291
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Current and Potential Rodent Screens and Tests for Thyroid Toxicants

, &
Pages 55-95 | Published online: 10 Oct 2008

REFERENCES

  • Altman J. Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J. Comp. Neurol. 1969; 136: 269–293
  • Altman J. Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J. Comp. Neurol. 1972; 145: 353–397
  • Altman J., Winfree A. T. Postnatal development of the cerebellar cortex in the rat. V. Spatial organization of Purkinje cell perikarya. J. Comp. Neurol. 1977; 171: 1–16
  • Altman J., Bayer S. A. Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J. Comp. Neurol. 1985; 231: 1–26
  • Anderson G. W., Schoonover C. M., Jones S. A. Control of thyroid hormone action in the developing rat brain. Thyroid. 2003; 13: 1039–1056
  • Arulmozhiraja S., Morita M. Structure–activity relationships for the toxicity of polychlorinated dibenzofurans: approach through density functional theory-based descriptors. Chem. Res. Toxicol. 2004; 17(3)348–356
  • Atterwill C. K., Collins P., Brown C. G., Harland R. F. The perchlorate discharge test for examining thyroid function in rats. J. Pharmacol. Methods 1987; 18: 199–203
  • Auso E., Lavado-Autric R., Cuevas E., Escobar del Rey F., Morreale de Escobar G., Berbel P. A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology 2004; 145(9)4037–4047
  • Bahouth S. W. Thyroid hormones transcriptionally regulate the beta 1-adrenergic receptor gene in cultured ventricular myocytes. J. Biol. Chem. 1991; 266: 15863–15869
  • Bansal R., You S. H., Herzig C. T., Zoeller R. T. Maternal thyroid hormone increases HES expression in the fetal rat brain: An effect mimicked by exposure to a mixture of polychlorinated biphenyls (PCBs). Brain Res. Dev. 2005; 156(1)13–22
  • Bassett J. H., Harvey C. B., Williams G. R. Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol. Cell. Endocrinol. 2003; 213: 1–11
  • Behnam-Rassoli M., Herbert L. C., Howard V., Pharoah P. O., Stanisstreet M. Effect of propylthiouracil treatment during prenatal and early postnatal development on the neocortex of rat pups. Neuroendocrinology 1991; 53: 321–327
  • Berbel P., Auso E., Garcia-Velasco J. V., Molina M. L., Camacho M. Role of thyroid hormones in the maturation and organisation of rat barrel cortex. Neuroscience 2001; 107: 383–394
  • Bernal J. Action of thyroid hormone in brain. J. Endocrinol. Invest 2002; 25: 268–288
  • Bernal J., Guadano-Ferraz A., Morte B. Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 2003; 13: 1005–1012
  • Bernstein G., Artz S. A., Hansen J., Oppenheimer J. H. Hepatic accumulation of 125I-thyroxine in the rat: Augmentation by phenobarbital and chlordane. Endocrinology 1968; 82: 406–409
  • Billon N., Jolicoeur C., Tokumoto Y., Vennstrom B., Raff M. Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TRalpha1). EMBO J. 2002; 21: 6452–6460
  • Blackshaw S., Eliasson M. J., Sawa A., Watkins C. C., Krug D., Gupta A., Arai T., Ferrante R. J., Snyder S. H. Species, strain and developmental variations in hippocampal neuronal and endothelial nitric oxide synthase clarify discrepancies in nitric oxide-dependent synaptic plasticity. Neuroscience 2003; 119: 979–990
  • Bogazzi F., Raggi F., Ultimieri F., Russo D., Campomori A., McKinney J. D., Pinchera A., Bartalena L., Martino E. Effects of a mixture of polychlorinated biphenyls (Aroclor 1254) on the transcriptional activity of thyroid hormone receptor. J. Endocrinol. Invest. 2003; 26: 972–978
  • Boker L. K., Van der Schouw Y. T., De Kleijn M. J., Jacques P. F., Grobbee D. E., Peeters P. H. Intake of dietary phytoestrogens by Dutch women. J. Nutr. 2002; 132: 1319–1328, American Society for Nutritional Sciences
  • Braverman L. E., He X., Pino S., Cross M., Magnani B., Lamm S. H., Kruse M. B., Engel A., Crump K. S., Gibbs J. P. The effect of perchlorate, thiocyanate, and nitrate on thyroid function in workers exposed to perchlorate long-term. J. Clin. Endocrinol. Metab. 2005; 90: 700–706
  • Breous E., Wenzel A., Loos U. The promoter of the human sodium/iodide symporter responds to certain phthalate plasticisers. Mol. Cell. Endocrinol. 2005; 244: 75–78
  • Brouwer A., van den Berg K. J. Binding of a metabolite of 3,4,3′,4′-tetrachlorobiphenyl to transthyretin reduces serum vitamin A by inhibiting the formation of the protein complex carrying both retinol and thyroxin. Toxicol. Appl. Pharmacol. 1986; 85: 301–312
  • Brouwer A., Morse D. C., Lans M. C., Schuur A. G., Murk A. J., Klasson-Wehler E., Bergman A., Visser T. J. Interactions of persistent environmental organohalogens with the thyroid hormone system: Mechanisms and possible consequences for animal and human health. Toxicol. Ind. Health 1998; 14: 59–84
  • Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid 1998; 8: 827–856
  • Burmeister L. A., Pachucki J., St. Germain D. L. Thyroid hormones inhibit type-2 iodothyronine deiodinase in the rat cerebral cortex by both pre-and posttranslational mechanisms. Endocrinology 1997; 138: 5231–5237
  • Caviness V. S., Takahashi T., Nowakowski R. S. Numbers, time and neocortical neuronogenesis: A general developmental and evolutionary model. TINS 1995; 18: 379–383
  • Chan S., Rovet J. Thyroid hormones in the fetal central nervous system development. Fetal Maternal Med. Rev. 2003a; 14: 177–208
  • Chan S., McCabe C. J., Visser T. J., Franklyn J. A., Kilby M. D. Thyroid hormone responsiveness in N-Tera-2 cells. J. Endocrinol. 2003b; 178: 159–167
  • Charriaut-Marlangue C., Ben-Ari Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 1995; 7: 61–64
