37
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Heterologous Expression of Xenobiotic Mammalian-Metabolizing Enzymes in Mutagenicity Tester Bacteria: An Update and Practical Considerations

, , , &
Pages 287-306 | Published online: 29 Sep 2008

References

  • Guengerich, F. P. 1992. Metabolic activation of carcino- gens. Pharmac. Ther., 54: 17–61.
  • Gonzalez, F. J. and Gelboin, H. V. 1994. Role of human cytochrome P450 in the metabolic activation of chemi- cal carcinogens and toxins. Drug Chem. Rev. 26: 165–183.
  • Vermeulen, N. P. E. 1996. Role of metabolism in chemi- cal toxicity. In: C. Ioannides, (Ed.) Cytochrome P450: Metabolic and Toxicological Aspects, CRC Press, Boca Raton, FL, pp. 29–53
  • Miller, E. C. and Miller, J. A. 1981. Searches for ultimate carcinogens and their reaction with cellular macro- molecules. Cancer 47: 2327–2345
  • Langenbach, R., Smith, P. B. and Crespi, C. 1992. Re- combinant DNA approaches for the development of metabolic systems used in in vitro toxicology. Mutat. Res. 277: 251–275.
  • Bridges, J. W. and Hubbard, S. A. 1980. Problems in providing an appropriate drug metabolizing system for short-term tests for carcinogens. In: The Predictive Value of Short-Term Screening Tests in Carcinoge- nicity Evaluation, G. M. Wialliams, R. Kroes, H. W. Waaijers, and K. W. van de Poll, Elsevier, Amsterdam, pp. 69–88.
  • Rueff, J., Chiapella, C., Chipman, J. K., Darroudi, F., Duarte Silva, I., Duverger-van Bogaert, M., Fonti, E., Glatt, H. R., Isern, P., Laires, A., Llagosterra, M., Mossesso, P., Natarajan, A. T., Palitti, F., Rodrigues, A.S., Schinoppi, A., Turchi, G., and Werle-Schneider, G. 1996. Development and validation of alternative metabolic systems for mutagenicity testing in short- term assays. Mutat. Res. 353: 151–176.
  • Gonzalez, F. J., Crespi, C. L., and Gelboin, H. V. 1991. cDNA-expressed human cytochrome P450s: a new age of molecular toxicology and human risk assess- ment. Mutat. Res., 247: 113–127.
  • Simula, A. P., Crichton, M. B., Black, S. M., Pemble, S., Bligh, H. F. J., Beggs, J. D. and Wolf, C. R. 1993. Heterologous experession of drug-metabolizing enzymes in cellular and whole animal models. Toxicol- ogy 82: 3–20.
  • Guengerich, F. P., Gillam, E. M. J. and Shimada, T. 1996. New applications of bacterial systems in prob- lems in toxicology. Crit. Rev. Toxicol. 26: 551–583.
  • Josephy, P. D., Gruz, P., and Nohmi, T. 1997. Recent advances in the construction of bacterial genotoxicity assays. Mutat. Res. 386: 1–23.
  • Sengstag, C., Werbel, B. and Fasullo, M. 1996. Genotoxicity of aflatoxin B1: evidence for recombi- nation-mediated mechanism in S. cerevisiae. Cancer Res. 56: 5457–5465.
  • Glatt, H. R. and Gemperlein, I. 1987. Search for cell culture with diverse xenobiotic-metabolizing activi- ties and their use in toxicology studies. Mol. Toxicol. 1, 313–334.
  • Gonzalez, F. J. and Korzekwa, K. R. 1994. Cytochromes P450 expression systems. Annu. Rev. Pharmacol. Toxicol. 35, 369–390.
  • Shapiro, L., Kaiser, D., and Losick, R. 1993. Develop- ment and behaviour in bacteria. Cell, 73, 835–836.
  • Barnes D. E., Lindahl, T., and Segwick, B. 1993. DNA repair. Curr. Opin. Cell Biol. 5: 424–433.
