334
Views
63
CrossRef citations to date
0
Altmetric
Research Article

Carcinogenicity and Genotoxicity of Ethylene Oxide: New Aspects and Recent Advances

Pages 595-608 | Published online: 29 Sep 2008

References

  • Kirkovsky, L., Lermontov, S. A., Zavorin, S. I., Sukhozhenko, I. I., Zavelsky, V. I., Thier, R. and Bolt, H. M. 1998. Hydrolysis of genotoxic methyl-substituted oxiranes: experimental kinetic and semi-empirical studies. Toxicol Environ Chem 17: 2141–2147
  • , IARC. 1994. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Vol. 60. Some industrial chemicals. International Agency for Research on Cancer, Lyon.
  • , ACGIH. 2000. TLVs and BEIs. Based on the Documentations of the Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. 2000 edition. ACGIH, Cincinnati, OH.
  • , DFG. 2000. List of MAK and BAT Values 2000. Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Report No. 35, WILEY-VCH, Weinheim.
  • , Anon. 1996. TRGS 150 Unmittelbarer Hautkontakt mit Gefahrstoffen. Bundesarbeitsblatt 6/1996: 31
  • Filser, J. G. and Bolt, H. M. 1984. Inhalation toxicokinetics based on gas uptake studies. VI. Comparative evaluation of ethylene oxide and butadiene monoxide as exhaled reactive metabolites of ethylene and 1,3-butadiene in rats. Arch Toxicol 55: 219–223
  • Ehrenberg, L., Osterman-Golkar, S., Segerbäck, D., Svensson, K., and Calleman, C. J. 1977. Evaluation of genetic risks of alkylating agents. III. Alkylation of haemoglobin after metabolic conversion of ethene to ethene oxide in vivo. Mutat Res 45: 175–184
  • Segerbäck, D. 1983. Alkylation of DNA and hemoglobin in the mouse following exposure to ethene and ethene oxide. Chem Biol Interact 45: 139–151
  • Maples, K. R. and Dahl, A. R. 1993. Levels of epoxides in blood during inhalation of alkenes and alkenes oxides. Inhal Toxicol 5: 43–54
  • Törnqvist, M., Almberg, J. G., Bergmark, E. N., Nilsson, S., and Osterman-Golkar, S. 1989. Ethylene oxide doses in ethene-exposed fruit store workers. Scand J Work Environ Health 15: 436–438
  • Filser, J. G., Denk, B., Törnqvist, M., Kessler, W., and Ehrenberg, L. 1992. Pharmacokinetics of ethylene in man: body burden with ethylene oxide and hydroxyethylation of hemoglobin due to endogenous and environmental ethylene. Arch Toxicol 66: 157–163 , (erratum: Arch Toxicol 67: 230, 1993).
  • Frank H., Hintze T., and Remmer H. 1980. Volatile hydrocarbons in breath, an indication for peroxidative degradation of lipids. In: Kolb, B., Ed., Applied Head-Space Gas Chromatography. Heyden, London, pp. 155–164
  • Sagai, M. and Ichinose, T. 1980. Age-related changes in lipid peroxidation as measured by ethane, ethylene, butane and pentane in respired gases of rats. Life Sci 27: 731–738
  • Shen, J., Kessler, W., Denk, B., and Filser, J. G. 1989. Metabolism and endogenous production of ethylene in rat and man. Arch Toxicol (Suppl) 13: 237–239
  • Lieberman, M. and Mapson, L. W. 1964. Genesis and biogenesis of ethylene. Nature 204: 343–345
  • Ram Chandra, G. and Spencer, M. 1993. A micro-apparatus for absorption of ethylene and its use in determination of ethylene in exhaled gases from human subjects. Biochim Biophys Acta 69: 423–425
  • Törnqvist, M., Gustafsson, B., Kautiainen, A., Harms-Ringdahl, M., Granath, P., and Ehrenberg, L. 1989. Unsaturated lipids and intestinal bacteria as sources of endogenous production of ethylene and ethylene oxide. Carcinogenesis 10: 39–41
  • Kessler, W. and Remmer, H. 1990. Generation of volatile hydrocarbons from amino acids and proteins by an iron/ascorbate/GSH system. Biochem Pharmacol 39: 1347–1351.