  • Chauhan K. R., Kodavanti P. R., McKinney J. D. Assessing the role of ortho-substitution on polychlorinated biphenyl binding to transthyretin, a thyroxine transport protein. Toxicol. Appl. Pharmacol. 2000; 162: 10–21
  • Cheek A. O., Kow K., Chen J., McLachlan J. A. Potential mechanisms of thyroid disruption in humans: Interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ. Health Perspect. 1999a; 107: 273–278
  • Cheek A. O., Ide C. F., Bollinger J. E., Rider C. V., McLachlan J. A. Alteration of leopard frog (Rana pipiens) metamorphosis by the herbicide acetochlor. Arch. Environ. Contam. Toxicol. 1999b; 37: 70–77
  • Cheng S. Y. Thyroid hormone receptor mutations and disease: beyond thyroid hormone resistance. Trends. Endocrinol. Metab. 2005; 16(4)176–82
  • Chenn A., Braisted J. E., McConnell S. K., O'Leary D. M. Development of the cerebral cortex: Mechanisms controlling cell fate, laminar and areal patterning, and axonal connectivity. Molecular and Cellular Approaches to Neural Development, W. M. Cowan, T. M. Jessell, S. L. Zipursky. Oxford University Press, New York 1997; 440–473
  • Chorazy P. A., Himelhoch S., Hopwood N. J., Greger N. G., Postellon D. C. Persistent hypothyroidism in an infant receiving a soy formula: Case report and review of the literature. Pediatrics 1995; 96: 148–150
  • Chowdhury J. R., Chowdhury N. R., Moscioni A. D., Tukey R., Tephly T., Arias I. M. Differential regulation by triiodothyronine of substrate-specific uridinediphosphoglucuronate glucuronosyl transferases in rat liver. Biochim. Biophys. Acta. 1983; 761: 58–65
  • Clancy B., Darlington R. B., Finlay B. L. Translating developmental time across mammalian species. Neuroscience 2001; 105: 7–17
  • Cooper D. S. Antithyroid drugs in the management of patients with Graves' disease: An evidence-based approach to therapeutic controversies. J. Clin. Endocrinol. Metab. 2003; 88: 3474–3481
  • Crofton K. M. Developmental disruption of thyroid hormone: Correlations with hearing dysfunction in rats. Risk Anal. 2004; 24: 1665–1671
  • Crump C., Michaud P., Tellez R., Reyes C., Gonzalez G., Montgomery E. L., Crump K. S., Lobo G., Becerra C., Gibbs J. P. Does perchlorate in drinking water affect thyroid function in newborns or school-age children?. J. Occup. Environ. Med. 2000; 42: 603–612
  • Darimont B. D., Wagner R. L., Apriletti J. W., Stallcup M. R., Kushner P. J., Baxter J. D., Fletterick R. J., Yamamoto K. R. Structure and specificity of nuclear receptor–coactivator interactions. Genes. Dev. 1998; 12(21)3343–3356
  • Davidson B., Soodak M., Neary J. T., Strout H. V., Kieffer J. D. The irreversible inactivation of thyroid peroxidase by methylmercaptoimidazole, thiouracil, and propylthiouracil in vitro and its relationship to in vivo findings. Endocrinology 1978; 103: 871–882
  • del a Vieja A., Ginter C. S., Carrasco N. The Q267E mutation in the sodium/iodide symporter (NIS) causes congenital iodide transport defect (ITD) by decreasing the NIS turnover number. J. Cell Sci. 2004; 117: 677–687
  • del a Vieja A., Ginter C. S., Carrasco N. Molecular analysis of a congenital iodide transport defect: G543E impairs maturation and trafficking of the Na+/I– symporter. Mol. Endocrinol. 2005; 19: 2847–2858
  • de Sandro V., Catinot R., Kriszt W., Cordier A., Richert L. Male rat hepatic UDP-glucuronosyltransferase activity toward thyroxine. Activation and induction properties—Relation with thyroxine plasma disappearance rate. Biochem. Pharmacol. 1992; 43: 1563–1569
  • Denver R. J., Ouellet L., Furling D., Kobayashi A., Fujii-Kuriyama Y., Puymirat J. Basic transcription element-binding protein (BTEB) is a thyroid hormone-regulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth. J. Biol. Chem. 1999; 274: 23128–23134
  • DeVito M., Biegel L., Brouwer A., Brown S., Brucker-Davis F., Cheek A., Christensen R., Colborn T., Cooke P., Crissman J., Crofton K., Doerge D., Gray E., Hauser P., Hurley P., Kohn M., Lazar J., McMaster S., McClain M., McConnell E., Meier C., Miller R., Tietge J., Tyl R. Screening methods for thyroid hormone disruptors. Environ. Health Perspect. 1999; 107: 407–415
  • Dillmann W. H. Cellular action of thyroid hormone on the heart. Thyroid 2002; 12: 447–452
  • Divi R. L., Doerge D. R. Mechanism-based inactivation of lactoperoxidase and thyroid peroxidase by resorcinol derivatives. Biochemistry 1994; 33: 9668–9674
  • Divi R. L., Doerge D. R. Inhibition of thyroid peroxidase by dietary flavonoids. Chem. Res. Toxicol. 1996; 9: 16–23
  • Doerge D. R., Sheehan D. M. Goitrogenic and estrogenic activity of soy isoflavones. Environ. Health Perspect. Suppl. 2002; 110(S3)349–353
  • Doetsch F., Garcia-Verdugo J. M., Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 1997; 17: 5046–5061
  • Dowling A. L.S., Martz G. U., Leonard J. L., Zoeller R. T. Acute changes in maternal thyroid hormone induce rapid and transient changes in specific gene expression in fetal rat brain. J. Neurosci. 2000a; 20: 2255–2265
  • Dowling A. L.S., Zoeller R. T. Thyroid hormone of maternal origin regulates the expression of RC3/Neurogranin mRNA in the fetal rat brain. Brain Res. 2000b; 82: 126–132
  • Dowling A. L.S., Iannacone E. A., Zoeller R. T. Maternal hypothyroidism selectively affects the expression of neuroendocrine-specific protein A messenger ribonucleic acid in the proliferative zone of the fetal rat brain cortex. Endocrinology 2001; 142(1)390–399