  • Venitt, S., Bartsch, H., Becking, G., Fuchs, R. P. P., Hofnung, M., Malaveille, C., Matsushima, T., Rajewsky, M. R., Roberfroid, M., and Rosenkranz, H. S. 1986. Short-term assays using bacteria. In: Long- Term and Short-Term Assays for Carcinogens: A Critical Appraisal. IARC Scientific Publications, no. 83, Lyon, Chap. 5, Oxford University Press, Oxford, UK, pp. 143–156.
  • Guengerich, F. P. 1988. Roles of cytochrome P450 en- zymes in chemical carcinogens and cancer chemo- therapy. Cancer Res. 48: 2946–2954.
  • Austin, E. A., Graves, J. M., Hite, L. A., Parker, C. T., and Schnaitman, C. A. 1990. Genetic analyses of lipopolysaccharide core biosynthesis by Escherichia coli K12: insertion mutagenesis of th rfa locus. J. Bacteriol. 172: 5312–5325.
  • Parker C. T., Kloser A. W., Schnaitman C. A., Stein M. A., Gottesman, S., and Gibson, B. W. 1992. Role of the rfaG and rfaP genes in determining the lipopolysac- charide core structure and cell surface properties of Escherichia coli. J. Bacteriol. 174: 2525–2538.
  • Anderson, D. 1995. Genotoxicity assays. In: Molecular Aspects of Oxidative Drug Metabolizing Enzymes. Arinç, E., Schenkman, J. B., and Hodgson, E., Eds., NATO ASI Series, Vol. H90, Springer-Verlag, Ber- lin, pp. 303–396.
  • Friedberg, E. C., Walker, G. C. and Siede, W. 1995. DNA Repair and Mutagenesis, ASM Press, Washing- ton, DC, pp. 407–464.
  • Friedberg, E. C., Walker, G. C., and Siede, W. 1995. DNA Repair and Mutagenesis, ASM Press, Washing- ton, DC, pp. 465–522.
  • Langer, P. J., Shanabruch, W. G., and Walker, G. C. 1981. Functional organization of plasmid pKM101. J. Bacteriol., 145: 1310–1316.
  • Hauser, J., Levine, A. S., Ennis, D. G., Chumakov, K. M., and Woodgate, R. 1992. The enhanced mutagenic potential of the MucAB proteins correlates with the highly efficent processing of the MucA protein. J. Bacteriol. 174: 6844–6851.
  • Bintz, R. and Fuchs, R. P. P. 1990. Induction of -2 frameshift mutations within alternating GC sequences by carcinogens that bind to the C8 position of guanine residues: development of a specific mutation assay. Mol. Gen. Genet. 221: 331–338.
  • Ruiz-Rubio, M., Alejandre-Duran, E., and Pueyo, C. 1985. Oxidative mutagens specific for AT base pairs induce forward mutations to L-arabinose resistance in Salmonella typhimurium. Mutat. Res. 147: 153–163.
  • Maron, D. M. and Ames, B. N. 1983. Revised methods for Salmonella mutagenicity test. Mutat. Res. 113: 173–215.
  • Quillardet, P. and Hofnung, M. 1985. The SOS Chromotest, a colorimetric bacterial assay for genotoxins: procedures. Mutat. Res. 147: 65–78.
  • Oda, Y., Nakamura, S., Oki, I., Kato, T., and Shinagawa, H. 1985. Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcino- gens. Mutat. Res. 147: 219–299.
  • Friedberg, T. 1998. Molecular biological methods for characterising drug-metabolizing enzymes in hepatic and extrahepatic tissues. Skin Pharmacol. Appl. Skin Physiol., 11: 61–69.
  • Kranendonk, M., Mesquita, P., Laires, A., Vermeulen, N. P. E., and Rueff, J. 1998. Expression of human cytochrome P450 1A2 in Escherichia coli: a system for biotransformation and genotoxicity studies of chemical carcinogens. Mutagenesis 3: 263–269.
