Track Geometry in Selective Laser Melting. Russ. Eng. Res. 2015, 35, 473–476. doi:10.3103/S1068798X15060143
  • Roehling, T. T.; Wu, S. S. Q.; Khairallah, S. A.; Roehling, J. D.; Soezeri, S. S.; Crumb, M. F.; Matthews, M. J. Modulating Laser Intensity Profile Ellipticity for Microstructural Control during Metal Additive Manufacturing. Acta Mater. 2017, 128, 197–206. doi:10.1016/j.actamat.2017.02.025
  • Mudge, R. P.; Wald, N. R. Laser Engineered Net Shaping Advances Additive Manufacturing and Repair. Weld. J. 2007, 86, 44–48.
  • Safdar, A.; He, H. Z.; Wei, L.; Snis, A.; Chavez de Paz, L. E. Effect of Process Parameters Settings and Thickness on Surface Roughness of EBM Produced Ti-6Al-4V. Rapid Prototyp. J. 2012, 18, 401–408. doi:10.1108/13552541211250391
  • Bi, G.; Sun, C. N.; Gasser, A. Study on Influential Factors for Process Monitoring and Control in Laser Aided Additive Manufacturing. J. Mater. Process. Technol. 2013, 213, 463–468. doi:10.1016/j.jmatprotec.2012.10.006
  • Helmer, H. E.; Körner, C.; Singer, R. F. Additive Manufacturing of Nickel-Based Superalloy Inconel 718 by Selective Electron Beam Melting: Processing Window and Microstructure. J. Mater. Res. 2014, 29, 1987–1996. doi:10.1557/jmr.2014.192
  • Scipioni Bertoli, U.; Wolfer, A. J.; Matthews, M. J.; Delplanque, J. P. R.; Schoenung, J. M. On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting. Mater. Des. 2017, 113, 331–340. doi:10.1016/j.matdes.2016.10.037
  • Yadroitsev, I.; Gusarov, A.; Yadroitsava, I.; Smurov, I. Single Track Formation in Selective Laser Melting of Metal Powders. J. Mater. Process. Technol. 2010, 210, 1624–1631. doi:10.1016/j.jmatprotec.2010.05.010
  • Zhu, H. H.; Lu, L.; Fuh, J. Y. H. Study on Shrinkage Behaviour of Direct Laser Sintering Metallic Powder. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2006, 220, 183–190. doi:10.1243/095440505X32995
  • Goodridge, R.; Ziegelmeier, S. Powder Bed Fusion of Polymers. Laser Addit. Manuf. 2017, 10, 181–204. doi:10.1016/B978-0-08-100433-3.00007-5.
  • Sun, S.; Brandt, M.; Easton, M. Powder Bed Fusion Processes: An Overview. Laser Addit. Manuf. 2017, 2017, 55–77. doi:10.1016/B978-0-08-100433-3.00002-6.
  • Yadroitsev, I.; Yadroitsava, I. Evaluation of Residual Stress in Stainless Steel 316L and Ti6Al4V Samples Produced by Selective Laser Melting. Virtual Phys. Prototyp. 2015, 10, 67–76. doi:10.1080/17452759.2015.1026045
  • Ghoncheh, M. H.; Sanjari, M.; Cyr, E.; Kelly, J.; Pirgazi, H.; Shakerin, S.; Hadadzadeh, A.; Amirkhiz, B. S.; Kestens, L. A. I.; Mohammadi, M. On the Solidification Characteristics, Deformation, and Functionally Graded Interfaces in Additively Manufactured Hybrid Aluminum Alloys. Int. J. Plast. 2020, 133, 102840. doi:10.1016/j.ijplas.2020.102840
  • Zhang, B.; Coddet, C. Selective Laser Melting of Iron Powder: Observation of Melting Mechanism and Densification Behavior via Point-Track-Surface-Part Research. J. Manuf. Sci. Eng. Trans. ASME 2016, 138, 1–9. doi:10.1115/1.4031366
  • Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A. D. Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging. Science. 2019, 363, 849–852. doi:10.1126/science.aav4687
  • Rombouts, M.; Kruth, J. P.; Froyen, L.; Mercelis, P. Fundamentals of Selective Laser Melting of Alloyed Steel Powders, CIRP. Ann. Manuf. Technol. 2006, 55, 187–192. doi:10.1016/S0007-8506(07)60395-3
  • Qiu, C.; Panwisawas, C.; Ward, M.; Basoalto, H. C.; Brooks, J. W.; Attallah, M. M. On the Role of Melt Flow into the Surface Structure and Porosity Development during Selective Laser Melting. Acta Mater. 2015, 96, 72–79. doi:10.1016/j.actamat.2015.06.004
  • Kempen, K.; Yasa, E.; Thijs, L.; Kruth, J. P.; Van Humbeeck, J. Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel. Phys. Procedia 2011, 12, 255–263. doi:10.1016/j.phpro.2011.03.033
  • Gu, H.; Gong, H.; Pal, D.; Rafi, K.; Starr, T.; Stucker, B. Influences of Energy Density on Porosity and Microstructure of Selective Laser Melted 17-4PH Stainless Steel. 24th Annu. Int. Solid Free. Fabr. Symp., 2013; pp 474–489.
  • Cloots, M.; Uggowitzer, P. J.; Wegener, K. Investigations on the Microstructure and Crack Formation of IN738LC Samples Processed by Selective Laser Melting Using Gaussian and Doughnut Profiles. Mater. Des. 2016, 89, 770–784. doi:10.1016/j.matdes.2015.10.027
  • Mukherjee, T.; Wei, H. L.; De, A.; DebRoy, T. Heat and Fluid Flow in Additive Manufacturing – Part II: Powder Bed Fusion of Stainless Steel, and Titanium, Nickel and Aluminum Base Alloys. Comput. Mater. Sci. 2018, 150, 369–380. doi:10.1016/j.commatsci.2018.04.027
  • Cheng, B.; Shrestha, S.; Chou, K. Stress and Deformation Evaluations of Scanning Strategy Effect in Selective Laser Melting. Addit. Manuf. 2016, 12, 240–251. doi:10.1016/j.addma.2016.05.007
  • Ren, K.; Chew, Y.; Fuh, J. Y. H.; Zhang, Y. F.; Bi, G. J. Thermo-Mechanical Analyses for Optimized Path Planning in Laser Aided Additive Manufacturing Processes. Mater. Des. 2019, 162, 80–93. doi:10.1016/j.matdes.2018.11.014
  • Kudzal, A.; McWilliams, B.; Hofmeister, C.; Kellogg, F.; Yu, J.; Taggart-Scarff, J.; Liang, J. Effect of Scan Pattern on the Microstructure and Mechanical Properties of Powder Bed Fusion Additive Manufactured 17-4 Stainless Steel. Mater. Des. 2017, 133, 205–215. doi:10.1016/j.matdes.2017.07.047
  • Roy, S.; Silwal, B.; Nycz, A.; Noakes, M.; Cakmak, E.; Nandwana, P.; Yamamoto, Y. Investigating the Effect of Different Shielding Gas Mixtures on Microstructure and Mechanical Properties of 410 Stainless Steel Fabricated via Large Scale Additive Manufacturing ⋆. Addit. Manuf. 2021, 38, 101821. doi:10.1016/j.addma.2020.101821
  • Reutzel, E. W.; Nassar, A. R. A Survey of Sensing and Control Systems for Machine and Process Monitoring of Directedenergy, Metal-Based Additive Manufacturing. Rapid Prototyp. J. 2015, 21, 159–167. doi:10.1108/RPJ-12-2014-0177
  • Ladewig, A.; Schlick, G.; Fisser, M.; Schulze, V.; Glatzel, U. Influence of the Shielding Gas Flow on the Removal of Process by-Products in the Selective Laser Melting Process. Addit. Manuf. 2016, 10, 1–9. doi:10.1016/j.addma.2016.01.004
  • Simonelli, M.; Aboulkhair, N.; Maskery, I.; Tuck, C.; Ashcroft, I.; Everitt, N.; Wildman, R.; Hague, R. Aspects of the Process and Material Relationships in the Selective Laser Melting of Aluminium Alloys. TMS 2015 144th Annu. Meet. Exhib., 2015, pp 397–404. doi:10.1007/978-3-319-48127-2.
  • Reijonen, J.; Revuelta, A.; Riipinen, T.; Ruusuvuori, K.; Puukko, P. On the Effect of Shielding Gas Flow on Porosity and Melt Pool Geometry in Laser Powder Bed Fusion Additive Manufacturing. Addit. Manuf. 2020, 32, 101030. doi:10.1016/j.addma.2019.101030
  • Ebrahimnia, M.; Goodarzi, M.; Nouri, M.; Sheikhi, M. Study of the Effect of Shielding Gas Composition on the Mechanical Weld Properties of Steel ST 37-2 in Gas Metal Arc Welding. Mater. Des. 2009, 30, 3891–3895. doi:10.1016/j.matdes.2009.03.031
  • Chen, C.; Xie, Y.; Yan, X.; Yin, S.; Fukanuma, H.; Huang, R.; Zhao, R.; Wang, J.; Ren, Z.; Liu, M.; Liao, H. Effect of Hot Isostatic Pressing (HIP) on Microstructure and Mechanical Properties of Ti6Al4V Alloy Fabricated by Cold Spray Additive Manufacturing. Addit. Manuf. 2019, 27, 595–605. doi:10.1016/j.addma.2019.03.028
  • Das, S. On Some Physical Aspects of Process Control in Direct Selective Laser Sintering of Metals Part I. Int. Solid Free. Fabr. Symp., 2001; pp 85–93.