  • EDSTAC (Endocrine Disruptor Screening and Testing Advisory Committee). 1998, http://www.epa.gov/oppintr/opptendo/finalrpt.htm Final Report from the Endocrine Disruptor Screening and Testing Advisory Committee, August 1998
  • Engler H., Taurog A., Nakashima T. Mechanism of inactivation of thyroid peroxidase by thiourylene drugs. Biochem. Pharmacol. 1982; 31: 3801–3806
  • Everett L. A., Glaser B., Beck J. C., Idol J. R., Buchs A., Heyman M., Adawi F., Hazani E., Nassir E., Baxevanis A. D., Sheffield V. C., Green E. D. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat. Genet. 1997; 17: 411–422
  • Everett L. A., Green E. D. A family of mammalian anion transporters and their involvement in human genetic diseases. Hum. Mol. Genet. 1999; 8: 1883–1891
  • Fail P. A., Anderson S. A., Friedman M. A. Response of the pituitary and thyroid to tropic hormones in Sprague-Dawley versus Fischer 344 male rats. Toxicol. Sci. 1999; 52: 107–121
  • Farwell A. P., Dubord-Tomasetti S. A. Thyroid hormone regulates the expression of laminin in the developing rat cerebellum. Endocrinology 1999a; 140: 4221–4227
  • Farwell A. P., Dubord-Tomasetti S. A. Thyroid hormone regulates the extracellular organization of laminin on astrocytes. Endocrinology 1999b; 140: 5014–5021
  • Frumess R. D., Larsen P. R. Correlation of serum triiodothyronine (T3) and thyroxine (T4) with biologic effects of thyroid hormone replacement in propylthiouracil-treated rats. Metabolism 1975; 24: 547–554
  • Fugazzola L., Cerutti N., Mannavola D., Vannucchi G., Beck-Peccoz P. The role of pendrin in iodide regulation. Exp. Clin. Endocrinol. Diabetes 2001; 109: 18–22
  • Gaiano N., Fishell G. The role of notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci. 2002; 25: 471–90
  • Gaido K. W., Leonard L. S., Lovell S., Gould J. C., Babai D., Portier C. J., McDonnell D. P. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol. Appl. Pharmacol. 1997; 143(1)205–12
  • Gatseva P., Vladeva S., Pavlov K. Incidence of goiter among children in a village with nitrate contamination of drinking water. Folia Med. (Plovdiv) 1998; 40: 19–23
  • Gauger K. J., Kato Y., Haraguchi K., Lehmler H. J., Robertson L. W., Bansal R., Zoeller R. T. Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors. Environ. Health Perspect. 2004; 112: 516–523
  • Ghisari M., Bonefeld-Jorgensen E. C. Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells. Mol. Cell. Endocrinol. 2005; 244: 31–41
  • Glatt C. M., Ouyang M., Welsh W., Green J. W., Connor J. O., Frame S. R., Everds N. E., Poindexter G., Snajdr S., Delker D. A. Molecular characterization of thyroid toxicity: anchoring gene expression profiles to biochemical and pathologic end points. Environ. Health Perspect. 2005; 113: 1354–1361
  • Gobetto A., Aimar P., Bonfanti L., Ghidella S., Lossi L., Merighi A. Cell proliferation in the post-natal and adult mammalian central nervous system. Ital. J. Anat. Embryol. 1995; 100: 167–175, (Suppl 1)
  • Goldey E. S., Kehn L. S., Lau C., Rehnberg G. L., Crofton K. M. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol. Appl. Pharmacol. 1995a; 135: 77–88
  • Goldey E. S., Kehn L. S., Rehnberg G. L., Crofton K. M. Effects of developmental hypothyroidism on auditory and motor function in the rat. Toxicol. Appl. Pharmacol. 1995b; 135: 67–76
  • Grasl-Kraupp B., Ruttkay-Nedecky B., Koudelka H., Bukowska K., Bursch W., Schulte-Hermann R. In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: A cautionary note. Hepatology 1995; 21: 1465–1468
  • Gray L. E., Foster P. M.D., Crecelius E. A., Tyl R. W., George J. D. (2003) One-generation extension study of vinclozolin and di-n-butyl phthalate administered by gavage on gestational day 6 to postnatal day 20 in CDR (Sprague-Dawley) Rats. presentation by RTI International to National Advisory Council for Environmental Policy and Technology (NACEPT) Endocrine Disruptor Methods Validation Subcommittee (EDMVS) Plenary Meeting, sponsored by U.S. EPA, Washington, DC, June, 5–62003, Available at http://www.epa.gov/scipoly/oscpendo/assayvalidation/mtg_060503.htm
  • Greer M. A., Goodman G., Pleus R. C., Greer S. E. Health effects assessment for environmental perchlorate contamination: The dose response for inhibition of thyroidal radioiodine uptake in humans. Environ. Health Perspect. 2002; 110: 927–937
  • Hauser P., McMillin J. M., Bhatara V. S. Resistance to thyroid hormone: Implications for neurodevelopmental research on the effects of thyroid hormone disruptors. Toxicol. Ind. Health 1998; 14(1–2)85–101
  • Heuer H., Mason C. A. Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor alpha1. J. Neurosci. 2003; 23: 10604–10612
  • Hohenwarter O., Waltenberger A., Katinger H. An in vitro test system for thyroid hormone action. Anal. Biochem. 1996; 234: 56–59
  • Hood A., Hashmi R., Klaassen C. D. Effects of microsomal enzyme inducers on thyroid-follicular cell proliferation, hyperplasia, and hypertrophy. Toxicol. Appl. Pharmacol. 1999; 160: 163–170
  • Hood A., Klaassen C. D. Differential effects of microsomal enzyme inducers on in vitro thyroxine (T(4)) and triiodothyronine (T(3)) glucuronidation. Toxicol. Sci. 2000a; 55: 78–84
  • Hood A., Klaassen C. D. Effects of microsomal enzyme inducers on outer-ring deiodinase activity toward thyroid hormones in various rat tissues. Toxicol. Appl. Pharmacol. 2000b; 163: 240–248
  • Hood A., Allen M. L., Liu Y., Liu J., Klaassen C. D. Induction of T(4) UDP-GT activity, serum thyroid stimulating hormone, and thyroid follicular cell proliferation in mice treated with microsomal enzyme inducers. Toxicol. Appl. Pharmacol. 2003; 188: 6–13