  • Clemens, M. R., Einsele, H., Frank, H., Remmer, H., and Waller H. D. 1983. Volatile hydrocarbons from hydrogen peroxide-induced lipid peroxidation of erythrocytes and their cell compounds. Biochem Parmacol 32: 3877–3878
  • Vollmer, D. M., Thier, R., and Bolt, H. M. 1998. Determination of the ethylene oxide adduct S-(2-hydroxyethyl)cysteine by a fluorimetric HPLC method in albumin and globin from human blood. Fresenius J Anal Chem 362: 324–328
  • Föst, U., Marczynski, B., Kasemann R., and Peter, H. 1989. Determination of 7-(2-hydroxyethyl)guanine with gas chromatography/mass spectrometry as a parameter for genotoxicity of ethylene oxide. Arch Toxicol (Suppl) 13: 250–253
  • Bolt, H. M. 1997. Risiken durch Stoffe am Arbeitsplatz; Moglichkeiten der Quantifizierung des endogenen Risikos. Gefahrstoffe-Reinhaltung der Luft 57: 241–242
  • Bolt, H. M. 1996. Quantification of endogenous carcinogens. The ethylene oxide paradox. Biochem Pharmacol 52: 1–5
  • Bolt, H. M. 1998. The carcinogenic risk of ethene (ethylene). Toxicol Pathol 26: 454–456
  • Bolt, H. M. and Filser, J. G. 1984. Olefinic hydrocarbons: first risk estimate for ethene. Toxicol Pathol 12: 101–105
  • Bolt, H. M. and Filser, J. G. 1987. Kinetics and disposition in toxicology. Example: carcinogenic risk estimate for ethylene. Arch Toxicol 60: 73–76
  • Selinski, S., Bolt, H. M., and Urfer, W. in Press. Estimation of toxicokinetic parameters in population models for inhalation studies with ethylene. Environmetrics.
  • Filser, J. G., Kreuzer, P. E., Greim, H. and Bolt, H. M. 1994. New scientific arguments for regulation of ethylene oxide residues in skin-care products. Arch Toxicol 68: 401–405
  • , ECETOC. 1982. Technical Report No. 5: Ethylene Oxide Toxicology and Its Relevance to Man. European Chemical Industry Ecology and Toxicology Centre, Brussels.
  • , ECETOC. 1984. Technical Report No. 11: Ethylene Oxide Toxicology and Its Relevance to Man: An Updating of ECETOC Report No. 5. ECETOC, Brussels 1984. European Chemical Industry Ecology and Toxicology Centre, Brussels.