  • Kruth, J. P.; Froyen, L.; Rombouts, M.; Van Vaerenbergh, J.; Mercells, P. New Ferro Powder for Selective Laser Sintering of Dense Parts. CIRP Ann. Manuf. Technol. 2003, 52, 139–142. doi:10.1016/S0007-8506(07)60550-2
  • Nezhadfar, P.; Masoomi, M.; Thompson, S.; Phan, N.; Shamsaei, N. Solid Freeform Fabrication 2019: Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2019, Solid Free. Fabr. 2019 Proc. 30th Annu. Int. Solid Free. Fabr. Symp. - an Addit. Manuf. Conf. SFF 2019, 2019; pp 1301–1310.
  • Montgomery, C.; Farnin, C.; Mellos, G.; Brand, M.; Pacheco, R.; Carpenter, J. Effect of Shield Gas on Surface Finish of Laser Powder Bed Produced Parts, Solid Free. Fabr. 2018 Proc. 29th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2018, 2020; pp 438–444.
  • Fukumoto, S.; Kurz, W. Solidification Phase and Microstructure Selection Maps for Fe-Cr-Ni Alloys. ISIJ Int. 1999, 39, 1270–1279. doi:10.2355/isijinternational.39.1270
  • Matthews, M. J.; Roehling, T. T.; Khairallah, S. A.; Tumkur, T. U.; Guss, G.; Shi, R.; Roehling, J. D.; Smith, W. L.; Vrancken, B. K.; Ganeriwala, R. K.; McKeown, J. T. Controlling Melt Pool Shape, Microstructure and Residual Stress in Additively Manufactured Metals Using Modified Laser Beam Profiles. Procedia CIRP 2020, 94, 200–204. doi:10.1016/j.procir.2020.09.038
  • Khairallah, S. A.; Anderson, A. Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder. J. Mater. Process. Technol. 2014, 214, 2627–2636. doi:10.1016/j.jmatprotec.2014.06.001
  • Kumar, A.; Dutta, P. A Rayleigh Number Based Dendrite Fragmentation Criterion for Detachment of Solid Crystals during Solidification. J. Phys. D: Appl. Phys. 2008, 41, 155501. doi:10.1088/0022-3727/41/15/155501
  • Andreau, O.; Koutiri, I.; Peyre, P.; Penot, J. D.; Saintier, N.; Pessard, E.; De Terris, T.; Dupuy, C.; Baudin, T. Texture Control of 316L Parts by Modulation of the Melt Pool Morphology in Selective Laser Melting. J. Mater. Process. Technol. 2019, 264, 21–31. doi:10.1016/j.jmatprotec.2018.08.049
  • Riemer, A.; Leuders, S.; Thöne, M.; Richard, H. A.; Tröster, T.; Niendorf, T. On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting. Eng. Fract. Mech. 2014, 120, 15–25. doi:10.1016/J.ENGFRACMECH.2014.03.008.
  • Suryawanshi, J.; Prashanth, K. G.; Ramamurty, U. Mechanical Behavior of Selective Laser Melted 316L Stainless Steel. Mater. Sci. Eng. A 2017, 696, 113–121. doi:10.1016/J.MSEA.2017.04.058.
  • Zhong, Y.; Liu, L.; Wikman, S.; Cui, D.; Shen, Z. Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting. J. Nucl. Mater. 2016, 470, 170–178. doi:10.1016/j.jnucmat.2015.12.034
  • Saeidi, K.; Alvi, S.; Lofaj, F.; Petkov, V. I.; Akhtar, F. Advanced Mechanical Strength in Post Heat Treated SLM 2507 at Room and High Temperature Promoted by Hard/Ductile Sigma Precipitates. Metals 2019, 9, 199. doi:10.3390/met9020199
  • Saeidi, K.; Kevetkova, L.; Lofaj, F.; Shen, Z. Novel Ferritic Stainless Steel Formed by Laser Melting from Duplex Stainless Steel Powder with Advanced Mechanical Properties and High Ductility. Mater. Sci. Eng. A 2016, 665, 59–65. doi:10.1016/j.msea.2016.04.027
  • Eriksson, M.; Lervåg, M.; Sørensen, C.; Robertstad, A.; Brønstad, B. M.; Nyhus, B.; Aune, R.; Ren, X.; Akselsen, O. M. Additive Manufacture of Superduplex Stainless Steel Using WAAM. MATEC Web Conf. 2018, 188, 03014. doi:10.1051/matecconf/201818803014
  • Farshidianfar, M. H.; Khodabakhshi, F.; Khajepour, A.; Gerlich, A. P. Closed-Loop Deposition of Martensitic Stainless Steel during Laser Additive Manufacturing to Control Microstructure and Mechanical Properties. Opt. Lasers Eng. 2021, 145, 106680. doi:10.1016/j.optlaseng.2021.106680
  • Alam, M. K.; Edrisy, A.; Urbanic, J.; Pineault, J. Microhardness and Stress Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel. J. Mater. Eng. Perform. 2017, 26, 1076–1084. doi:10.1007/s11665-017-2541-x
  • Zhao, X.; Wei, Q.; Song, B.; Liu, Y.; Luo, X.; Wen, S.; Shi, Y. Fabrication and Characterization of AISI 420 Stainless Steel Using Selective Laser Melting. Mater. Manuf. Process 2015, 30, 1283–1289. doi:10.1080/10426914.2015.1026351
  • Hunt, J.; Derguti, F.; Todd, I. Selection of Steels Suitable for Additive Layer Manufacturing. Ironmak. Steelmak 2014, 41, 254–256. doi:10.1179/0301923314Z.000000000269
  • Facchini, L.; Vicente, N.; Lonardelli, I.; Magalini, E.; Robotti, P.; Alberto, M. Metastable Austenite in 17-4 Precipitation-Hardening Stainless Steel Produced by Selective Laser Melting. Adv. Eng. Mater. 2010, 12, 184–188. doi:10.1002/adem.200900259
  • Caballero, A.; Ding, J.; Ganguly, S.; Williams, S. Wire + Arc Additive Manufacture of 17-4 PH Stainless Steel: Effect of Different Processing Conditions on Microstructure, Hardness, and Tensile Strength. J. Mater. Process. Technol. 2019, 268, 54–62. doi:10.1016/j.jmatprotec.2019.01.007
  • Asgari, H.; Mohammadi, M. Microstructure and Mechanical Properties of Stainless Steel CX Manufactured by Direct Metal Laser Sintering. Mater. Sci. Eng. A 2018, 709, 82–89. doi:10.1016/j.msea.2017.10.045
  • Kempen, K.; Vrancken, B.; Buls, S.; Thijs, L.; Van Humbeeck, J.; Kruth, J. P. Selective Laser Melting of Crack-Free High Density M2 High Speed Steel Parts by Baseplate Preheating. J. Manuf. Sci. Eng. Trans. ASME 2014, 136, 1–6. doi:10.1115/1.4028513
  • Cormier, D.; Harrysson, O.; West, H. Characterization of H13 Steel Produced via Electron Beam Melting. Rapid Prototyp. J. 2004, 10, 35–41. doi:10.1108/13552540410512516.
  • Holzweissig, M. J.; Taube, A.; Brenne, F.; Schaper, M.; Niendorf, T. Microstructural Characterization and Mechanical Performance of Hot Work Tool Steel Processed by Selective Laser Melting. Metall. Mater. Trans. B 2015 462. 2015, 46, 545–549. doi:10.1007/S11663-014-0267-9.
  • Brooks, J.; Robino, C.; Headley, T.; Goods, S.; Griffith, M. Microstructure and Property. Optimization of LENS Deposited. 1999 Int. Solid Free. Fabr. Symp., 1999; pp 375–382. doi:10.26153/tsw/830.
  • Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J. P.; Van Humbeeck, J. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts. Phys. Procedia 2016, 83, 882–890. doi:10.1016/j.phpro.2016.08.092
  • Casati, R.; Coduri, M.; Lecis, N.; Andrianopoli, C.; Vedani, M. Microstructure and Mechanical Behavior of Hot-Work Tool Steels Processed by Selective Laser Melting. Mater. Charact. 2018, 137, 50–57. doi:10.1016/j.matchar.2018.01.015
  • Huber, F.; Bischof, C.; Hentschel, O.; Heberle, J.; Zettl, J.; Nagulin, K. Y.; Schmidt, M. Laser Beam Melting and Heat-Treatment of 1.2343 (AISI H11) Tool Steel – Microstructure and Mechanical Properties. Mater. Sci. Eng. A 2019, 742, 109–115. doi:10.1016/j.msea.2018.11.001
  • Niu, H. J.; Chang, I. T. H. Selective Laser Sintering of Gas Atomized M2 High Speed Steel Powder. J. Mater. Sci. 2000, 35, 31–38. doi:10.1023/A:1004720011671
  • Gao, R.; Zeng, L.; Ding, H.; Zhang, T.; Wang, X.; Fang, Q. Characterization of oxide dispersion strengthened ferritic steel fabricated by electron beam selective melting. Mater. Des. 2016, 89, 1171–1180. doi:10.1016/j.matdes.2015.10.073
  • Vasquez, E.; Giroux, P. F.; Lomello, F.; Chniouel, A.; Maskrot, H.; Schuster, F.; Castany, P. Elaboration of Oxide Dispersion Strengthened Fe-14Cr Stainless Steel by Selective Laser Melting. J. Mater. Process. Technol. 2019, 267, 403–413. doi:10.1016/j.jmatprotec.2018.12.034
  • Hunt, R. M.; Kramer, K. J.; El-Dasher, B. Selective Laser Sintering of MA956 Oxide Dispersion Strengthened Steel. J. Nucl. Mater. 2015, 464, 80–85. doi:10.1016/j.jnucmat.2015.04.011
  • Kurz, W.; Fisher, D. J. Dendrite Growth in Eutectic Alloys: The Coupled Zone. Int. Mat. Rev. 1979, 24, 177–204. doi:10.1179/imtr.1979.24.1.177
  • Scipioni Bertoli, U.; MacDonald, B. E.; Schoenung, J. M. Stability of Cellular Microstructure in Laser Powder Bed Fusion of 316L Stainless Steel. Mater. Sci. Eng. A 2019, 739, 109–117. doi:10.1016/j.msea.2018.10.051
  • Niendorf, T.; Leuders, S.; Riemer, A.; Richard, H. A.; Tröster, T.; Schwarze, D. Highly Anisotropic Steel Processed by Selective Laser Melting. Metall. Mater. Trans. B 2013, 44, 794–796. doi:10.1007/s11663-013-9875-z
  • Glicksman, M. E. Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts; Springer: Cham, 2011; pp 1–520. doi:10.1007/978-1-4419-7344-3.