  • Wormhoudt, L. W., Commandeur, J. N. M., and Vermeulen, N. P. E. 1998. Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glu- tathione-S-transferase and epoxide hydrolase enzymes. Crit. Rev. Toxicol. 29: 59–124.
  • Glatt, H., Bartsch, I., Cristoph, S., Coughtrie, M. W. H., Falany, C. N., Hagen, M., Landsriedel, R., Pabel, U., Phillips, D. H., Seidel, A., and Yasushi, Y. 1998. Sulfotransferase-mediated activation of mutagens stud- ied using heterologous expression systems. Chem. Biol. Interact. 109: 195–219.
  • Guengerich, F. P. 1997. Comparison of catalytic selec- tivity of cytochrome P450 subfamily enzymes from different species. Chem. Biol. Interact. 106, 161–182.
  • Gonzalez, F. 1995. Genetic polymorphism and cancer susceptibility: fourteenth Sapporo cancer seminar. Cancer Res., 55: 710–715.
  • Guengerich, F. P. 1996. In vitro techniques for studying drug metabolism. J. Pharmacokin. Biopharm. 24: 521– 533.
  • Sawada, M. and Kamataki, T. 1998. Genetically engi- neered cells stably expressing cytochrome P450 and their application to mutagens assay. Mutat. Res. 411: 19–43.
  • Parikh, A., Gilliam, M. J. and Guengerich, F. P. 1997. Drug metabolism by Escherichia coli expressing hu- man cytochrome P450. Nature Biotech. 15: 784–788.
  • Shimada, T., Gillam, E. M. J., Sandhu, P., Guo, Z., Tukey, R. H., and Guengerich, F. P. 1994. Activation of procarcinogens by human cytochrome P450 en- zymes expressed in Escherichia coli. Simplified bac- terial systems for genotoxocity assays. Carcinogen- esis 15: 2523–2529.
  • Yamazaki, H., Inui, Y., Wrighton, S. A., Guengerich, F. P., and Shimada, T. 1995. Procarcinogen activation by cytochrome P450 3A4 and 3A5 expressed in Es- cherichia coli and by human liver microsomes. Car- cinogenesis 16: 2167–2170.
  • Commandeur, J. N. M., Stijntjes, G. J., and Vermeulen, N. P. E. 1995. Enzymes and transport systems in- volved in the formation and disposition of glutathione- S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol. Rev. 47: 271– 330.
  • Van der Aar, E. M., Tan, K. T., Commandeur, J. N. M., and Vermeulen, N. P. E. 1998. Strategies to characterise the mechanisms of action and the active sites of glu- tathione-S-transferases: a review. Drug Metab. Rev. 30: 569–643.
  • Thier, R., Taylor, J. B., Pemble, S. E., Humphreys, W. G., Persmark, M., Ketterer, B., and Guengerich, F. P. 1993. Expression of mammalian glutathione-S-trans- ferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes. Proc. Natl. Acad. Sci. U.S.A. 90: 8576–8580.
  • Oda, Y., Yamazaki, H., Their, R., Ketterer, B., Guengerich, F. P., and Shimada, T. 1996. A new Salmonella typhimurium NM5004 strain expressing rat glutathione-S-transferase 5-5: use in detection of genotoxicity of dihaloalkanes using an SOS/umu test system. Carcinogenesis 17: 297–302.
  • Shimada, T., Yamazaki, H., Oda, Y., Hiratsuka, A., Watabe, T., and Guengerich, F. P. 1996. Activation and inactivation of carcinogenic dihaloalkanes and other compounds by glutathione-S-transferase 5-5 in Salmonella typhimurium tester strain NM5004. Chem. Res. Toxicol. 9: 333–340.