  • , IARC. 1982. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol 36. Allyl compounds, aldehydes, epoxides and peroxides. International Agency for Research on Cancer, Lyon
  • , IARC. 1987. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans (Suppl 7). Overall evaluation of carcinogenicity: an updating of IARC monographs Vol 1–42. International Agency for Research on Cancer, Lyon
  • Hogstedt, C., Aringer, L., and Gustavsson, A. 1986. Epidemiologic support for ethylene oxide as a cancer-causing agent. J Am Med Asso 255: 1575–1578
  • Bisanti, L., Maggini, M., Raschetti, R., Spila-Alegiani, A., and Menniti-Ippolito, F. 1988. A cohort study on cancer mortality of ethylene-oxide workers. Sixth International Symposium on Epidemiology in Occupational Health, Stockholm, August 16–18, 1988. Arb Hälsa 16: 68
  • Gardner, M. J., Coggon, D., Pannett, B., and Harris, E. C. 1990. Workers exposed to ethylene oxide: a follow-up study. Br J Ind Med 47: 860–865
  • Greenberg, H. L., Ott, M. G., and Shore, R. E. 1990. Men assigned to ethylene oxide production or other ethylene oxide-related chemical manufacturing: a mortality study. Br J Ind Med 47: 221–230
  • Kiesselbach, N., Ulm, K., Lange, H. J., and Korallus, U. 1990. A multicenter mortality study of workers exposed to ethylene oxide. Br J Ind Med 47: 182–188
  • Hagmar, L., Welinder, H., Linden, K., Attewell, R., Osterman-Golkar, S., and Törnqvist, M. 1991. An epidemiological study of cancer risk among workers exposed to ethylene oxide using hemoglobin adducts to validate environmental exposure assessments. Int Arch Occup Environ Health 63: 271–277
  • Teta, M. J., Sielken, R. L., Jr., and Valdez-Flores, C. 1999 Ethylene oxide cancer risk assessment based on epidemiological data: application of revised regulatory guidelines. Risk Anal 19: 1135–1155
  • Van Sittert, N. J., Boogaard, P. J., Natarajan, A. T., Tates, A. D., Ehrenberg, L. G., and Törnqvist, M. A. 2000. Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment. Mutat Res 447: 27–48
  • Tates, A. D., van Dam, F. J., Natarayan, A. T., van Teylingen, C. M. M., de Zwart, F. A., Zwinderman, A. H., van Sittert, N. J., Nilsen, A., Nilsen, O. G., Zahlsen, K., Magnusson, A. L., and Törnqvist, M. 1999. Measurement of HPRT mutations in splenic lymphocytes and haemoglobin adducts in erythrocytes of Lewis rats exposed to ethylene oxide. Mutat Res 431: 397–415
  • Preston, R. J. 1999. Cytogenetic effects of ethylene oxide, with an emphasis on population monitoring. Crit Rev Toxicol 29: 263–282
  • Walker, V. E., Sisk, S. C., Upton, P. B., Wong, B. A., and Recio, L. 1997. In vivo mutagenicity of ethylene oxide at the HPRT locus in T-lymphocytes of B6C3F1 lacI transgenic mice following inhalation exposure. Mutat Res 392: 211–222
  • Vogel, E. W. and Nivard, M. J. 1998. Genotoxic effects of inhaled ethylene oxide, propylene oxide and butylene oxide on germ cells: sensitivity of genetic end points in relation to dose and repair status. Mutat Res 405: 259–271
  • Preston, R. J., Fennell, T. R., Leber, A. P., Sielken, R. L., Jr., and Swenberg, J. A. 1995. Reconsideration of the genetic risk assessment for ethylene oxide exposures. Environ Mol Mutagen 26: 189–202
  • Mlejnek, P. and Kolman, A. 1999. Effects of three epoxides —ethylene oxide, propylene oxide and epichlorohydrine-on cell cycle progression and cell death in human diploid fibroblasts. Chem Biol Interact 117: 219–239
  • Ember, I., Kiss, I., Gombkoto, G., Müller, E., and Szeremi, M. 1998. Oncogene and suppressor gene expression as a biomarker for ethylene oxide exposure. Cancer Detect Prev 22: 241–245
  • Bolt, H. M. 1988. Carcinogenicity of ethylene and its derivatives: structural considerations. In: Chemical Carcinogens: Activation Mechanisms, Structural and Electronic Factors, and Reactivity (Bioactive Molecules, Vol. 5), Politzer, P. and F. J. Martin Jr., Eds., pp. 177–187, Elsevier, Amerdam/Oxford/New York/Tokyo.