  • Ibarrola N., Rodriguez-Pena A. Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development. Brain. Res. 1997; 752: 285–293
  • International Programme on Chemical Safety. Principles for the Toxicological Assessment of Pesticide Residues in Food, Environmental Health Criteria 104. IPCS, Geneva 1990
  • Ishido M., Masuo Y., Kunimoto M., Oka S., Morita M. Bisphenol A causes hyperactivity in the rat concomitantly with impairment of tyrosine hydroxylase immunoreactivity. J. Neurosci. Res. 2004; 76(3)423–433
  • Iwasaki T., Miyazaki W., Takeshita A., Kuroda Y., Koibuchi N. Polychlorinated biphenyls suppress thyroid hormone-induced transactivation. Biochem. Biophys. Res. Commun. 2002; 299: 384–388
  • Jabbar M. A., Larrea J., Shaw R. A. Abnormal thyroid function tests in infants with congenital hypothyroidism: The influence of soy-based formula. J. Am. Coll. Nutr. 1997; 16: 280–282
  • Johe K. K., Hazel T. G., Muller T., Dugich-Djordjevic M. M., McKay R. D. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes. Dev. 1996; 10: 3129–3140
  • Jones S. A., Jolson D. M., Cuta K. K., Mariash C. N., Anderson G. W. Triiodothyronine is a survival factor for developing oligodendrocytes. Mol. Cell. Endocrinol. 2003; 199: 49–60
  • Kato Y., Haraguchi K., Yamazaki T., Ito Y., Miyajima S., Nemoto K., Koga N., Kimura R., Degawa M. Effects of polychlorinated biphenyls, kanechlor-500, on serum thyroid hormone levels in rats and mice. Toxicol. Sci. 2003; 72: 235–241
  • Kato Y., Ikushiro S., Haraguchi K., Yamazaki T., Ito Y., Suzuki H., Kimura R., Yamada S., Inoue T., Degawa M. A possible mechanism for decrease in serum thyroxine level by polychlorinated biphenyls in Wistar and Gunn rats. Toxicol. Sci. 2004; 81(2)309–315
  • Kester M. H.A., Martinez de Mena R., Obregon M. J., Marinkovic D., Visser T. J., Hume R., Morreale de Escobar G. Iodothyronine levels in the human developing brain: Major regulatory roles of iodothyronine deiodinases in different areas. J. Clin. Endocrinol. Metab. 2004; 89: 3117–3128
  • Kitamura S., Jinno N., Ohta S., Kuroki H., Fujimoto N. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A. Biochem. Biophys. Res. Commun. 2002; 293: 554–559
  • Kitamura S., Suzuki T., Sanoh S., Kohta R., Jinno N., Sugihara K., Yoshihara S., Fujimoto N., Watanabe H., Ohta S. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol. Sci. 2005; 84: 249–259
  • Klaassen C. D., Hood A. M. Effects of microsomal enzyme inducers on thyroid follicular cell proliferation and thyroid hormone metabolism. Toxicol. Pathol. 2001; 29: 34–40
  • Koenig R. J. Thyroid hormone receptor coactivators and corepressors. Thyroid 1998; 8: 703–713
  • Koibuchi N., Fukuda H., Chin W. W. Promoter-specific regulation of the brain-derived neurotropic factor gene by thyroid hormone in the developing rat cerebellum. Endocrinology 1999; 140: 3955–3961
  • Koibuchi N., Chin W. W. Thyroid hormone action and brain development. Trends Endocrinol. Metab. 2000; 11: 123–128
  • Kolaja K. L., Klaassen C. D. Dose-response examination of UDP-glucuronosyltransferase inducers and their ability to increase both TGF-beta expression and thyroid follicular cell apoptosis. Toxicol. Sci. 1998; 46: 31–37
  • Krishnan A. V., Stathis P., Permuth S. F., Tokes L., Feldman D. Bisphenol-A: An estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 1993; 132(6)2279–2286
  • Labib M., Gama R., Wright J., Marks V., Robins D. Dietary maladvice as a cause of hypothyroidism and short stature. Br. Med. J. 1989; 298: 232–233
  • Lavado-Autric R., Auso E., Garcia-Velasco J. V., Arufe Mdel C., Escobar del Rey F., Berbel P., Morreale de Escobar G. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J. Clin. Invest. 2003; 111: 1073–1082
  • Legrand J. Analysis of the morphogenetic action of thyroid hormones on the cerebellum of young rats. Arch. Anat. Microsc. Morphol. Exp. 1967; 56: 205–244
  • Legrand J. Thyroid hormones and maturation of the nervous system. J. Physiol. (Paris) 1982; 78: 603–652
  • Leonard J. L., Farwell A. P., Yen P. M., Chin W. W., Stula M. Differential expression of thyroid hormone receptor isoforms in neurons and astroglial cells. Endocrinology 1994; 135: 548–555
  • Leonard J. L., Farwell A. P. Thyroid hormone-regulated actin polymerization in brain. Thyroid 1997; 7: 147–151
  • Lewin G. R., Barde Y. A. Physiology of the neurotrophins. Annu. Rev. Neurosci. 1996; 19: 289–317
  • Lewis P. D., Patel A. J., Johnson A. L., Balazs R. Effect of thyroid deficiency on cell acquistion in the postnatal rat brain: A quantitative histological study. Brain. Res. 1976; 104: 49–62
  • Liu J., Liu Y., Barter R. A., Klaassen C. D. Alteration of thyroid homeostasis by UDP-glucuronosyltransferase inducers in rats: A dose-response study. J. Pharmacol. Exp. Ther. 1995; 273: 977–985
  • Liu Z., Auboeuf D., Wong J., Chen J. D., Tsai S. Y., Tsai M. J., O'Malley B. W. Coactivator/corepressor ratios modulate PR-mediated transcription by the selective receptor modulator RU486. Proc. Natl. Acad. Sci. USA 2002; 99: 7940–7944
  • Luskin M. B., Zogova T., Soteres B. J., Stewart R. R. Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol. Cell. Neurosci. 1997; 8: 351–366
  • Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell 1995; 83: 841–850
  • Mantzoros C. S., Ozata M., Negrao A. B., Suchard M. A., Ziotopoulou M., Caglayan S., Elashoff R. M., Cogswell R. J., Negro P., Liberty V., Wong M. L., Veldhuis J., Ozdemir I. C., Gold P. W., Flier J. S., Licinio J. Synchronicity of frequently sampled thyrotropin (TSH) and leptin concentrations in healthy adults and leptin-deficient subjects: Evidence for possible partial TSH regulation by leptin in humans. J. Clin. Endocrinol. Metab. 2001; 86: 3284–3291