  • Thier, R., Muller, M., Taylor, J. B., Pemble, S. E., Ketterer, B., and Guengerich, F. P. 1995. Enhance- ment of bacterial mutagencity of bifunctional alkylat- ing agents by expression of mammalian glutathione- S-transferase. Chem. Res. Toxicol. 8: 465–472.
  • Simula, A. P., Glancey, M. J., and Wolf, C. R. 1993. Human glutathione–S-transferase-expressing Salmo- nella typhimurium tester strains to study the activa- tion/detoxification of mutagenic compounds: studies with halogenated compounds, aromatic amines and aflatoxin B1. Carcinogensis 14: 1371–1376.
  • Simula, A. P., Glancey, M. J., Soderlund, E. J., Dybing, E., and Wolf, C.R. 1993. Increased mutagenicity of 1,2-dibromo-3-chloropropane and tris(2,3- bibromopropyl)posphate in Salmonella TA100 ex- pressing human glutathione–S-transferases. Carcino- genesis 14, 2303–2307.
  • Thier, R., Pemble, S. E., Kramer, H., Taylor, J. B., Guengerich, F. P., and Ketterer, B. 1996. Human glutathione-S-transferase T1-1 enhances mutagenic- ity of 1,2-dibromoethane and 1,2,3,4-diepoxybutane in Salmonella typhimurium. <i>Carcinogenesis17: 163–166.
  • Evans, D. A. 1989. N-acetyltransferase. Pharmacol. Ther. 42: 157–239.
  • Kato, R. and Yamazoe, Y. 1994. Metabolic activation of N-hydroxylated metabolites of carcinogenic and mu- tagenic arylamines and arylamides by esterification. Drug Metab. Rev. 26: 413–430.
  • Grant, D. M., Josephy, P. D., Lord, H. L., and Morrison, L. D. 1992. Salmonella typhimurium strains express- ing human arylamine N-acetyltransferases: metabo- lism and mutagenic activation of aromatic amines. Cancer Res. 52: 3961–3964.
  • Watanabe, B., Nohmi, T., and Ishidate M., Jr. 1987. New tester strains of Salmonella typhimurium highly sensi- tive to mutagenic nitroarenes. Biochem. Biophys. Res. Commun. 147: 974–979.
  • Wild, D., Feser, W., Michel, S., Lord, H. L. and Josephy, D. 1995. Metabolic activation of heterocyclic aro- matic amines catalyzed by human arylamine N- acetyltransferase isoenzymes (NAT1 and NAT2) ex- pressed in Salmonellla typhimurium. <i>Carcinogenesis16: 643–648.
  • Josephy, D. P., Debruin, L. S., Lord, H. L., Oak, J. N., Evans, D. H., Guo, Z., Dong, M., and Guengerich, F. 1995. Bioactivation of aromatic amines by recom- binant human cytochrome P4501A2 expressed in Ames tester strain bacteria: a substitute for activation by mammalian tissue preparations. Cancer Res., 55: 799– 802.
  • Josephy, P. D., Evans, D. H., Parikh, A., and Guengerich, F. P. 1998. Metabolic activation of aromatic amine mutagens by simultaneous expression of human cyto- chrome P450 1A2, NADPH cytochrome P450 reduc- tase and N-acetyltransferase in Escherichia coli. Chem. <i>Res. Toxicol. 11: 70–74.
  • Suzuki, A., Kushida, H., Iwata, H., Watanabe, M., Nohmi, T., Fujita, K., Gonzalez, F. J., and Kamataki, T. 1998. Establishment of a Salmonella tester strain highly sensitive to mutagenic heterocylic amines. Cancer Res. 58: 1833–1838.
  • Kranendonk, M., Fisher, C. W., Roda, R., Carreira, F., Theisen, P., Laires, A., Rueff, J., Vermeulen, N. P. E., and Estabrook, R. W. 1999. Escherichia coli MTC, a NADPH cytochrome P450 reductase competent mu- tagenicity tester strain for the expression of human cytochrome P450: comparison of three types of ex- pression systems. Mutat. Res. 439: 287–300.