  • Ottender, M. and Lutz, W. K. 1999. Correlation of DNA adduct levels with tumour incidence: carcinogenic potency of DNA adducts. Mutat Res 424: 237–247
  • Walker, V. E., Fennell, T. R., Upton, P. B., Skopek, T. R., Prevost, V., Shuker, D. E. G., and Swenberg, J. A. 1992. Molecular dosimetry of ethylene oxide: formation and persistence of 7-(2-hydroxyethyl)guanine in DNA following repeated exposures of rats and mice. Cancer Res 52: 4328–4334
  • Walker, V. E., Fennell, T. R., Boucheron, J. A., Fedtke, N., Ciroussel, F., and Swenberg, J. A. 1990. Macro-molecular adducts of ethylene oxide: a literature review and a time-course study on the formation of 7-(2-hydroxyethyl)guanine following exposures of rats by inhalation. Mutat Res 233: 151–164
  • Swenberg, J. A., La, D. K., Scheller, N. A., and Wu, K. Y. 1995. Dose-response relationships for carcinogens. Toxicol Lett 82/83: 751–75
  • Bolt, H. M., Peter, H., and Föst, U. 1988. Analysis of macromolecular ethylene oxide adducts. Int Arch Occup Environ Hlth 60: 141–144
  • Bolt, H. M. and Leutbecher, M. 1993. Dose-DNA adduct relationship for ethylene oxide. Arch Toxicol 67: 712–713
  • van Delft, J. H. M., van Winden, M. J. M., Luiten-Schuite, A., Ribeiro, L. J. and Baan, R. A. 1994. Comparison of various immunochemical assays for the detection of ethylene oxide-DNA adducts with monoclonal antibodies against imidazol ring-opened N7-(2-hydroxyethyl)guanosine: application in a biological monitoring study. Carcinogenesis 15: 1867–1873
  • Eide, I., Hagemann, R., Zahlsen, K., Tareke, E., Törnqvist, M., Kumar, R., Vodicka, P., and Hemminki, K. 1995. Uptake, distribution and formation of haemoglobin and DNA adducts after inhalation of C2-C8 1-alkenes (olefins) in the rat. Carcinogenesis 16: 1603–1609
  • Zhao, C., Kumar, R., Zahlsen, K., Sundmark, H. B., Hemminki, K., and Eide, I. 1997. Persistence of 7-(2-hydroxyethyl)guanine-DNA adducts in rats exposed to ethene by inhalation. Biomarkers 2: 355–359
  • Wu, K. Y., Scheller, N., Ranasinghe, A., Yen, T. Y., Sangaiah, R., Giese, R., and Swenberg, J. A. 1999. A gas chromatography/electron capture/negative chemical ionization high-resolution mass spectrometry method for analysis of endogenous and exogenous N7(2-hydroxyethyl)guanine in rodents and its potential for human biological monitoring. Chem Res Toxicol 12: 722–729
  • Bolt, H. M., Leutbecher, M., and Golka, K. 1997. A note on the physiological background of the ethylene oxide adduct 7-(2-hydroxyethyl)guanine in DNA from human blood. Arch Toxicol 71: 719–721
  • Wu, K. Y., Ranasinghe, A., Upton, P. B., Walker, V. E., and Swenberg, J. A. 1999. Molecular dosimetry of endogenous and ethylene oxide-induced N7-(2-hydroxyethyl)guanine formation in tissues of rodents. Carcinogenesis 20: 1787–1792
  • Wu, K. Y., Scheller, N., Cho, M., Ranasinghe, A., Upton, P., Walker, V. E., and Swenberg, J. A. 1995. Molecular dosimetry of hydroxyethyl adducts in DNA and hemoglobin following exposure of rats to ethylene and low doses of ethylene oxide. The International Toxicologist, Abstracts of the VII International Congress of Toxicology 7 (1): abstract 6-P-6
  • Granath, F. N., Vaca, C. E., Ehrenberg, L. G., and Törnqvist, M. A. 1999. Cancer risk estimation of genotoxic chemicals based on target dose and a multiplicative model. Risk Anal. 19: 309–320