  • Manzano J., Morte B., Scanlan T. S., Bernal J. Differential effects of triiodothyronine and the thyroid hormone receptor beta-specific agonist GC-1 on thyroid hormone target genes in the brain. Endocrinology 2003; 144: 5480–5487
  • Marta C. B., Adamo A. M., Soto E. F., Pasquini J. M. Sustained neonatal hyperthyroidism in the rat affects myelination in the central nervous system. J. Neurosci. Res. 1998; 53: 251–259
  • Matsumoto K., Moriuchi T., Koji T., Nakane P. K. Molecular cloning of cDNA coding for rat proliferating cell nuclear antigen (PCNA)/cyclin. EMBO J. 1987; 6: 637–642
  • Matsumoto J., Yokota H., Yuasa A. Developmental increases in rat hepatic microsomal UDP-glucuronosyltransferasee activities toward xenoestrogens and decreases during pregnancy. Environ. Health. Perspect. 2002; 110: 193–196
  • McKinney J. D., Waller C. L. Polychlorinated biphenyls as hormonally active structural analogues. Environ. Health Perspect. 1994; 102: 290–297
  • McKinney J. D., Waller C. L. Molecular determinants of hormone mimicry: Halogenated aromatic hydrocarbon environmental agents. J. Toxicol. Environ. Health B 1998; 1: 27–58
  • McNabb F. M.A., Larsen C. T., Pooler P. S. Ammonium perchlorate effects on thyroid function and growth in bobwhite quail chicks. Environ. Toxicol. Chem. 2004a; 23(4)997–1003
  • McNabb F. M.A., Jang D. A., Larsen C. T. Does thyroid function in developing birds adapt to sustained ammonium perchlorate exposure?. Toxicol. Sci. 2004b; 82: 106–113
  • Meerts I. A., Assink Y., Cenijn P. H., Van Den Berg J. H., Weijers B. M., Bergman A., Koeman J. H., Brouwer A. Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat. Toxicol. Sci. 2002; 68: 361–371
  • Meller J., Becker W. The continuing importance of thyroid scintigraphy in the era of high-resolution ultrasound. Eur. J. Nucl. Med. Mol. Imaging 2002; 29: S425–438, (Suppl 2)
  • Mendelson C. R., Boggaram V. Hormonal control of the surfactant system in fetal lung. Annu. Rev. Physiol. 1991; 53: 415–440
  • Mendez-Pertuz M., Sanchez-Pacheco A., Aranda A. The thyroid hormone receptor antagonizes CREB-mediated transcription. EMBO J. 2003; 22: 3102–3112
  • Menezes J., Luskin M. Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J. Neurosci. 1994; 14: 5399–5416
  • Mestman J. H. Hyperthyroidism in pregnancy. Endocrinol. Metab. Clin. North Am. 1998; 27: 127–149
  • Miyazaki W., Iwasaki T., Takeshita A., Kuroda Y., Koibuchi N. Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism. J. Biol. Chem. 2004; 279: 18195–18202
  • Moriyama K., Tagami T., Akamizu T., Usui T., Saijo M., Kanamoto N., Hataya Y., Shimatsu A., Kuzuya H., Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab. 2002; 87: 5185–5190
  • Morte B., Manzano J., Scanlan T., Vennstrom B., Bernal J. Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc. Natl. Acad. Sci. USA 2002; 99: 3985–3989
  • Muller Y., Rocchi E., Lazaro J. B., Clos J. Thyroid hormone promotes BCL-2 expression and prevents apoptosis of early differentiating cerebellar granule neurons. Int. J. Dev. Neurosci. 1995; 13: 871–885
  • Munoz A., Wrighton C., Seliger B., Bernal J., Beug H. Thyroid hormone receptor/c-erbA: Control of commitment and differentiation in the neuronal/chromaffin progenitor line PC12. J. Cell. Biol. 1993; 121: 423–438
  • Nagasaka A., Hidaka H. Effect of antithyroid agents 6-propyl-2-thiouracil and 1-mehtyl-2-mercaptoimidazole on human thyroid iodine peroxidase. J. Clin. Endocrinol. Metab. 1976; 43: 152–158
  • Neves F. A., Cavalieri R. R., Simeoni L. A., Gardner D. G., Baxter J. D., Scharschmidt B. F., Lomri N., Ribeiro R. C. Thyroid hormone export varies among primary cells and appears to differ from hormone uptake. Endocrinology 2002; 143: 476–483
  • Neveu I., Arenas E. Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. J. Cell. Biol. 1996; 133: 631–646
  • Nicholson J. L., Altman J. The effects of early hypo-and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res. 1972a; 44: 13–23
  • Nicholson J. L., Altman J. The effects of early hypo-and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer. Brain Res. 1972b; 44: 25–36
  • O'Connor J. C., Cook J., Craven S. C., Van Pelt C. S., Obourn J. D. An in vivo battery for identifying endocrine modulators that are estrogenic or dopamine regulators. Fundam. Appl. Toxicol. 1996; 33: 182–195
  • O'Connor J. C., Frame S. R., Davis L. G., Cook J. C. Detection of thyroid toxicants in a tier I screening battery and alterations in thyroid endpoints over 28 days of exposure. Toxicol. Sci. 1999; 51: 54–70
  • O'Connor J. C., Cook J. C., Marty M. S., Davis L. G., Kaplan A. M., Carney E. W. Evaluation of Tier I screening approaches for detecting endocrine-active compounds (EACs). Crit. Rev. Toxicol. 2002a; 32(6)521–549
  • O'Connor J. C., Frame S. R., Ladics G. S. Evaluation of a 15-day screening assay using intact male rats for identifying antiandrogens. Toxicol. Sci. 2002b; 69(1)92–108
  • OECD. 2006, http://www.oecd.org/dataoecd/49/35/37235405.pdf Detailed Review Paper on Thyroid Hormone Disruption Assays. OECD Series on Testing and Assessment No. 57. ENV/JM/MONO(2006)24, Organisation for Economic Co-operation and Development (OECD) Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, JT03212475, Available at
  • Orozco A., Silva J. E., Valverde C. R. Rainbow trout liver expresses two iodothyronine phenolic ring deiodinase pathways with the characteristics of mammalian types I and II deiodinases. Endocrinology 1997; 138: 254–258