  • Kurzynowski, T.; Gruber, K.; Stopyra, W.; Kuźnicka, B.; Chlebus, E. Correlation between Process Parameters, Microstructure and Properties of 316 L Stainless Steel Processed by Selective Laser Melting. Mater. Sci. Eng. A 2018, 718, 64–73. doi:10.1016/j.msea.2018.01.103
  • Stefanescu, D. M. Science and Engineering of Casting Solidification, 3rd ed.; Springer: Cham, 2015; pp 1–556. doi:10.1007/978-3-319-15693-4/COVER.
  • Ghoncheh, M. H.; Sanjari, M.; Zoeram, A. S.; Cyr, E.; Amirkhiz, B. S.; Lloyd, A.; Haghshenas, M.; Mohammadi, M. On the Microstructure and Solidification Behavior of New Generation Additively Manufactured Al-Cu-Mg-Ag-Ti-B Alloys. Addit. Manuf. 2021, 37, 101724. doi:10.1016/j.addma.2020.101724
  • Hung, C. H.; Chen, W. T.; Sehhat, M. H.; Leu, M. C. The Effect of Laser Welding Modes on Mechanical Properties and Microstructure of 304L Stainless Steel Parts Fabricated by Laser-Foil-Printing Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2021, 112, 867–877. doi:10.1007/s00170-020-06402-7
  • Yan, F.; Xiong, W.; Faierson, E. J. Grain Structure Control of Additively Manufactured Metallic Materials. Materials 2017, 10, 1260. doi:10.3390/ma10111260
  • Rappaz, M.; Drezet, J. M.; Gremaud, M. A New Hot-Tearing Criterion. Metall. Mater. Trans. A 1999, 30, 449–455. doi:10.1007/s11661-999-0334-z
  • Ghoncheh, M. H.; Sengupta, J.; Wu, N.; Gao, J.; Phillion, A. B. On the Hot Embrittlement of Continuously-Cast and Transfer-Bar Structures in DP600 Advanced High-Strength Steel. J. Mater. Process. Technol. 2021, 289, 116936. doi:10.1016/j.jmatprotec.2020.116936
  • Todaro, C. J.; Easton, M. A.; Qiu, D.; Brandt, M.; StJohn, D. H.; Qian, M. Grain Refinement of Stainless Steel in Ultrasound-Assisted Additive Manufacturing. Addit. Manuf. 2021, 37, 101632. doi:10.1016/j.addma.2020.101632
  • Durga, A.; Pettersson, N. H.; Malladi, S. B. A.; Chen, Z.; Guo, S.; Nyborg, L.; Lindwall, G. Grain Refinement in Additively Manufactured Ferritic Stainless Steel by in Situ Inoculation Using Pre-Alloyed Powder. Scr. Mater. 2021, 194, 113690. doi:10.1016/j.scriptamat.2020.113690
  • Suslick, K.; Price, G. Applications of Ultrasound to Materials Chemistry. Annu. Rev. Mater. Sci. 1999, 29, 295–326. doi:10.1146/annurev.matsci.29.1.295
  • Ikehata, H.; Mayweg, D.; Jägle, E. Grain Refinement of Fe–Ti Alloys Fabricated by Laser Powder Bed Fusion. Mater. Des. 2021, 204, 109665. doi:10.1016/j.matdes.2021.109665
  • Stjohn, D. H.; Qian, M.; Easton, M. A.; Cao, P. The Interdependence Theory: The Relationship between Grain Formation and Nucleant Selection. Acta Mater. 2011, 59, 4907–4921. doi:10.1016/j.actamat.2011.04.035
  • Hunt, J. D. Cellular and Primary Dendrite Spacings. Proc. Int. Conf. on Solidification and Casting of Metal, 1979; pp 3–9.
  • Kurz, W.; Fisher, D. J. Dendrite Growth at the Limit of Stability: Tip Radius and Spacing. Acta Metall. 1981, 29, 11–20. doi:10.1016/0001-6160(81)90082-1
  • Trivedi, R. Interdendritic Spacing: Part II. A Comparison of Theory and Experiment. Metall. Trans. A 1984, 15, 977–982. doi:10.1007/BF02644689
  • Raghavan, N.; Simunovic, S.; Dehoff, R.; Plotkowski, A.; Turner, J.; Kirka, M.; Babu, S. Localized Melt-Scan Strategy for Site Specific Control of Grain Size and Primary Dendrite Arm Spacing in Electron Beam Additive Manufacturing. Acta Mater. 2017, 140, 375–387. doi:10.1016/j.actamat.2017.08.038
  • Knapp, G. L.; Mukherjee, T.; Zuback, J. S.; Wei, H. L.; Palmer, T. A.; De, A.; DebRoy, T. Building Blocks for a Digital Twin of Additive Manufacturing. Acta Mater. 2017, 135, 390–399. doi:10.1016/j.actamat.2017.06.039
  • Tian, Y.; Palad, R.; Aranas, C. Microstructural Evolution and Mechanical Properties of a Newly Designed Steel Fabricated by Laser Powder Bed Fusion. Addit. Manuf. 2020, 36, 101495. doi:10.1016/j.addma.2020.101495
  • Ma, M.; Wang, Z.; Zeng, X. A Comparison on Metallurgical Behaviors of 316L Stainless Steel by Selective Laser Melting and Laser Cladding Deposition. Mater. Sci. Eng. A 2017, 685, 265–273. doi:10.1016/j.msea.2016.12.112
  • Bermingham, M.; StJohn, D.; Easton, M.; Yuan, L.; Dargusch, M. Revealing the Mechanisms of Grain Nucleation and Formation during Additive Manufacturing. JOM 2020, 72, 1065–1073. doi:10.1007/s11837-020-04019-5
  • Thijs, L.; Van Humbeeck, J.; Kempen, K.; Yasa, E.; Kruth, J. P. Investigation on the Inclusions in Maraging Steel Produced by SLM. Int. Conf. Adv. Res. Virtual Rapid Prototyp., 2011; pp 297–304.
  • Saeidi, K.; Kvetková, L.; Lofaj, F.; Shen, Z. Austenitic Stainless Steel Strengthened by the in Situ Formation of Oxide Nanoinclusions. RSC Adv. 2015, 5, 20747–20750. doi:10.1039/C4RA16721J
  • Lou, X.; Andresen, P. L.; Rebak, R. B. Oxide Inclusions in Laser Additive Manufactured Stainless Steel and Their Effects on Impact Toughness and Stress Corrosion Cracking Behavior. J. Nucl. Mater. 2018, 499, 182–190. doi:10.1016/j.jnucmat.2017.11.036
  • Eo, D. R.; Park, S. H.; Cho, J. W. Inclusion Evolution in Additive Manufactured 316L Stainless Steel by Laser Metal Deposition Process. Mater. Des. 2018, 155, 212–219. doi:10.1016/j.matdes.2018.06.001
  • Kou, S. Welding Metallurgy; John Wiley & Sons, Inc.: Hoboken, NJ, 2003. doi:10.1002/0471434027.
  • Abdi, F.; Eftekharian, A.; Huang, D.; Rebak, R. B.; Rahmane, M.; Sundararaghavan, V.; Kanyuck, A.; Gupta, S. K.; Arul, S.; Jain, V.; et al. Grain Boundary Engineering of New Additive Manufactured Polycrystalline Alloys. Forces Mech. 2021, 4, 100033. doi:10.1016/j.finmec.2021.100033
  • Rodrigues, T. A.; Duarte, V.; Avila, J. A.; Santos, T. G.; Miranda, R. M.; Oliveira, J. P. Wire and Arc Additive Manufacturing of HSLA Steel: Effect of Thermal Cycles on Microstructure and Mechanical Properties. Addit. Manuf. 2019, 27, 440–450. doi:10.1016/j.addma.2019.03.029
  • Köhnen, P.; Létang, M.; Voshage, M.; Schleifenbaum, J. H.; Haase, C. Understanding the Process-Microstructure Correlations for Tailoring the Mechanical Properties of LPBF Produced Austenitic Advanced High Strength Steel. Addit. Manuf. 2019, 30, 100914. doi:10.1016/j.addma.2019.100914
  • Yakout, M.; Elbestawi, M. A.; Veldhuis, S. C. On the Characterization of Stainless Steel 316L Parts Produced by Selective Laser Melting. Int. J. Adv. Manuf. Technol. 2018, 95, 1953–1974. doi:10.1007/s00170-017-1303-0
  • Vrancken, B.; Thijs, L.; Kruth, J. P.; Van Humbeeck, J. Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties. J. Alloys Compd. 2012, 541, 177–185. doi:10.1016/j.jallcom.2012.07.022
  • Zhang, D.; Niu, W.; Cao, X.; Liu, Z. Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melting Manufactured Inconel 718 Superalloy. Mater. Sci. Eng. A 2015, 644, 32–40. doi:10.1016/j.msea.2015.06.021
  • Kim, U. S.; Park, J. W. High-Quality Surface Finishing of Industrial Three-Dimensional Metal Additive Manufacturing Using Electrochemical Polishing. Int. J. Precis. Eng. Manuf. Green. Tech. 2019, 6, 11–21. doi:10.1007/s40684-019-00019-2
  • Yu, H.; Li, F.; Wang, Z.; Zeng, X. Fatigue Performances of Selective Laser Melted Ti-6Al-4V Alloy: Influence of Surface Finishing, Hot Isostatic Pressing and Heat Treatments. Int. J. Fatigue 2019, 120, 175–183. doi:10.1016/j.ijfatigue.2018.11.019
  • Bhadeshia, H. K. D. H.; Honeycombe, R. W. K. Steels: Microstructure and Properties; Elsevier; Butterworth-Heinemann: Amsterdam; Boston, 2006; p 344.