  • Jenkins, C. M. and Waterman, M. R. 1994. Flavodoxin and NADPH flavodoxin reductase from Escherichia coli support bovine cytochrome P450c17 hydroxylase activities. J. Biol. Chem. 269: 27401–27408.
  • Jenkins, C. M. and Waterman, M. R. 1998. NADPH- flavodoxin reductase and flavodoxin from Escheri- chia coli: characteristics as a soluble microsomal P450 reductase. Biochemistry 37: 6106–6113.
  • Kranendonk, M., Ruas, M., Laires, A., and Rueff, J. 1994. Isolation and prevalidation of an Escherichia coli tester strain for the use in mechanistic and meta- bolic studies of genotoxins. Mutat. Res., 312: 99–109.
  • Kranendonk, M., Pintado, F., Mesquita, P., Laires, A., Vermeulen, N. P. E., and Rueff, J. 1996. MX100, a new Escherichia coli tester strain for use in genotoxicity studies. Mutagenesis 11: 327–333.
  • Kranendonk, M., Roda, R., Carreira, F., Theisen, P., Laires, A., Fisher, C. W., Rueff, J., Vermeulen, N. P. E., and Estabrook, R. W. 1999. Escherichia coli MTC, a NADPH cytochrome P450 reductase competent mu- tagenicity tester strain for the expression of human cytochrome P450 isoforms 1A1, 1A2, 2A6, 3A4 or 3A5: catalytic activities and mutagenicity studies. Mutat. Res. 441: 73–83.
  • Glatt, H. R. 1997. Bioactivation of mutagens via sulfation. FASEB J. 11, 314–321.
  • Miller, J. A. 1994. Sulfonation in chemical carcinogen- esis — history and present status. Chem. Biol. Inter- act. 92: 329–341.
  • Meerman, J. H., Ringer D. P., Coughtrie, M. W., Bamforth, K. J., and Gilissen, R.A. 1994. Sulfation of carcinogenic aromatic hydroxylamines and hydroxamic acids by rat and human sulfotransferases: substrate specificity, developmental aspects and sex differences. Chem. Biol. Interact. 92: 321–328.
  • Gilissen, R. A., Bamforth, K. J., Stavenuiter, J. F., Coughtrie, M. W., and Meerman, J. H. 1994. Sulfation of aromatic hydroxyamic acids and hydroxylamines by multiple forms of human liver sulfotransferases. Carcinogenesis 15: 39–45.
  • Surh, Y-J., Liem, A., Miller, E. C. and Miller, J. A. 1989. Metabolic activation of the carcinogen 6- hydroxymethybenzo[a]pyrene: formation of an elec- trophilic sulfuric acid ester and benzylic DNA ad- ducts in rat liver in vivo and in reactions in vitro. Carcinogenesis 10: 1519–1528.
  • Fisher, C. W., Caudle, D. L., Martin-Wixtrom, C., Quattrochi, L. C., Tukey, R. H., Waterman, M. R., and Estabrook, W. R. 1992. High-level expression of functional human cytochrome P450 1A2 in Escheri- chia coli. FASEB J. 6: 759–764.
  • Kranendonk, M., Ruas, M., Laires, A., and Rueff, J. 1994. Isolation and prevalidation of an Escherichia coli tester strain for genotoxins. In: Lechner M. C., Ed. Cyto- chrome P450, Biochemistry, Biophysics and Molecular Biology, Jonny Libbey Eurotext, Paris, pp. 741–744.
  • Lampel, K. L. and Riley 1982. Discontinuity of homol- ogy of Escherichia coli and Salmonella typhimurium DNA in the lac region. Mol. Gen. Genet. 186: 82–86.