  • Ortega E., Osorio A., Ruiz E. Inhibition of 5′DI and 5′DII L-tiroxine (T4) monodeiodinases. Effect on the hypothalamo-pituitary ovarian axis in adult hypothyroid rats treated with T4. Biochem. Mol. Biol. Int. 1996; 39: 853–860
  • Palha J. A. Transthyretin as a thyroid hormone carrier: Function revisited. Clin. Chem. Lab. Med. 2002a; 40: 1292–1300
  • Palha J. A., Nissanov J., Fernandes R., Sousa J. C., Bertrand L., Dratman M. B., Morreale de Escobar G., Gottesman M., Saraiva M. J. Thyroid hormone distribution in the mouse brain: The role of transthyretin. Neuroscience 2002b; 113: 837–847
  • Pasquini L. A., Marta C. B., Adamo A. M., Pasquini J. M., Soto E. F. Relationship between the ubiquitin-dependent pathway and apoptosis in different cells of the central nervous system: Effect of thyroid hormones. Neurochem. Res. 2000; 25: 627–635
  • Pendred V. Deaf mutism and goitre. Lancet 1896; 11: 532
  • Persani L., Borgato S., Romoli R., Asteria C., Pizzocaro A., Beck-Peccoz P. Changes in the degree of sialylation of carbohydrate chains modify the biological properties of circulating thyrotropin isoforms in various physiological and pathological states. J. Clin. Endocrinol. Metab. 1998; 83: 2486–2492
  • Porterfield S. P., Hendry L. B. Impact of PCBs on thyroid hormone directed brain development. Toxicol. Ind. Health 1998; 14: 103–120
  • Porterfield S. P. Thyroidal dysfunction and environmental chemicals–potential impact on brain development. Environ. Health Perspect. 2000; 108: 433–438, 438porterfield/porterfield-full.html438porterfield/abstract.html. Suppl 3
  • Potter G. B., Facchinetti F., Beaudoin G. M., 3rd, Thompson C. C. Neuronal expression of synaptotagmin-related gene 1 is regulated by thyroid hormone during cerebellar development. J. Neurosci. 2001; 21: 4373–4380
  • Potter G. B., Zarach J. M., Sisk J. M., Thompson C. C. The thyroid hormone-regulated corepressor hairless associates with histone deacetylases in neonatal rat brain. Mol. Endocrinol. 2002; 16: 2547–2560
  • Rabie A., Favre C., Clavel M. C., Legrand J. Effects of thyroid dysfunction on the development of the rat cerebellum, with special reference to cell death within the internal granular layer. Brain Res. 1977; 120: 521–531
  • Rabie A., Clavel M. C., Legrand J. Analysis of the mechanisms underlying increased histogenetic cell death in developing cerebellum of the hypothyroid rat: Determination of the time required for granule cell death. Brain Res. 1980; 190: 409–414
  • Raff M. C., Miller R. H., Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 1983; 303: 390–396
  • Reardon W., Coffey R., Phelps P. D., Luxon L. M., Stephens D., Kendall-Taylor P., Britton K. E., Grossman A., Trembath R. C. Pendred syndrome—100 years of underascertainment?. Q. J. Exp. Physiol. 1977; 90: 443–447
  • Reardon W., Coffey R., Chowdhury T., Grossman A., Jan H., Britton K., Kendall-Taylor P., Trembath R. Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. J. Med. Genet. 1999; 36: 595–598
  • Saito K., Kaneko H., Sato K., Yoshitake A., Yamada H. Hepatic UDP-glucuronyltransferase(s) activity toward thyroid hormones in rats: Induction and effects on serum thyroid hormone levels following treatment with various enzyme inducers. Toxicol. Appl. Pharmacol. 1991; 111: 99–106
  • Santini F., Vitti P., Ceccarini G., Mammoli C., Rosellini V., Pelosini C., Marsili A., Tonacchera M., Agretti P., Santoni T., Chiovato L., Pinchera A. In vitro assay of thyroid disruptors affecting TSH-stimulated adenylate cyclase activity. J. Endocrinol. J. Endocrinol. Invest. 2003; 26: 950–955
  • Sarne D. H., Refetoff S. Thyroid function test. Endocrinology, L. J. DeGroot. W.B. Saunders, Philadelphia 1995; 617–664
  • Sato A., Koizumi Y., Kanno Y., Yamada T. Inhibitory effect of large doses of propylthiouracil and methimazole on an increase of thyroid radioiodine release in response to thyrotropin. Proc. Soc. Exp. Biol. Med. 1976; 152: 90–94
  • Schapira M., Raaka B. M., Das S., Fan L., Totrov M., Zhou Z., Wilson S. R., Abagyan R., Samuels H. H. Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking. Proc. Natl. Acad. Sci. USA 2003; 100: 7354–9
  • Schulz M., Eggert M., Baniahmad A., Dostert A., Heinzel T., Renkawitz R. RU486-induced glucocorticoid receptor agonism is controlled by the receptor N terminus and by corepressor binding. J. Biol. Chem. 2002; 277: 26238–26243
  • Schussler G. C. The thyroxine-binding proteins. Thyroid 2000; 10: 141–149
  • Schuur A. G., van Leeuwen-Bol I., Jong W. M., Bergman A., Coughtrie M. W., Brouwer A., Visser T. J. In vitro inhibition of thyroid hormone sulfation by polychlorobiphenylols: Isozyme specificity and inhibition kinetics. Toxicol. Sci. 1998; 45: 188–194
  • Schuurmans C., Guillemot F. Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 2002; 12(1)26–34
  • Scinicariello F., Murray H. E., Smith L., Wilbur S., Fowler B. A. Genetic factors that might lead to different responses in individuals exposed to perchlorate. Environ. Health Perspect. 2005; 113: 1479–1484
  • Seiwa C., Nakahara J., Komiyama T., Katsu Y., Iguchi T., Asou H. Bisphenol A exerts thyroid-hormone-like effects on mouse oligodendrocyte precursor cells. Neuroendocrinology 2004; 80(1)21–30
  • Sellin J. H., Vassilopoulou-Sellin R. The gastrointestinal tract and liver in thyrotoxicosis. The Thyroid: A Fundamental and Clinical Text, 8th ed., L. E. Braverman, R. D. Utiger. Lippincott Williams and Wilkins, Philadelphia 2000; 622–626