  • Hsiao, C. N.; Chiou, C. S.; Yang, J. R. Aging Reactions in a 17-4 PH Stainless Steel. Mater. Chem. Phys. 2002, 74, 134–142. doi:10.1016/S0254-0584(01)00460-6
  • Mazur, M.; Leary, M.; McMillan, M.; Elambasseril, J.; Brandt, M. SLM Additive Manufacture of H13 Tool Steel with Conformal Cooling and Structural Lattices. RPJ 2016, 22, 504–518. doi:10.1108/RPJ-06-2014-0075
  • Armillotta, A.; Baraggi, R.; Fasoli, S. SLM Tooling for Die Casting with Conformal Cooling Channels. Int. J. Adv. Manuf. Technol. 2014, 71, 573–583. doi:10.1007/s00170-013-5523-7
  • Doñate-Buendia, C.; Kürnsteiner, P.; Stern, F.; Wilms, M. B.; Streubel, R.; Kusoglu, I. M.; Tenkamp, J.; Bruder, E.; Pirch, N.; Barcikowski, S.; et al. Microstructure Formation and Mechanical Properties of ODS Steels Built by Laser Additive Manufacturing of Nanoparticle Coated Iron-Chromium Powders. Acta Mater. 2021, 206, 116566. doi:10.1016/j.actamat.2020.116566
  • Haghdadi, N.; Laleh, M.; Moyle, M.; Primig, S. Additive Manufacturing of Steels: A Review of Achievements and Challenges. J. Mater. Sci. 2021, 56, 64–107. doi:10.1007/s10853-020-05109-0
  • Tascioglu, E.; Karabulut, Y.; Kaynak, Y. Influence of Heat Treatment Temperature on the Microstructural, Mechanical, and Wear Behavior of 316L Stainless Steel Fabricated by Laser Powder Bed Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2020, 107, 1947–1956. doi:10.1007/s00170-020-04972-0
  • Benarji, K.; Kumar, Y. R.; Jinoop, A. N.; Paul, C. P.; Bindra, K. S. Effect of Heat-Treatment on the Microstructure, Mechanical Properties and Corrosion Behaviour of SS 316 Structures Built by Laser Directed Energy Deposition Based Additive Manufacturing. Met. Mater. Int. 2021, 27, 488–499. doi:10.1007/s12540-020-00838-y
  • Chen, X.; Li, J.; Cheng, X.; Wang, H.; Huang, Z. Effect of Heat Treatment on Microstructure, Mechanical and Corrosion Properties of Austenitic Stainless Steel 316L Using Arc Additive Manufacturing. Mater. Sci. Eng. A 2018, 715, 307–314. doi:10.1016/j.msea.2017.10.002
  • Saeidi, K.; Gao, X.; Lofaj, F.; Kvetková, L.; Shen, Z. J. Transformation of Austenite to Duplex Austenite-Ferrite Assembly in Annealed Stainless Steel 316L Consolidated by Laser Melting. J. Alloys Compd. 2015, 633, 463–469. doi:10.1016/j.jallcom.2015.01.249
  • Lippold, J. C. Welding Metallurgy and Weldability; Wiley: Hoboken, NJ, 2014.
  • Saeidi, K.; Zapata, D. L.; Lofaj, F.; Kvetkova, L.; Olsen, J.; Shen, Z.; Akhtar, F. Ultra-High Strength Martensitic 420 Stainless Steel with High Ductility. Addit. Manuf. 2019, 29, 100803. doi:10.1016/J.ADDMA.2019.100803.
  • Nath, S. D.; Clinning, E.; Gupta, G.; Wuelfrath-Poirier, V.; L’Espérance, G.; Gulsoy, O.; Kearns, M.; Atre, S. V. Effects of Nb and Mo on the Microstructure and Properties of 420 Stainless Steel Processed by Laser-Powder Bed Fusion. Addit. Manuf. 2019, 28, 682–691. doi:10.1016/J.ADDMA.2019.06.016.
  • Murayama, M.; Hono, K.; Katayama, Y. Microstructural Evolution in a 17-4 PH Stainless Steel after Aging at 400 °C, Metall. Metall. Mater. Trans. A 1999, 30, 345–353. doi:10.1007/S11661-999-0323-2.
  • McGuire, M. F. Stainless Steels for Design Engineers Chapter 6: Austenitic Stainless Steels. 2008; pp 69–90. www.asminternational.org (accessed July 17, 2023).
  • Alam, M. K.; Mehdi, M.; Urbanic, R. J.; Edrisy, A. Mechanical Behavior of Additive Manufactured AISI 420 Martensitic Stainless Steel. Mater. Sci. Eng. A 2020, 773, 138815. doi:10.1016/J.MSEA.2019.138815.
  • Etter, T.; Kunze, K.; Geiger, F.; Meidani, H. Reduction in Mechanical Anisotropy through High Temperature Heat Treatment of Hastelloy X Processed by Selective Laser Melting (SLM). IOP Conf. Ser: Mater. Sci. Eng. 2015, 82, 012097. doi:10.1088/1757-899X/82/1/012097
  • Sercombe, T.; Jones, N.; Day, R.; Kop, A. Heat Treatment of Ti‐6Al‐7Nb Components Produced by Selective Laser Melting. Rapid Prototyp. J. 2008, 14, 300–304. doi:10.1108/13552540810907974.
  • Mahmoudi, M.; Elwany, A.; Yadollahi, A.; Thompson, S. M.; Bian, L.; Shamsaei, N. Mechanical Properties and Microstructural Characterization of Selective Laser Melted 17-4 PH Stainless Steel, Rapid. Prototyp. J. 2017, 23, 280–294. doi:10.1108/RPJ-12-2015-0192.
  • Yadollahi, A.; Shamsaei, N.; Thompson, S. M.; Elwany, A.; Bian, L. Effects of Building Orientation and Heat Treatment on Fatigue Behavior of Selective Laser Melted 17-4 PH Stainless Steel. Int. J. Fatigue 2017, 94, 218–235. doi:10.1016/J.IJFATIGUE.2016.03.014.
  • AlMangour, B.; Yang, J.-M. Understanding the Deformation Behavior of 17-4 Precipitate Hardenable Stainless Steel Produced by Direct Metal Laser Sintering Using Micropillar Compression and TEM. Int. J. Adv. Manuf. Technol. 2017, 90, 119–126. doi:10.1007/S00170-016-9367-9.
  • Murr, L. E.; Martinez, E.; Hernandez, J.; Collins, S.; Amato, K. N.; Gaytan, S. M.; Shindo, P. W. Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting. J. Mater. Res. Technol. 2012, 1, 167–177. doi:10.1016/S2238-7854(12)70029-7.
  • LeBrun, T.; Nakamoto, T.; Horikawa, K.; Kobayashi, H. Effect of Retained Austenite on Subsequent Thermal Processing and Resultant Mechanical Properties of Selective Laser Melted 17–4 PH Stainless Steel. Mater. Des. 2015, 81, 44–53. doi:10.1016/J.MATDES.2015.05.026.
  • Rafi, H. K.; Pal, D.; Patil, N.; Starr, T. L.; Stucker, B. E. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting. J. Mater. Eng. Perform. 2014, 23, 4421–4428. 2014 2312. doi:10.1007/S11665-014-1226-Y.
  • Sun, Y.; Hebert, R. J.; Aindow, M. Effect of Heat Treatments on Microstructural Evolution of Additively Manufactured and Wrought 17-4PH Stainless Steel. Mater. Des. 2018, 156, 429–440. doi:10.1016/J.MATDES.2018.07.015.
  • Nezhadfar, P. D.; Shrestha, R.; Phan, N.; Shamsaei, N. Fatigue Behavior of Additively Manufactured 17-4 PH Stainless Steel: Synergistic Effects of Surface Roughness and Heat Treatment. Int. J. Fatigue 2019, 124, 188–204. doi:10.1016/J.IJFATIGUE.2019.02.039.
  • Sarkar, S.; Mukherjee, S.; Kumar, C. S.; Kumar Nath, A. Effects of Heat Treatment on Microstructure, Mechanical and Corrosion Properties of 15-5 PH Stainless Steel Parts Built by Selective Laser Melting Process. J. Manuf. Process 2020, 50, 279–294. doi:10.1016/J.JMAPRO.2019.12.048.
  • Nong, X. D.; Zhou, X. L.; Li, J. H.; Wang, Y. D.; Zhao, Y. F.; Brochu, M. Selective Laser Melting and Heat Treatment of Precipitation Hardening Stainless Steel with a Refined Microstructure and Excellent Mechanical Properties. Scr. Mater. 2020, 178, 7–12. doi:10.1016/J.SCRIPTAMAT.2019.10.040.
  • EOS. GmbH—Electro Optical Systems, Material Data Sheet: EOS Stainless Steel CX, München. 2019. www.eos.info.