  • Porter,T. D., Wilson, T. E., and Kasper, C. B. 1987. Expression of a functional 78,000 dalton mammalian flavoprotein, NADPH-cytochrome P450 oxidoreduc- tase, in Escherichia coli. Arch. Biochem. Biophys. 254: 353– 367.
  • Barnes, H. J. 1996. Maximizing expression of eukary- otic cytochrome P450s in Escherichia coli. Meth. Enzymol. 272: 3–14.
  • Pritchard, M. P., Ossetian, R., Li, D. N., Henderson, C. J., Burchell, B., Wolf, C. R., and Friedberg, T. 1997. A general strategy for the expression of recombinant human cytochrome P450s in Escherichia coli using bacterial signal peptides: expression of CYP3A4, CYP2A6, and CYP2E1. Arch. Biochem. Biophys. 345: 342–354.
  • Shen, A. L., Porter, T. D., Wilson, T. E., and Kaspar, C. 1989. Structural analysis of the FMN binding do- main of NADPH-cytochrome P450 oxidoreductase by site-mutagenesis. J. Biol. Chem. 264: 7584–7589.
  • Pillot, T., Ouzinne, M., Fournel-Gigleux, S., Lafaurie, C., Radominska, A., Lester, R., Drake, R., Treat, S., Siest, G., and Magdalou, J. 1993. Purification and characterization of a catalytically active human liver UDP-glucuronosyltransferase expressed as a fusion protein in E. coli. Biochem Biophys. Res. Comm. 196: 473–479.
  • Kier, L. E., Brusick, D. J., Auketta, A. E., Von Halle, E. S., Brown, M. M., Simmon, V. F., Dunkel, V., McCann, J., Moertelmans, K., Prival, M., Roa, T. K., and Ray, V. 1986. The Salmonella typhimurium/mammalian mi- crosomal assay. A report of the US Environmental Protection Agency Gene-Tox Program. Mutat.Res. 168: 69–240.
  • MacPhee, D. G. 1989. Development of bacterial mutage- nicity tests: a view form afar. Environ. Molec. Mu- tagen. 14 (Suppl.) 16: 35–38.
  • Sedgwick, S. G., Ho, C., and Woodgate, R. 1991. Mu- tagenic DNA repair in enterobacteria. J. Bacteriol. 173: 5604–5611.
  • Hagen, M., Pabel., U., Landsiedel, R., Bartsch, I., Falany,C N., and Glatt, H. 1998. Expression of human estro- gen sulfotransferase in Salmonella typhimurium: dif- ferences between hHST and hEST in the enantioselective activation of 1-hydroxyethylpyrene to a mutagen. Chem. Biol. Interact. 109: 249–253.
  • Buchner, J. and Rudolf, R. 1991. Routes to active pro- teins from transformed microorganisms. Curr. Opin. Biotechnol. 2: 532–538.
  • Langer, P. J., Perry, K. L., and Walker, G. C. 1985. Complementation of a pKM101 derivative that de- creases resistance to UV killing but increases suscep- tibility to mutagenesis. Mutat. Res. 150: 147–158.
  • Brosius, J. and Holy, A. 1984. Regulation of ribosomal RNA promotors with a synthetic lac operator. Proc. Natl. Acad. Sci. U.S.A., 81: 6929–6933.
  • Sambrook, J., Fritsch, T. F., and Maniatis, T. 1989. Mo- lecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Callen, D. F. 1978. A review of the metabolism of xenobiotica by microorganisms with relation to short- term test systems for environmental carcinogens. Mutat. Res. 55: 153–163.
  • Laires, A., Pacheco, P., and Rueff, J. 1989. Mutagenicity of rutin and the glycosidic activity of cultured cell-free microbial preparations of human faeces and saliva. Fd. Chem. Toxic. 27: 437–443.