  • Shibusawa N., Hashimoto K., Nikrodhanond A. A., Liberman M. C., Applebury M. L., Liao X. H., Robbins J. T., Refetoff S., Cohen R. N., Wondisford F. E. Thyroid hormone action in the absence of thyroid hormone receptor DNA-binding in vivo. J. Clin. Invest. 2003a; 112: 588–597
  • Shibusawa N., Hollenberg A. N., Wondisford F. E. Thyroid hormone receptor DNA binding is required for both positive and negative gene regulation. J. Biol. Chem. 2003b; 278: 732–738
  • Siesser W. B., Cheng S. Y., McDonald M. P. Hyperactivity, impaired learning on a vigilance task, and a differential response to methylphenidate in the TRbetaPV knock-in mouse. Psychopharmacology (Berl) 2005; 181(4)653–63
  • Singh P. K., Parvin C. A., Gronowski A. M. Establishment of reference intervals for markers of fetal thyroid status in amniotic fluid. J. Clin. Endocrinol. Metab. 2003a; 88(9)4175–4179
  • Singh R., Upadhyay G., Kumar S., Kapoor A., Kumar A., Tiwari M., Godbole M. M. Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in the developing cerebellum. J. Endocrinol. 2003b; 176: 39–46
  • St. Germain D. L., Croteau W. Ligand-induced inactivation of type I iodothyronine 5′-deiodinase: Protection by propylthiouracil in vivo and reversibility in vitro. Endocrinology 1989; 125: 2735–2744
  • St. Germain D. L., Galton V. A. The deiodinase family of selenoproteins. Thyroid 1997; 7: 655–668
  • Stachelek S. J., Kowalik T. F., Farwell A. P., Leonard J. L. Myosin V plays an essential role in the thyroid hormone-dependent endocytosis of type II iodothyronine 5′-deiodinase. J. Biol. Chem. 2000; 275: 31701–31707
  • Stachelek S. J., Tuft R. A., Lifschitz L. M., Leonard D. M., Farwell A. P., Leonard J. L. Real-time visualization of processive myosin 5a-mediated vesicle movement in living astrocytes. J. Biol. Chem. 2001; 276: 35652–35659
  • Staples C. A., Dorn P. B., Klecka G. M., O'Block S. T., Harris L. R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998; 36(10)2149–2173
  • Stevens D. A., Harvey C. B., Scott A. J., O'Shea P. J., Barnard J. C., Williams A. J., Brady G., Samarut J., Chassande O., Williams G. R. Thyroid hormone activates fibroblast growth factor receptor-1 in bone. Mol. Endocrinol. 2003; 17: 1751–1766
  • Strait K. A., Zou L., Oppenheimer J. H. Beta 1 isoform-specific regulation of a triiodothyronine-induced gene during cerebellar development. Mol. Endocrinol. 1992; 6: 1874–1880
  • Strawson J., Zhao Q., Dourson M. Reference dose for perchlorate based on thyroid hormone change in pregnant women as the critical effect. Regul. Toxicol. Pharmacol. 2004; 39: 44–65
  • Sui L., Gilbert M. E. Pre-and postnatal propylthiouracil-induced hypothyroidism impairs synaptic transmission and plasticity in area CA1 of the neonatal rat hippocampus. Endocrinology 2003; 144: 4195–4203
  • Sui L., Anderson W. L., Gilbert M. E. Impairment in short-term but enhanced long-term synaptic potentiation and ERK activation in adult hippocampal area CA1 following developmental thyroid hormone insufficiency. Toxicol. Sci. 2005; 85: 647–656
  • Takagi H., Mitsumori K., Onodera H., Nasu M., Tamura T., Yasuhara K., Takegawa K., Hirose M. Improvement of a two-stage carcinogenesis model to detect modifying effects of endocrine disrupting chemicals on thyroid carcinogenesis in rats. Cancer Lett. 2002; 178: 1–9
  • Takahashi T., Nowakowski R. S., Caviness V. S. BudR as an S-phase marker for quantitative studies of cytokinetic behaviour in the murine cerebral ventricular zone. J. Neurocytol. 1992; 21: 185–197
  • Takayama S., Aihara K., Onodera T., Akimoto T. Antithyroid effects of propylthiouracil and sulfamonomethoxine in rats and monkeys. Toxicol. Appl. Pharmacol. 1986; 82: 191–199
  • Tanaka M., Marunouchi T. Immunohistochemical analysis of developmental stage of external granular layer neurons which undergo apoptosis in postnatal rat cerebellum. Neurosci. Lett. 1998; 242: 85–88
  • Taurog A. Hormone Synthesis: Thyroid Iodine Metabolism. The Thyroid: A Fundamental and Clinical Text, 8th ed., L. E. Braverman, R. D. Utiger. Lippincott-Raven, Philadelphia 2000; 61–85
  • Taylor J. P., Metcalfe R. A., Watson P. F., Weetman A. P., Trembath R. C. Mutations of the PDS gene, encoding pendrin, are associated with protein mislocalization and loss of iodide efflux: Implications for thyroid dysfunction in Pendred syndrome. J. Clin. Endocrinol. Metab. 2002; 87: 1778–84
  • Thuett K. A., Roots E. H., Mitchell L. P., Gentles B. A., Anderson T. A., Smith E. E. In utero and lactational exposure to ammonium perchlorate in drinking water: Effects on developing deer mice at postnatal day 21. J. Toxicol. Environ. Health A 2002; 65: 1061–1076
  • Tyl R. W., Myers C. B., Marr M. C., Thomas B. F., Keimowitz A. R., Brine D. R., Veselica M. M., Fail P. A., Chang T. Y., Seely J. C., Joiner R. L., Butala J. H., Dimond S. S., Cagen S. Z., Shiotsuka R. N., Stropp G. D., Waechter J. M. Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats. Toxicol. Sci. 2002; 68: 121–146
  • Urbansky E. T. Perchlorate as an environmental contaminant. Environ. Sci. Pollut. Res. Int. 2002; 9: 187–192
  • U.S Environmental Protection Agency. Guidelines for Neurotoxicity Risk Assessment. 1998, http://wwwepagov/ncea/pdfs/nurotoxpdf National Technical Information Service Publication PB98-117831
  • Valavanis C., Naber S., Schwartz L. M. In situ detection of dying cells in normal and pathological tissues. Methods Cell. Biol. 2001; 66: 393–415