  • Sanjari, M.; Hadadzadeh, A.; Pirgazi, H.; Shahriari, A.; Amirkhiz, B. S.; Kestens, L. A. I.; Mohammadi, M. Selective Laser Melted Stainless Steel CX: Role of Built Orientation on Microstructure and Micro-Mechanical Properties. Mater. Sci. Eng. A 2020, 786, 139365. doi:10.1016/J.MSEA.2020.139365.
  • Zhang, J.; Wang, M.; Niu, L.; Liu, J.; Wang, J.; Liu, Y.; Shi, Z. Effect of Process Parameters and Heat Treatment on the Properties of Stainless Steel CX Fabricated by Selective Laser Melting. J. Alloys Compd. 2021, 877, 160062. doi:10.1016/J.JALLCOM.2021.160062.
  • Shahriari, A.; Ghaffari, M.; Khaksar, L.; Nasiri, A.; Hadadzadeh, A.; Amirkhiz, B. S.; Mohammadi, M. Corrosion Resistance of 13wt.% Cr Martensitic Stainless Steels: Additively Manufactured CX versus Wrought Ni-Containing AISI 420. Corros. Sci. 2021, 184, 109362. doi:10.1016/J.CORSCI.2021.109362.
  • Knyazeva, M.; Pohl, M. Duplex Steels: Part I: Genesis, Formation, Structure. Metallogr. Microstruct. Anal. 2013, 2, 113–121. 2013 22. doi:10.1007/S13632-013-0066-8.
  • Tan, H.; Jiang, Y.; Deng, B.; Sun, T.; Xu, J.; Li, J. Effect of Annealing Temperature on the Pitting Corrosion Resistance of Super Duplex Stainless Steel UNS S32750. Mater. Charact. 2009, 60, 1049–1054. doi:10.1016/J.MATCHAR.2009.04.009.
  • Hengsbach, F.; Koppa, P.; Duschik, K.; Holzweissig, M. J.; Burns, M.; Nellesen, J.; Tillmann, W.; Tröster, T.; Hoyer, K. P.; Schaper, M. Duplex Stainless Steel Fabricated by Selective Laser melting - Microstructural and Mechanical Properties. Mater. Des. 2017, 133, 136–142. doi:10.1016/J.MATDES.2017.07.046.
  • Davidson, K.; Singamneni, S. Selective Laser Melting of Duplex Stainless Steel Powders: An Investigation. Mater. Manuf. Process. 2016, 31, 1543–1555. doi:10.1080/10426914.2015.1090605.
  • Jägle, E. A.; Sheng, Z.; Wu, L.; Lu, L.; Risse, J.; Weisheit, A.; Raabe, D. Precipitation Reactions in Age-Hardenable Alloys during Laser Additive Manufacturing. JOM 2016, 68, 943–949. doi:10.1007/S11837-015-1764-2.
  • Casati, R.; Lemke, J. N.; Tuissi, A.; Vedani, M. Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting. MET 2016, 6, 218. doi:10.3390/MET6090218.
  • EOS. Materials for Metal Additive Manufacturing, 2017. https://www.eos.info/material-m.
  • Mooney, B.; Kourousis, K. I.; Raghavendra, R. Plastic Anisotropy of Additively Manufactured Maraging Steel: Influence of the Build Orientation and Heat Treatments. Addit. Manuf. 2019, 25, 19–31. doi:10.1016/J.ADDMA.2018.10.032.
  • Yao, Y.; Huang, Y.; Chen, B.; Tan, C.; Su, Y.; Feng, J. Influence of Processing Parameters and Heat Treatment on the Mechanical Properties of 18Ni300 Manufactured by Laser Based Directed Energy Deposition. Opt. Laser Technol. 2018, 105, 171–179. doi:10.1016/J.OPTLASTEC.2018.03.011.
  • Sha, W.; Guo, Z. Maraging Steels: Modelling of Microstructure, Properties and Applications; Elsevier: Amsterdam, 2009.
  • Tewari, R.; Mazumder, S.; Batra, I. S.; Dey, G. K.; Banerjee, S. Precipitation in 18 wt% Ni Maraging Steel of Grade 350. Acta Mater. 2000, 48, 1187–1200. doi:10.1016/S1359-6454(99)00370-5.
  • Sha, W.; Cerezo, A.; Smith, G. D. W. Phase Chemistry and Precipitation Reactions in Maraging Steels: Part IV. Discussion and Conclusions. Metall. Trans. A 1993, 24, 1251–1256. doi:10.1007/BF02668193.
  • Jägle, E. A.; Choi, P.-P.; Van Humbeeck, J.; Raabe, D. Precipitation and Austenite Reversion Behavior of a Maraging Steel Produced by Selective Laser Melting. J. Mater. Res. 2014, 29, 2072–2079. doi:10.1557/JMR.2014.204.
  • Santos, L. M. S.; Borrego, L. P.; Ferreira, J. A. M.; de Jesus, J.; Costa, J. D.; Capela, C. Effect of Heat Treatment on the Fatigue Crack Growth Behaviour in Additive Manufactured AISI 18Ni300 Steel. Theor. Appl. Fract. Mech. 2019, 102, 10–15. doi:10.1016/J.TAFMEC.2019.04.005.
  • Burrier, H. I. Bearing Steels. In Encyclopedia of Materials: Science and Technology, Burrier, Jr., H. I., Ed.; Elsevier: Amsterdam, 2001; pp 501–506. doi:10.1016/B0-08-043152-6/00096-6.
  • Childs, T. H. C.; Hauser, C.; Badrossamay, M. Selective Laser Sintering (Melting) of Stainless and Tool Steel Powders: Experiments and Modelling. Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 2005, 219, 339–357. doi:10.1243/095440505X8109.
  • Badrossamay, M.; Childs, T. H. C. Further Studies in Selective Laser Melting of Stainless and Tool Steel Powders. Int. J. Mach. Tools Manuf. 2007, 47, 779–784. doi:10.1016/J.IJMACHTOOLS.2006.09.013.
  • Mazur, M.; Brincat, P.; Leary, M.; Brandt, M. Numerical and Experimental Evaluation of a Conformally Cooled H13 Steel Injection Mould Manufactured with Selective Laser Melting. Int. J. Adv. Manuf. Technol. 2017, 93, 881–900. doi:10.1007/S00170-017-0426-7.
  • Åsberg, M.; Fredriksson, G.; Hatami, S.; Fredriksson, W.; Krakhmalev, P. Influence of Post Treatment on Microstructure, Porosity and Mechanical Properties of Additive Manufactured H13 Tool Steel. Mater. Sci. Eng. A 2019, 742, 584–589. doi:10.1016/J.MSEA.2018.08.046.
  • Deirmina, F.; Peghini, N.; AlMangour, B.; Grzesiak, D.; Pellizzari, M. Heat Treatment and Properties of a Hot Work Tool Steel Fabricated by Additive Manufacturing. Mater. Sci. Eng. A 2019, 753, 109–121. doi:10.1016/J.MSEA.2019.03.027.
  • Mazumder, J.; Choi, J.; Nagarathnam, K.; Koch, J.; Hetzner, D. The Direct Metal Deposition of H13 Tool Steel for 3-D Components. JOM 1997, 49, 55–60. doi:10.1007/BF02914687.
  • Krell, J.; Röttger, A.; Geenen, K.; Theisen, W. General Investigations on Processing Tool Steel X40CrMoV5-1 with Selective Laser Melting. J. Mater. Process. Technol. 2018, 255, 679–688. doi:10.1016/J.JMATPROTEC.2018.01.012.
  • Ukai, S.; Harada, M.; Okada, H.; Inoue, M.; Nomura, S.; Shikakura, S.; Asabe, K.; Nishida, T.; Fujiwara, M. Alloying Design of Oxide Dispersion Strengthened Ferritic Steel for Long Life FBRs Core Materials. J. Nucl. Mater. 1993, 204, 65–73. doi:10.1016/0022-3115(93)90200-I.
  • Brandes, M. C.; Kovarik, L.; Miller, M. K.; Daehn, G. S.; Mills, M. J. Creep Behavior and Deformation Mechanisms in a Nanocluster Strengthened Ferritic Steel. Acta Mater. 2012, 60, 1827–1839. doi:10.1016/J.ACTAMAT.2011.11.057.
  • Inoue, Y.; Kikuchi, M. Present and Future Trends of Stainless Steel for Automotive Exhaust System. 2003. https://www.nipponsteel.com/en/tech/report/nsc/pdf/n8814.pdf
  • Streubel, R.; Wilms, M. B.; Doñate-Buendía, C.; Weisheit, A.; Barcikowski, S.; Schleifenbaum, J. H.; Gökce, B. Depositing Laser-Generated Nanoparticles on Powders for Additive Manufacturing of Oxide Dispersed Strengthened Alloy Parts via Laser Metal Deposition. Jpn. J. Appl. Phys. 2018, 57, 040310. doi:10.7567/JJAP.57.040310.
  • Doñate-Buendia, C.; Streubel, R.; Kürnsteiner, P.; Wilms, M. B.; Stern, F.; Tenkamp, J.; Bruder, E.; Barcikowski, S.; Gault, B.; Durst, K.; et al. Effect of Nanoparticle Additivation on the Microstructure and Microhardness of Oxide Dispersion Strengthened Steels Produced by Laser Powder Bed Fusion and Directed Energy Deposition. Procedia CIRP 2020, 94, 41–45. doi:10.1016/J.PROCIR.2020.09.009.
  • Boegelein, T.; Dryepondt, S. N.; Pandey, A.; Dawson, K.; Tatlock, G. J. Mechanical Response and Deformation Mechanisms of Ferritic Oxide Dispersion Strengthened Steel Structures Produced by Selective Laser Melting. Acta Mater. 2015, 87, 201–215. doi:10.1016/J.ACTAMAT.2014.12.047.