  • Potter, D., Blair, D., Davies, R., Watson, W. P., and Wright, A. S. 1989. The relationships between alkylation of haemoglobin and DNA in Fischer 344 rats exposed to (14C)ethylene oxide. Arch Toxicol (Suppl) 13: 254–257
  • Fuchs, J., Wullenweber, U., Hengstler, J. G., Bienfait, H. G., Hiltl, G., and Oesch, F. 1994. Genotoxic risk for humans due to work place exposure to ethylene oxide: remarkable individual differences in susceptibility. Arch Toxicol 68: 343–348
  • Krishan, K., Gargas, M. L., Fennell, T. R., and Andersen, M. E. 1992. A physiologically based description of ethylene oxide dosimetry in the rat. Toxicol Ind Hlth 8: 121–140
  • Brown, C. D., Asgharian, B., Turner, M. J., and Fennell, T. R. 1998. Ethylene oxide dosimetry in the mouse. Toxicol Appl Pharmacol 148: 215–221
  • Wright A. S., Bradshaw T. K., and Watson W. P. 1988. Prospective detection and assessment of genotoxic hazards: a critical appreciation of the contribution of L. Ehrenberg. In: Bartsch, H., Hemminki, K., O'Neill, I. K., Eds., Methods for Detecting DNA Damaging Agents in Humans: Applications in Cancer Epidemiology and Prevention. IARC Sci Publ No. 89, Lyon, pp. 237–248
  • Barr, D. B. and Ashley, D. L. 1998. A rapid, sensitive method for the quantitation of N-acetyl-S-(2-hydroxyethyl)-L-cysteine in human urine using isotope dilution HPLC-MS-MS. J Anal Toxicol 22: 96–104
  • Hallier, E., Langhof, T., Dannappel, D., Leutbecher, M., Schröder, K., Goergens, H. W., Müller, A., and Bolt, H. M. 1993. Polymorphism of glutathione conjugation of methyl bromide, ethylene oxide and dichloromethane in human blood: influence on the induction of sister chromatid exchange (SCE) in lymphocytes. Arch Toxicol 67: 173–178
  • Wiebel, F. A., Dommermuth, A., and Thier, R. 1999. The hereditary transmission of the glutathione transferase hGST1-1 conjugator phenotype in a large family. Pharmacogenetics 9: 251–256
  • Fennell, T. R. 1996. Biomarkers of exposure and susceptibility: application to ethylene oxide. CIIT Activities 16 (11): 1–8
  • Thier, R., Wiebel, F. A., and Bolt H. M. 1999. Differential substrate behaviours of ethylene oxide and propylene oxide towards human glutathione-S-transferase hGSTT1-1. Arch Toxicol 73: 489–492
  • Thier, R., Pemble, S. E., Kramer, H., Taylor, J. B., Guengerich, F. P., and Ketterer B. 1996. Human glutathione S-transferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromomethane and 1,2,3,4-diepoxybutane. Carcinogenesis 17: 163–167
  • Thier, R., Taylor, J. B., Pemble, S. E., Humphreys, W. G., Persmark, M., Ketterer, B., and Guengerich, F. P. 1993. Expression of mammalian glutathione S-transferase 5–5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes. Proc Natl Acad Sci USA 90: 8576–8580
  • Herrero, M. E., Arand, M., Hengstler, J. G., and Oesch, F. 1997. Recombinant expression of human microsomal epoxide hydrolase protects V79 Chinese hamster cells from styrene oxide — but not from ethylene oxide — induced DNA strand breaks. Environ Molec Mutagenesis 30: 429–439
  • Pemble, S., Schröder, K. R., Spencer, S. R., Meyer, D. J., Hallier, E., Bolt, H. M., Ketterer, B., and Taylor, J. B. 1994. Human glutathione-S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300: 271–27
  • EI-Masri, H. A., Bell, D., and Portier, C. J. 1999. Effects of glutathione transferase theta polymorphism on the risk estimates of dichloromethane to humans. Toxicol Appl Pharmacol 158: 221–230.