  • McCoy, E. C., Anders, M., and Rosenkranz, H. S. 1983. The basis of the insensitivity of Salmonella typhimurium strain TA98/1,8-DNP to the mutagenic action of nitroarenes. Mutat. Res. 121: 17–23. Prieto-Alamo, M. J., Abril, N., and Pueyo, C. 1993. Mutagenesis in Escherichia coli K12 mutants defec- tive in superoxide dismutase or catalase. Carcinogen- esis 14: 237–244.
  • Watanabe, M., Ishidate, M., Jr., and Nohmi, T. 1989. A sensitive method for the detection of mutagenic nitroarenes: construction of nitroreductase-overpro- ducing derivatives of Salmonella typhimurium strains TA98 and TA100. Mutat. Res. 216: 211–220.
  • Kranendonk, M., Commandeur, J. N. M., Laires, A., Rueff, J., and Vermeulen, N. P. E. 1997. Characterisation of enzyme activities and cofactors involved in bioactivation and bioinactivation of chemi- cal carcinogens in the tester strains Escherichia coli K12 MX100 and Salmonella typhimurium LT2 TA100. Mutagenesis 12: 245–254.
  • Watanabe, B., Matsuoka, A., Yamazaki, N., Hayashi, M., Deguchi, T., Nohmi, T., and Sofuni, T. 1994. New sublines of Chinese hamster CHL stably expressing human NAT1 and NAT2 N-acetyltransferases or Sal- monella typhimurium O-acetyltransferase: compari- son of the sensitivity to nitroarenes and aromatic amines using the in vitro micronucleus test. Cancer Res. 54: 1672–1677.
  • Stevens, G. J., LaVoie, E. J., and McQueen, C. A. 1996. The role of actylation in the mutagenicity of the anti- tumor agent, batracyclin. Carcinogenesis 17: 115– 119.
  • Woodward, S. I. and Dailey, H. A. 1995. Regulation of heme biosynthesis in Escherichia coli. Arch. Biochem. Biophys. 316: 110–115.
  • Yamazaki, H., Nkajima, M., Nakamura, M., Asahi, S., Shimada, N., Gillam, E. M. J., Guengerich, F. P., Shimada, T., and Yokoi, T. 1999. Enhancement of cytochrome P450 3A4 catalytic activities by cyto- chrome b5 in bacterial membranes. Drug Metab. Dipos. 27: 999–1004.
  • Voice, M. W., Zhang, Y., Wolf, C. R., Burchell, B., and Friedberg, T. 1999. Effects of human cytochrome b5 on CYP3A4 activity and stability in vivo. Arch. Biochem. Biophys. 366: 116–124.
  • McGinnity D. F., Griffin, S. J., Moody, G. C., Voice, M., Hanlon, S., Friedberg, T., and Riley, R. J. 1999. Rapid characterization of the major drug-metabolizing hu- man hepatic cytochrome P450 enzymes expressed in Escherichia coli. Drug Metab. Dispos. 27: 1017–1023.
  • Friedberg, T. and Wolf, C. R. 1996. Recombinant tech- nology as an investigative tool in drug metabolism research. Adv. Drug Deliv. Rev., 22: 187–213.
  • Service, R. F. 1996. Combinatorial chemistry hits the drug market. Science 272: 1266–1268.
  • Knehr, M., Thomass, H., Arand, M., Gebel, T., Zeller, H-D., and Oesch, F. 1993. Isolation and characterisation of a cDNA encoding rat liver cytoso- lic epoxide hydrolase and its functional expression in Escherichia coli. J. Biol. Chem. 268: 17623–17627.
  • Bell, P. A. and Kasper, C. B. 1993. Expression of rat microsomal epoxide hydrolase in Escherichia coli. J.Biol.Chem. 268: 14011–14017.
  • Lawton, M. P. and Philpot, R. M. 1993. Functional characterization of flavin-containing monooxygenase 1B1 expressed in Saccharomyces cerevisiae and Es- cherichia coli and analysis of proposed FAD-and membrane-binding domains. J. Biol. Chem. 268: 5728– 5734.