  • Shi, Y.; Lu, Z.; Xu, H.; Xie, R.; Ren, Y.; Yang, G. Microstructure Characterization and Mechanical Properties of Laser Additive Manufactured Oxide Dispersion Strengthened Fe-9Cr Alloy. J. Alloys Compd. 2019, 791, 121–133. doi:10.1016/J.JALLCOM.2019.03.284.
  • Eiselstein, L. E.; Huet, R. Basics of Corrosion Science and Engineering. In Uhlig’s Corrosion Handbook, 3rd ed.; Winston Revie, R., Ed.; Hoboken, NJ: John Wiley & Sons, Inc., 2011; pp 3–14.
  • Van Bael, S.; Chai, Y. C.; Truscello, S.; Moesen, M.; Kerckhofs, G.; Van Oosterwyck, H.; Kruth, J. P.; Schrooten, J. The Effect of Pore Geometry on the in Vitro Biological Behavior of Human Periosteum-Derived Cells Seeded on Selective Laser-Melted Ti6Al4V Bone Scaffolds. Acta Biomater. 2012, 8, 2824–2834. doi:10.1016/j.actbio.2012.04.001.
  • Zhang, J.; Song, B.; Wei, Q.; Bourell, D.; Shi, Y. A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends. J. Mater. Sci. Technol. 2019, 35, 270–284. doi:10.1016/j.jmst.2018.09.004.
  • Kong, D.; Dong, C.; Ni, X.; Li, X. Corrosion of Metallic Materials Fabricated by Selective Laser Melting. NPJ Mater. Degrad. 2019, 3, doi:10.1038/s41529-019-0086-1.
  • Hosoi, Y. Introduction to Stainless Steel, Keikinzoku/Journal Japan Inst. Light Met. 1987, 37, 624–635. doi:10.2464/jilm.37.624.
  • Chen, L.; Richter, B.; Zhang, X.; Ren, X.; Pfefferkorn, F. E. Modification of Surface Characteristics and Electrochemical Corrosion Behavior of Laser Powder Bed Fused Stainless Steel 316L after Laser Polishing. Addit. Manuf. 2020, 32, 101013. doi:10.1016/j.addma.2019.101013.
  • Tucho, W. M.; Lysne, V. H.; Austbø, H.; Sjolyst-Kverneland, A.; Hansen, V. Investigation of Effects of Process Parameters on Microstructure and Hardness of SLM Manufactured SS316L. J. Alloys Compd. 2018, 740, 910–925. doi:10.1016/j.jallcom.2018.01.098.
  • Sun, S. H.; Ishimoto, T.; Hagihara, K.; Tsutsumi, Y.; Hanawa, T.; Nakano, T. Excellent Mechanical and Corrosion Properties of Austenitic Stainless Steel with a Unique Crystallographic Lamellar Microstructure via Selective Laser Melting. Scr. Mater. 2019, 159, 89–93. doi:10.1016/j.scriptamat.2018.09.017.
  • Sun, Z.; Tan, X.; Tor, S. B.; Chua, C. K. Simultaneously Enhanced Strength and Ductility for 3D-Printed Stainless Steel 316L by Selective Laser Melting. NPG Asia Mater. 2018, 10, 127–136. doi:10.1038/s41427-018-0018-5.
  • Yin, Y. J.; Sun, J. Q.; Guo, J.; Kan, X. F.; Yang, D. C. Mechanism of High Yield Strength and Yield Ratio of 316 L Stainless Steel by Additive Manufacturing. Mater. Sci. Eng. A 2019, 744, 773–777. doi:10.1016/j.msea.2018.12.092.
  • Krakhmalev, P.; Yadroitsava, I.; Fredriksson, G.; Yadroitsev, I. In Situ Heat Treatment in Selective Laser Melted Martensitic AISI 420 Stainless Steels. Mater. Des. 2015, 87, 380–385. doi:10.1016/j.matdes.2015.08.045.
  • Wang, L.; Dong, C.; Man, C.; Kong, D.; Xiao, K.; Li, X. Enhancing the Corrosion Resistance of Selective Laser Melted 15-5PH Martensite Stainless Steel via Heat Treatment. Corros. Sci. 2020, 166, 108427. doi:10.1016/j.corsci.2019.108427.
  • Barroux, A.; Ducommun, N.; Nivet, E.; Laffont, L.; Blanc, C. Pitting Corrosion of 17-4PH Stainless Steel Manufactured by Laser Beam Melting. Corros. Sci. 2020, 169, 108594. doi:10.1016/j.corsci.2020.108594.
  • Alnajjar, M.; Christien, F.; Barnier, V.; Bosch, C.; Wolski, K.; Fortes, A. D.; Telling, M. Influence of Microstructure and Manganese Sulfides on Corrosion Resistance of Selective Laser Melted 17-4 PH Stainless Steel in Acidic Chloride Medium. Corros. Sci. 2020, 168, 108585. doi:10.1016/j.corsci.2020.108585.
  • Shreir, L. L.; Jarman, R. A.; Burstein, G. T. Corrosion; Elsevier: Amsterdam, 1994; Vol. 1.
  • ASTM G3. Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing. In Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, 2019; Vol. 03.02. Figs 2, 3 and 4 used with permission.
  • Souier, T.; Martin, F.; Bataillon, C.; Cousty, J. Local Electrical Characteristics of Passive Films Formed on Stainless Steel Surfaces by Current Sensing Atomic Force Microscopy. Appl. Surf. Sci. 2010, 256, 2434–2439. doi:10.1016/j.apsusc.2009.10.083.
  • Clayton, C. R.; Olefjord, I. In Corrosion Mechanisms in Theory and Practice, Marcus, P., Oudar, J., Eds.; Marcel Decker: New York, 1995.
  • Olsson, C.-O. A.; Hamm, D.; Landolt, D. Electrochemical Quartz Crystal Microbalance Studies of the Passive Behavior of Cr in a Sulfuric Acid Solution. J. Electrochem. Soc. 2000, 147, 2563. doi:10.1149/1.1393569.
  • Olsson, C. O. A.; Landolt, D. Passive Films on Stainless Steels - Chemistry, Structure and Growth. Electrochim. Acta 2003, 48, 1093–1104. doi:10.1016/S0013-4686(02)00841-1.
  • Amri, J.; Souier, T.; Malki, B.; Baroux, B. Effect of the Final Annealing of Cold Rolled Stainless Steels Sheets on the Electronic Properties and Pit Nucleation Resistance of Passive Films. Corros. Sci. 2008, 50, 431–435. doi:10.1016/j.corsci.2007.08.013.
  • Sikora, E.; Macdonald, D. D. The Passivity of Iron in the Presence of Ethylenediaminetetraacetic Acid I. General Electrochemical Behavior. J. Electrochem. Soc. 2000, 147, 4087. doi:10.1149/1.1394024.
  • Macdonald, D. D. The Point Defect Model for the Passive State. J. Electrochem. Soc. 1992, 139, 3434–3449. doi:10.1149/1.2069096.
  • Hakiki, N. B.; Boudin, S.; Rondot, B.; Da Cunha Belo, M. The Electronic Structure of Passive Films Formed on Stainless Steels. Corros. Sci. 1995, 37, 1809–1822. doi:10.1016/0010-938X(95)00084-W.
  • Virtanen, S.; Schmuki, P.; Böhni, H.; Vuoristo, P.; Mäntylä, T. Artificial Cr‐ and Fe‐Oxide Passive Layers Prepared by Sputter Deposition. J. Electrochem. Soc. 1995, 142, 3067–3972. doi:10.1149/1.2048689.
  • Sedriks, A. J. Corrosion of Stainless Steel, 2nd ed.; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, 1996.
  • Schneider, R.; Perko, J.; Reithofer, G. Heat Treatment of Corrosion Resistant Tool Steels for Plastic Moulding. Mater. Manuf. Process. 2009, 24, 903–908. doi:10.1080/10426910902941553.
  • Stainless Steels for Design Engineers - ASM International. n.d. https://www.asminternational.org/search/-/journal_content/56/10192/05231G/PUBLICATION. (accessed November 28, 2020).
  • Khatak, H. S.; Raj, B. Corrosion of Austenitic Stainless Steels; Woodhead Publishing: Cambridge, 2002.
  • Mudali, U. K.; Dayal, R. K.; Gnanamoorthy, J. B.; Rodriguez, P. High Nitrogen Steels. Relationship between Pitting and Intergranular Corrosion of Nitrogen-Bearing Austenitic Stainless Steels. ISIJ Int. 1996, 36, 799–806. doi:10.2355/isijinternational.36.799.
  • Szklarska-Smialowska, Z.; Janik-Czachor, M. Pitting Corrosion of 13Cr-Fe Alloy in Na2SO4 Solutions Containing Chloride Ions. Corros. Sci. 1967, 7, 65–72. doi:10.1016/s0010-938x(67)80103-3.
  • Streicher, M. A.; Grubb, J. F. Austenitic and Ferritic Stainless Steels. In Uhlig’s Corrosion Handbook, 3rd ed.; Winston Revie, R., Ed.; Hoboken, NJ: John Wiley & Sons, Inc., 2011; pp 657–693. doi:10.1002/9780470872864.ch51.
  • Sedriks, A. J. Role of Sulphide Inclusions in Pitting and Crevice Corrosion of Stainless Steels. Int. Met. Rev. 1983, 28, 295–307. doi:10.1179/imtr.1983.28.1.295.
  • Szklarska-Mialowska, Z.; Lunarska, E. The Effect of Sulfide Inclusions on the Susceptibility of Steels to Pitting, Stress Corrosion Cracking and Hydrogen Embrittlement. Mater. Corros. 1981, 32, 478–485. doi:10.1002/maco.19810321103.
  • Stewart, J.; Williams, D. E. The Initiation of Pitting Corrosion on Austenitic Stainless Steel: On the Role and Importance of Sulphide Inclusions. Corros. Sci. 1992, 33, 457–474. doi:10.1016/0010-938X(92)90074-D.