  • van Birgelen A. P.J.M., van der Kolk J., Fase K. M., Bol I., Poiger H., Brouwer A., van den Berg M. Toxic potency of 3,3′,4,4′,5-pentachlorobiphenyl relative to and in combination with 2,3,7,8-tetrachlorodibenzo-p-dioxin in a subchronic feeding study in the rat. Toxicol. Appl. Pharmacol. 1994; 127: 209–221
  • Vansell N. R., Klaassen C. D. Increased biliary excretion of thyroxine by microsomal enzyme inducers. Toxicol. Appl. Pharmacol. 2001; 176: 187–194
  • Vermiglio F., Lo Presti V. P., Moleti M., Sidoti M., Tortorella G., Scaffidi G., Castagna M. G., Mattina F., Violi M. A., Crisa A., Artemisia A., Trimarchi F. Attention deficit and hyperactivity disorders in the offspring of mothers exposed to mild–moderate iodine deficiency: A possible novel iodine deficiency disorder in developed countries. J. Clin. Endocrinol. Metab. 2004; 89(12)6054–6060
  • Visser T. J., Kaptein E., van Toor H., van Raay J. A.G.M., van den Berg K. J., Joe C. J.T., van Engelen J. G.M., Brouwer A. Glucuronidation of thyroid hormone in rat liver: Effects of in vivo treatment with microsomal enzyme inducers and in vitro assay conditions. Endocrinology 1993; 133: 2177–2186
  • Vladeva S., Gatseva P., Gopina G. Comparative analysis of results from studies of goitre in children from Bulgarian villages with nitrate pollution of drinking water in 1995 and 1998. Cent. Eur. J. Public Health 2000; 8: 179–181
  • Wade M. G., Parent S., Finnson K. W., Foster W., Younglai E., McMahon A., Cyr D. G., Hughes C. Thyroid toxicity due to subchronic exposure to a complex mixture of 16 organochlorines, lead, and cadmium. Toxicol. Sci. 2002; 67: 207–218
  • Walters S. N., Morell P. Effects of altered thyroid states on myelinogenesis. J. Neurochem. 1981; 36: 1792–1801
  • Wolff D. J., Marks N. The antithyroid agent 6-n-propyl-2-thiouracil is a mechanism-based inactivator of the neuronal nitric oxide synthase isoform. Arch. Biochem. Biophys. 2002; 407: 83–94
  • Wolff J. Perchlorate and the thyroid gland. Pharmacol. Rev. 1998; 50: 89–105
  • Wood J. G., Martin S., Price D. J. Evidence that the earliest generated cells of the murine cerebral cortex form a transient population in the subplate and marginal zone. Dev. Brain Res. 1992; 66: 137–140
  • Wu Y., Xu B., Koenig R. J. Thyroid hormone response element sequence and the recruitment of retinoid X receptors for thyroid hormone responsiveness. J. Biol. Chem. 2001; 276: 3929–3936
  • Wu Y., Liu Y., Levine E. M., Rao M. S. Hes1 but not Hes5 regulates an astrocyte versus oligodendrocyte fate choice in glial restricted precursors. Dev. Dyn. 2003; 226(4)675–689
  • Wullner U., Kornhuber J., Weller M., Schulz J. B., Loschmann P. A., Riederer P., Klockgether T. Cell death and apoptosis regulating proteins in Parkinson's disease—A cautionary note. Acta. Neuropathol. (Berl) 1999; 97: 408–412
  • Xiao Q., Nikodem V. M. Apoptosis in the developing cerebellum of the thyroid hormone deficient rat. Front Biosci. 1998; 3A: 52–57
  • Yamada-Okabe T., Satoh Y., Yamada-Okabe H. Thyroid hormone induces the expression of 4-1BB and activation of caspases in a thyroid hormone receptor-dependent manner. Eur. J. Biochem. 2003; 270: 3064–3073
  • Yamada-Okabe T., Aono T., Sakai H., Kashima Y., Yamada-Okabe H. 2,3,7,8-Tetrachlorodibenzo-p-dioxin augments the modulation of gene expression mediated by the thyroid hormone receptor. Toxicol. Appl. Pharmacol. 2004; 194: 201–210
  • Yen P. M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 2001; 81: 1097–1142
  • Yoshida A., Taniguchi S., Hisatome I., Royaux I. E., Green E. D., Kohn L. D., Suzuki K. Pendrin is an iodide-specific apical porter responsible for iodide efflux from thyroid cells. J. Clin. Endocrinol. Metab. 2002; 87: 3356–3361
  • Zhang J., Lazar M. A. The mechanism of action of thyroid hormones. Annu. Rev. Physiol. 2000; 62: 439–466
  • Zhou T., Ross D. G., DeVito M. J., Crofton K. M. Effects of short-term in vivo exposure to polybrominated diphenyl ethers on thyroid hormones and hepatic enzyme activities in weanling rats. Toxicol. Sci. 2001; 61: 76–82
  • Zhou T., Taylor M. M., DeVito M. J., Crofton K. M. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption. Toxicol. Sci. 2002; 66: 105–116
  • Zoeller R. T., Kabeer N., Albers H. E. Cold exposure elevates cellular levels of messenger ribonucleic acid encoding thyrotropin-releasing hormone in paraventricular nucleus despite elevated levels of thyroid hormones. Endocrinology 1990; 127: 2955–2962
  • Zoeller R. T., Dowling A. L., Vas A. A. Developmental exposure to polychlorinated biphenyls exerts thyroid hormone-like effects on the expression of RC3/neurogranin and myelin basic protein messenger ribonucleic acids in the developing rat brain. Endocrinology 2000; 141: 181–189
  • Zoeller R. T. Polychlorinated biphenyls as disruptors of thyroid hormone action. PCBs: Recent Advances in the Environmental Toxicology and Health Effects of PCBs, L. J. Fisher, L. Hansen. University Press of Kentucky, Lexington 2001; 265–272
  • Zoeller R. T., Rovet J. Timing of thyroid hormone action in the developing brain: Clinical observations and experimental findings. J. Neuroendocrinol. 2004; 16(10)809–818
  • Zoeller R. T., Bansal R., Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 2005a; 146: 607–612
  • Zoeller R. T., Crofton K. M. MOA: Developmental thyroid hormone insufficiency: Neurological abnormalities resulting from exposure to propylthiouracil. Crit. Rev. Toxicol. 2005b; 35(8–9)771–781
  • Zoeller R. T., Tan S. W., Tyl R. W. General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit. Rev. Toxicol. 2006; 37(1–2)11–53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.