  • Rettie, A. E., Lawton, M. P., Jafar, A., Sadeque, M., Meier, G. P., and Philpot, R.M. 1994. Prochiral sulfoxidation as a probe for multiple forms of the microsomal flavin-containing monooxygenase: stud- ies with rabbit FMO1, FMO2, FMO3, and FMO5 expressed in Escherichia coli. Arch. Biochem. Biophys. 311: 369–377.
  • Overby, L. H., Buckpitt, A. R., Lawton, M. P., Atta- Asafo-Adjei, E., Schulze, J., and Philpot, R. M. 1995. Characterization of flavin-containig monooxygenase 5 (FMO5) cloned from human and guinea pig: evi- dence that the unique catalytic properties of FMO5 are not confined to the rabbit ortholog. Arch. Biochem. Biophys. 317: 275–284.
  • Itagaki, K., Craver, G. T. and Philpot, R. M. 1996. Expression and characterization of a modified flavin- containing monooxygenase 4 from humans. J. Biol. Chem. 271, 20102–20107. Falls, J. G., Cherrington, N. J., Clements, K. M., Philpot, R. M., Levi, P. E., Rose, R. L., and Hodgson, E. 1997. Molecular cloning, sequencing and expression in Es- cherichia coli of mouse flavin-containing monooxygenase 3 (FMO3): comparison with the hu- man isoform. Arch. Biochem. Biophys. 347: 9–18.
  • Chen, H. H., Ma, J-X., Forrest, G. L., Deng, P. S. K., Martino, P. A., Lee, T. D., and Chen S. 1992. Expres- sion of rat liver NAD(P)H: quinone-acceptoroxi- doreductase in Escherichia coli and mutagenesis in vitro at Arg-177. Biochem. J. 284: 855–860.
  • Chen, S., Knox, R., Lewis, A. D., Friedlos, F., Work- man, P., Deng, P. S. K., Fung, M., Ebenstein, D. Wu, K., and Tsai, T-M. 1995. Catalytic properties of NAD(P)H: quinoneacceptor oxidoreductase: study involving mouse, rat, human and mouse-rat chimeric enzymes. Molec. Pharmacol. 47: 934–939.
  • Wu, K., Knox, R., Sun, X. Z., Joseph, P., Jaiswal, A. K., Zhang, D., Deng, P. S. K., and Chen, S. 1997. Cata- lytic properties of NAD(P)H: quinoneoxidoreductase- 2 (NQO2) a dihydronicotinamide riboside-dependent oxidoreductase. Arch. Biochem. Biophys. 347: 221– 228.
  • Ouzinne, M., Pillot, T., Fournel-Gigleux, S., Magdalou, J., Burchell, B., and Siest, G. 1994. Expression and the role of the human liver UDPgluc- uronosyltransferase UGT1*6 analyzed by specific antibodies raised against a hybrid protein produced in Escherichia coli. Arch. Biochem. Biophys. 310: 196– 204.
  • Guengerich, F. P. 1998. The Environmental Genome Project: functional analysis of polymorphisms. Environ. Health Persect. 106: 365–368.
  • Parikh, A., Josephy, P. D. and Guengerich, F. P. 1999. Selection and characterization of human cytochrome P450 1A2 mutants with altered catalytic properties. Biochemistry 38: 5283–5289.
  • Mohn, G. R., Kerklaan, P. R. M., Zeeland, A. A., Ellenberger, J., Baan, R. A., Lohman, P. H. M., and Pons, F-W. 1984. Methodologies for the determina- tion of various genetic effects in permeable strains of E. coli K-12 differing in DNA repair capacity. Mutat. Res. 125: 153–184.
  • Venitt, S., Crofton-Sleigh, C., and Forrester, R. 1984. Bacterial mutation assays using reverse mutation. In: Venitt, S. and Parry, J.M., Eds., Mutagenicity Testing, A Pratical Approach. Chap. 3, Oxford, IRL Press, pp. 45–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.