  • Virtanen, S. Electrochemical Theory | Corrosion. Encycl. Electrochem. Power Sources 2009, 56–63. doi:10.1016/B978-044452745-5.00026-5.
  • Laleh, M.; Hughes, A. E.; Yang, S.; Li, J.; Xu, W.; Gibson, I.; Tan, M. Y. Two and Three-Dimensional Characterisation of Localised Corrosion Affected by Lack-of-Fusion Pores in 316L Stainless Steel Produced by Selective Laser Melting. Corros. Sci. 2020, 165, 108394. doi:10.1016/j.corsci.2019.108394.
  • Sander, G.; Thomas, S.; Cruz, V.; Jurg, M.; Birbilis, N.; Gao, X.; Brameld, M.; Hutchinson, C. R. On the Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting. J. Electrochem. Soc. 2017, 164, C250–C257. doi:10.1149/2.0551706jes.
  • Duan, Z.; Man, C.; Dong, C.; Cui, Z.; Kong, D.; Wang, L.; Wang, X. Pitting Behavior of SLM 316L Stainless Steel Exposed to Chloride Environments with Different Aggressiveness: Pitting Mechanism Induced by Gas Pores. Corros. Sci. 2020, 167, 108520. doi:10.1016/j.corsci.2020.108520.
  • Geenen, K.; Röttger, A.; Theisen, W. Corrosion Behavior of 316L Austenitic Steel Processed by Selective Laser Melting, Hot-Isostatic Pressing, and Casting. Mater. Corros. 2017, 68, 764–775. doi:10.1002/maco.201609210.
  • Kazemipour, M.; Mohammadi, M.; Mfoumou, E.; Nasiri, A. M. Microstructure and Corrosion Characteristics of Selective Laser-Melted 316L Stainless Steel: The Impact of Process-Induced Porosities. JOM 2019, 71, 3230–3240. doi:10.1007/s11837-019-03647-w.
  • Ni, X.; Kong, D.; Wu, W.; Zhang, L.; Dong, C.; He, B.; Lu, L.; Wu, K.; Zhu, D. Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting under Different Scanning Speeds. J. Mater. Eng. Perform. 2018, 27, 3667–3677. doi:10.1007/s11665-018-3446-z.
  • Laleh, M.; Hughes, A. E.; Xu, W.; Gibson, I.; Tan, M. Y. Unexpected Erosion-Corrosion Behaviour of 316L Stainless Steel Produced by Selective Laser Melting. Corros. Sci. 2019, 155, 67–74. doi:10.1016/j.corsci.2019.04.028.
  • Suryawanshi, J.; Baskaran, T.; Prakash, O.; Arya, S. B.; Ramamurty, U. On the Corrosion Resistance of Some Selective Laser Melted Alloys. Materialia 2018, 3, 153–161. doi:10.1016/j.mtla.2018.08.022.
  • Mohd Yusuf, S.; Nie, M.; Chen, Y.; Yang, S.; Gao, N. Microstructure and Corrosion Performance of 316L Stainless Steel Fabricated by Selective Laser Melting and Processed through High-Pressure Torsion. J. Alloys Compd. 2018, 763, 360–375. doi:10.1016/j.jallcom.2018.05.284.
  • Böhni, H. Localized Corrosion of Passive Metals. In Uhlig’s Corrosion Handbook, 3rd ed.; Winston Revie, R., Ed.; Hoboken, NJ: John Wiley & Sons, Inc., 2011; pp 157–169.
  • Chao, Q.; Cruz, V.; Thomas, S.; Birbilis, N.; Collins, P.; Taylor, A.; Hodgson, P. D.; Fabijanic, D. On the Enhanced Corrosion Resistance of a Selective Laser Melted Austenitic Stainless Steel. Scr. Mater. 2017, 141, 94–98. doi:10.1016/j.scriptamat.2017.07.037.
  • Man, C.; Dong, C.; Liu, T.; Kong, D.; Wang, D.; Li, X. The Enhancement of Microstructure on the Passive and Pitting Behaviors of Selective Laser Melting 316L SS in Simulated Body Fluid. Appl. Surf. Sci. 2019, 467–468, 193–205. doi:10.1016/j.apsusc.2018.10.150.
  • Lodhi, M. J. K.; Deen, K. M.; Haider, W. Corrosion Behavior of Additively Manufactured 316L Stainless Steel in Acidic Media. Materialia 2018, 2, 111–121. doi:10.1016/j.mtla.2018.06.015.
  • Al-Mamun, N. S.; Mairaj Deen, K.; Haider, W.; Asselin, E.; Shabib, I. Corrosion Behavior and Biocompatibility of Additively Manufactured 316L Stainless Steel in a Physiological Environment: The Effect of Citrate Ions. Addit. Manuf. 2020, 34, 101237. doi:10.1016/j.addma.2020.101237.
  • Nie, J.; Wei, L.; Ling Li, D.; Zhao, L.; Jiang, Y.; Li, Q. High-Throughput Characterization of Microstructure and Corrosion Behavior of Additively Manufactured SS316L-SS431 Graded Material. Addit. Manuf. 2020, 35, 101295. doi:10.1016/j.addma.2020.101295.
  • Kong, D.; Dong, C.; Ni, X.; Zhang, L.; Luo, H.; Li, R.; Wang, L.; Man, C.; Li, X. The Passivity of Selective Laser Melted 316L Stainless Steel. Appl. Surf. Sci. 2020, 504, 144495. doi:10.1016/j.apsusc.2019.144495.
  • Yan, F.; Xiong, W.; Faierson, E.; Olson, G. B. Characterization of Nano-Scale Oxides in Austenitic Stainless Steel Processed by Powder Bed Fusion. Scr. Mater. 2018, 155, 104–108. doi:10.1016/j.scriptamat.2018.06.011.
  • Man, C.; Duan, Z.; Cui, Z.; Dong, C.; Kong, D.; Liu, T.; Chen, S.; Wang, X. The Effect of Sub-Grain Structure on Intergranular Corrosion of 316L Stainless Steel Fabricated via Selective Laser Melting. Mater. Lett. 2019, 243, 157–160. doi:10.1016/j.matlet.2019.02.047.
  • Laleh, M.; Hughes, A. E.; Xu, W.; Cizek, P.; Tan, M. Y. Unanticipated Drastic Decline in Pitting Corrosion Resistance of Additively Manufactured 316L Stainless Steel after High-Temperature Post-Processing. Corros. Sci. 2020, 165, 108412. doi:10.1016/j.corsci.2019.108412.
  • Laleh, M.; Hughes, A. E.; Xu, W.; Haghdadi, N.; Wang, K.; Cizek, P.; Gibson, I.; Tan, M. Y. On the Unusual Intergranular Corrosion Resistance of 316L Stainless Steel Additively Manufactured by Selective Laser Melting. Corros. Sci. 2019, 161, 108189. doi:10.1016/j.corsci.2019.108189.
  • Macdonald, D. D.; Engelhardt, G. R. Predictive Modeling of Corrosion. In Shreir’s Corrosion; Cottis, B., Graham, M., Lindsay, R., Lyon, S., Richardson, T., Scantlebury, D., Stott, H., Eds.; Elsevier: Amsterdam, 2010; Vol. 2, 1630–1679.
  • Macdonald, D. D. Passivity - The Key to Our Metals-Based Civilization. Pure Appl. Chem. 1999, 71, 951–978. doi:10.1351/pac199971060951.
  • Callister, W. D. Materials Science and Engineering: An Introduction (2nd Edition). Mater. Des. 1991, 12, 59. doi:10.1016/0261-3069(91)90101-9.
  • Melia, M. A.; Nguyen, H. D. A.; Rodelas, J. M.; Schindelholz, E. J. Corrosion Properties of 304L Stainless Steel Made by Directed Energy Deposition Additive Manufacturing. Corros. Sci. 2019, 152, 20–30. doi:10.1016/j.corsci.2019.02.029.
  • Shang, F.; Chen, X.; Wang, Z.; Ji, Z.; Ming, F.; Ren, S.; Qu, X. The Microstructure, Mechanical Properties, and Corrosion Resistance of UNS S32707 Hyper-Duplex Stainless Steel Processed by Selective Laser Melting. Metals 2019, 9, 1012. doi:10.3390/met9091012.
  • Liu, Y. J.; Li, X. P.; Zhang, L. C.; Sercombe, T. B. Processing and Properties of Topologically Optimised Biomedical Ti-24Nb-4Zr-8Sn Scaffolds Manufactured by Selective Laser Melting. Mater. Sci. Eng. A 2015, 642, 268–278. doi:10.1016/j.msea.2015.06.088.
  • Liu, Y. J.; Li, S. J.; Wang, H. L.; Hou, W. T.; Hao, Y. L.; Yang, R.; Sercombe, T. B.; Zhang, L. C. Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting. Acta Mater. 2016, 113, 56–67. doi:10.1016/j.actamat.2016.04.029.
  • Shifeng, W.; Shuai, L.; Qingsong, W.; Yan, C.; Sheng, Z.; Yusheng, S. Effect of Molten Pool Boundaries on the Mechanical Properties of Selective Laser Melting Parts. J. Mater. Process. Technol. 2014, 214, 2660–2667. doi:10.1016/j.jmatprotec.2014.06.002.
  • Macatangay, D. A.; Thomas, S.; Birbilis, N.; Kelly, R. G. Unexpected Interface Corrosion and Sensitization Susceptibility in Additively Manufactured Austenitic Stainless Steel. Corrosion 2018, 74, 153–157. doi:10.5006/2723.