  • Pauwels, W. and Veulemans, H. 1998. Comparison of ethylene, propylene and styrene-7,8-oxide in vitro adduct formation on N-terminal valine in human haemoglobin and on N-7-guanine in human DNA. Mutat Res 418: 21–33
  • Bono, R., Vincenti, M., Meineri, V., Pignata, C., Saglia, U., Giachino, O., and Scursatone, E. 1999. Formation of N-(2-hydroxyethyl)valine due to exposure to ethylene oxide via tobacco smoke: a risk factor for onset of cancer. Environ Res 81: 62–71
  • Angerer, J., Bader, M., and Krämer, A. 1998. Ambient and biochemical effect monitoring of workers exposed to ethylene oxide. Int Arch Occup Environ Hlth 71: 14–18
  • Boogaard, P. J., Rocchi, P. S. J., and van Sittert, N. J. 1999. Biomonitoring of exposure to ethylene oxide and propylene oxide by determination of haemoglobin adducts: correlations between airborne exposure and adduct levels. Int Arch Occup Environ Hlth 72: 142–150
  • Müller, M., Krämer, A., Angerer, J., and Hallier, E. 1998. Ethylene oxide-protein adduct formation in humans: influence of glutathione-S-transferase polymorphisms. Int Arch Occup Environ Hlth 71: 499–502
  • Thier, R., Lewalter, J., Kempkes, M., Selinski, S., Brüning, T., and Bolt, H. M. 1999. Haemoglobin adducts of acrylonitrile and ethylene oxide in acrylonitrile workers, dependent on polymorphisms of the glutathione transferases GSTT1 and GSTM1. Arch Toxicol 73: 197–202
  • Schröder, K. R., Wiebel, F. A., Reich, S., Dannappel, D., Bolt, H. M., and Hallier, E. 1995. Glutathione-S-transferase (GST) theta polymorphism influences background SCE rate. Arch Toxicol 69: 505–507
  • Ehrenberg, L., Hiesche, K. D., Osterman-Golkar, S., and Wennberg, I. 1974. Evaluation of genetic risks of alkylating agents: tissue doses in the mouse from air contaminated with ethylene oxide. Mutat Res 24: 83–103
  • Törnqvist, M., Segerbäck, D., and Ehrenberg, L. 1991. The “rad-equivalence approach” for assessment and evaluation of cancer risks, exemplified by studies of ethylene oxide and ethene. In: Garner, R. C., Farmer, P. B., Steel, G. T., Wright, A. S., eds. Human Carcinogen Exposure: Biomonitoring and Risk Assessment. Oxford University Press, Oxford, pp. 141–155
  • Granath, F. N., Vac, C. E., Ehrenberg, L. G., and Törnqvist, M. A. 1999. Cancer risk estimation of genotoxic chemicals based on target dose and a multiplicative model. Risk Anal 19: 309–320
  • Neumann, H. G., Vamvakas, S., Thielmann, H. W., Gelbke, H. P., Filser, J. G., Reuter, D., Greim, H., Kappus, H., Norpoth, K. H., Wardenbach, P., and Wichmann, H. E. 1998. Changes in the classification of carcinogenic chemicals in the work area. Section III of the German List of MAK and BAT values. Int Arch Occup Environ Hlth 71: 566–574.
  • Adler, I. D., Andrae, U., Kreis, P., Neumann, H. G., Thier, R. and Wild, D. 2000. Recommendations for the categorization of germ cell mutagens. Int Arch Occup Environ Hlth 73: 428–432.
  • Snellings, W. M., Weil, C. S., and Maronpot, R. R. 1984. A two-year inhalation study of the carcinogenic 344 rats. Toxicol Appl Pharmacol 75: 105–117
  • Anon. 1999. Consideration of the potency classification of acrylamide based on the incidence of tunica vaginalis mesotheliomas (TVMs) in male Fischer 344 rats. Prepared by: The K. S. Crump Group, Inc., 602 East Georgia, Ruston, LA 71270. Prepared for: The Acrylamide Monomer Producers Association (AMPA), Karlstraße 21, 69200 rankfurt, June 11, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.