  • Kong, D.; Ni, X.; Dong, C.; Zhang, L.; Man, C.; Yao, J.; Xiao, K.; Li, X. Heat Treatment Effect on the Microstructure and Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting for Proton Exchange Membrane Fuel Cells. Electrochim. Acta 2018, 276, 293–303. doi:10.1016/j.electacta.2018.04.188.
  • Ni, X-Q.; Kong, D-C.; Wen, Y.; Zhang, L.; Wu, W-H.; He, B-B.; Lu, L.; Zhu, D-X. Anisotropy in Mechanical Properties and Corrosion Resistance of 316L Stainless Steel Fabricated by Selective Laser Melting. Int. J. Miner. Metall. Mater. 2019, 26, 319–328. doi:10.1007/s12613-019-1740-x.
  • Zhou, C.; Hu, S.; Shi, Q.; Tao, H.; Song, Y.; Zheng, J.; Xu, P.; Zhang, L. Improvement of Corrosion Resistance of SS316L Manufactured by Selective Laser Melting through Subcritical Annealing. Corros. Sci. 2020, 164, 108353. doi:10.1016/j.corsci.2019.108353.
  • Yasa, E.; Kruth, J. P. Microstructural Investigation of Selective Laser Melting 316L Stainless Steel Parts Exposed to Laser Re-Melting, in. Procedia Eng. 2011, 19, 389–395. doi:10.1016/j.proeng.2011.11.130.
  • Hong, T.; Nagumo, M. Effect of Surface Roughness on Early Stages of Pitting Corrosion of Type 301 Stainless Steel. Corros. Sci. 1997, 39, 1665–1672. doi:10.1016/S0010-938X(97)00072-3.
  • Asami, K.; Hashimoto, K. Importance of Initial Surface Film in the Degradation of Stainless Steels by Atmospheric Exposure. Corros. Sci. 2003, 45, 2263–2283. doi:10.1016/S0010-938X(03)00047-7.
  • Evgeny, B.; Hughes, T.; Eskin, D. Effect of Surface Roughness on Corrosion Behaviour of Low Carbon Steel in Inhibited 4 M Hydrochloric Acid under Laminar and Turbulent Flow Conditions. Corros. Sci. 2016, 103, 196–205. doi:10.1016/j.corsci.2015.11.019.
  • Chattopadhyay, R. Surface Wear: Analysis, Treatment, and Prevention; ASM International: Materials Park, OH, 2001; p 307.
  • Reddy, B. S. K.; Ramamoorthy, B.; Nair, P. K. Surface Integrity Aspects and Their Influence on Corrosion Behavior of Ground Surfaces, IE (I). J.-Pr. 2005, 86, 35.
  • Zuo, Y.; Wang, H.; Xiong, J. The Aspect Ratio of Surface Grooves and Metastable Pitting of Stainless Steel. Corros. Sci. 2002, 44, 25–35. doi:10.1016/S0010-938X(01)00039-7.
  • Burstein, G. T.; Pistorius, P. C. Surface Roughness and the Metastable Pitting of Stainless Steel in Chloride Solutions. Corrosion 1995, 51, 380–385. doi:10.5006/1.3293603.
  • Kappesser, R.; Cornet, I.; Greif, R. Mass Transfer to a Rough Rotating Cylinder. J. Electrochem. Soc. 1971, 118, 1957. doi:10.1149/1.2407875.
  • Poulson, B. Electrochemical Measurements in Flowing Solutions. Corros. Sci. 1983, 23, 391–430. doi:10.1016/0010-938X(83)90070-7.
  • Schmitt, H. G.; Bakalli, M. Flow Assisted Corrosion. In Shreir’s Corrosion; Cottis, B., Graham, M., Lindsay, R., Lyon, S., Richardson, T., Scantlebury, D., Stott, H., Eds.; Elsevier: Amsterdam, 2010; pp 954–987.
  • Efird, K. D.; Wright, E. J.; Boros, J. A.; Hailey, T. G. Correlation of Steel Corrosion in Pipe Flow with Jet Impingement and Rotating Cylinder Tests. Corrosion 1993, 49, 992–1003. doi:10.5006/1.3316026.
  • Yasa, E.; Kruth, J.-P. Application of Laser Re-Melting on Selective Laser Melting Parts. Adv. Prod. Eng. Manag. 2011, 6, 259–270.
  • Cherry, J. A.; Davies, H. M.; Mehmood, S.; Lavery, N. P.; Brown, S. G. R.; Sienz, J. Investigation into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting. Int. J. Adv. Manuf. Technol. 2015, 76, 869–879. doi:10.1007/s00170-014-6297-2.
  • Alrbaey, K.; Wimpenny, D. I.; Al-Barzinjy, A. A.; Moroz, A. Electropolishing of Re-Melted SLM Stainless Steel 316L Parts Using Deep Eutectic Solvents: 3 × 3 Full Factorial Design. J. Mater. Eng. and Perform. 2016, 25, 2836–2846. doi:10.1007/s11665-016-2140-2.
  • Chen, Z.; Wu, X.; Tomus, D.; Davies, C. H. J. Surface Roughness of Selective Laser Melted Ti-6Al-4V Alloy Components. Addit. Manuf. 2018, 21, 91–103. doi:10.1016/j.addma.2018.02.009.
  • Wang, X.; ShichongLi, Y. F.; Gao, H. Finishing of Additively Manufactured Metal Parts by Abrasive Flow Machining. Proc. 27th Annu. Int. Solid Free. Fabr. Symp., 2016; pp 2470–2472.
  • Habibzadeh, S.; Li, L.; Shum-Tim, D.; Davis, E. C.; Omanovic, S. Electrochemical Polishing as a 316L Stainless Steel Surface Treatment Method: Towards the Improvement of Biocompatibility. Corros. Sci. 2014, 87, 89–100. doi:10.1016/j.corsci.2014.06.010.
  • Kok, Y.; Tan, X. P.; Wang, P.; Nai, M. L. S.; Loh, N. H.; Liu, E.; Tor, S. B. Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review. Mater. Des. 2018, 139, 565–586. doi:10.1016/j.matdes.2017.11.021.
  • Lou, X.; Othon, M. A.; Rebak, R. B. Corrosion Fatigue Crack Growth of Laser Additively-Manufactured 316L Stainless Steel in High Temperature Water. Corros. Sci. 2017, 127, 120–130. doi:10.1016/j.corsci.2017.08.023.
  • Kong, D.; Ni, X.; Dong, C.; Lei, X.; Zhang, L.; Man, C.; Yao, J.; Cheng, X.; Li, X. Bio-Functional and anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting. Mater. Des. 2018, 152, 88–101. doi:10.1016/j.matdes.2018.04.058.
  • Wang, Y. M.; Voisin, T.; McKeown, J. T.; Ye, J.; Calta, N. P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T. T.; et al. Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility. Nat. Mater. 2018, 17, 63–71. doi:10.1038/NMAT5021.
  • Cruz, V.; Chao, Q.; Birbilis, N.; Fabijanic, D.; Hodgson, P. D.; Thomas, S. Electrochemical Studies on the Effect of Residual Stress on the Corrosion of 316L Manufactured by Selective Laser Melting. Corros. Sci. 2020, 164, 108314. doi:10.1016/j.corsci.2019.108314.
  • Lin, K.; Gu, D.; Xi, L.; Yuan, L.; Niu, S.; Lv, P.; Ge, Q. Selective Laser Melting Processing of 316L Stainless Steel: Effect of Microstructural Differences along Building Direction on Corrosion Behavior. Int. J. Adv. Manuf. Technol. 2019, 104, 2669–2679. doi:10.1007/s00170-019-04136-9.
  • Kong, D.; Dong, C.; Ni, X.; Zhang, L.; Luo, H.; Li, R.; Wang, L.; Man, C.; Li, X. Superior Resistance to Hydrogen Damage for Selective Laser Melted 316L Stainless Steel in a Proton Exchange Membrane Fuel Cell Environment. Corros. Sci. 2020, 166, 108425. doi:10.1016/j.corsci.2019.108425.
  • Mo, J.; Dehoff, R. R.; Peter, W. H.; Toops, T. J.; Green, J. B.; Zhang, F. Y. Additive Manufacturing of Liquid/Gas Diffusion Layers for Low-Cost and High-Efficiency Hydrogen Production. Int. J. Hydrogen Energy 2016, 41, 3128–3135. doi:10.1016/j.ijhydene.2015.12.111.
  • Zhang, Y.; Song, B.; Ming, J.; Yan, Q.; Wang, M.; Cai, C.; Zhang, C.; Shi, Y. Corrosion Mechanism of Amorphous Alloy Strengthened Stainless Steel Composite Fabricated by Selective Laser Melting. Corros. Sci. 2020, 163, 108241. doi:10.1016/j.corsci.2019.108241.
  • Zhang, Y.; Zhang, J.; Yan, Q.; Zhang, L.; Wang, M.; Song, B.; Shi, Y. Amorphous Alloy Strengthened Stainless Steel Manufactured by Selective Laser Melting: Enhanced Strength and Improved Corrosion Resistance. Scr. Mater. 2018, 148, 20–23. doi:10.1016/j.scriptamat.2018.01.016.
  • Lou, X.; Song, M.; Emigh, P. W.; Othon, M. A.; Andresen, P. L. On the Stress Corrosion Crack Growth Behaviour in High Temperature Water of 316L Stainless Steel Made by Laser Powder Bed Fusion Additive Manufacturing. Corros. Sci. 2017, 128, 140–153. doi:10.1016/j.corsci.2017.09.017.
  • Jiang, M.; Liu, H.; Qiu, S.; Min, S.; Gu, Y.; Kuang, W.; Hou, J. Irradiation Damage and Corrosion Performance of Proton Irradiated 304 L Stainless Steel Fabricated by Laser-Powder Bed Fusion. Mater. Charact. 2023, 202, 113023. doi:10.1016/j.matchar.2023.113023.