226
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Apoptotic Cell Death Induced by Low-Dose Radiation in Male Germ Cells: Hormesis and Adaptation

, , , , &
Pages 587-605 | Published online: 10 Oct 2008

REFERENCES

  • Allan D. J., Harmon B. V., Roberts S. A. Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat. Cell Prolif. 1992; 25: 241–250
  • Azzam E. I., Little J. B. The radiation-induced bystander effect: evidence and significance. Hum. Exp. Toxicol. 2004; 23: 61–65
  • Bartke A. Apoptosis of male germ cells, a generalized or a cell type-specific phenomenon?. Endocrinology 1995; 136: 3–4
  • Beumer T. L., Roepers-Gajadien H. L., Gademan I. S., Lock T. M., Kal H. B., De Rooij D. G. Apoptosis regulation in the testis: Involvement of Bcl-2 family members. Mol. Reprod. Dev. 2000; 56: 353–359
  • Blanco-Rodriguez J., Martinez-Garcia C. Spontaneous germ cell death in the testis of the adult rat takes the form of apoptosis: Re-evaluation of cell types that exhibit the ability to die during spermatogenesis. Cell Prolif. 1996; 29: 13–31
  • Bozec A., Chuzel F., Chater S., Paulin C., Bars R., Benahmed M., Mauduit C. The mitochondrial-dependent pathway is chronically affected in testicular germ cell death in adult rats exposed in utero to anti-androgens. J. Endocrinol 2004; 183: 79–90
  • Brinkworth M. H., Weinbauer G. F., Schlatt S., Nieschlag E. Identification of male germ cells undergoing apoptosis in adult rats. J. Reprod. Fertil. 1995; 105: 25–33
  • Burr K. L., Smith A. G., Dubrova Y. E. p53 deficiency does not affect mutation rate in the mouse germline. Oncogene 2005; 24: 4315–4318
  • Cai L., Hales B. F., Robaire B. Induction of apoptosis in the germ cells of adult male rats after exposure to cyclophosphamide. Biol. Reprod. 1997; 56: 1490–1497
  • Cai L., Jiang J., Wang B., Yao H., Wang X. Induction of an adaptive response to dominant lethality and to chromosome damage of mouse germ cells by low dose radiation. Mutat. Res. 1993; 303: 157–161
  • Cai L., Liu S. Z. Induction of cytogenetic adaptive response of somatic and germ cells in vivo and in vitro by low-dose X-irradiation. Int. J. Radiat. Biol. 1990; 58: 187–194
  • Cai L., Wang P. Induction of a cytogenetic adaptive response in germ cells of irradiated mice with very low-dose rate of chronic gamma-irradiation and its biological influence on radiation-induced DNA or chromosomal damage and cell killing in their male offspring. Mutagenesis 1995; 10: 95–100
  • Cai L., Wang P., Piao X. G. Cytogenetic adaptive response with multiple small x-ray doses in mouse germ cells and its biological influence on the offspring of adapted males. Mutat. Res. 1994; 324: 13–17
  • Calabrese E. J., Bachmann K. A., Bailer A. J., Bolger P. M., Borak J., Cai L., Cedergreen N., Cherian M. G., Chiueh C. C., Clarkson T. W., et al. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol. Appl. Pharmacol. 2007; 7, Epub ahead of print
  • Calabrese E. J., Baldwin L. A. Radiation hormesis: Its historical foundations as a biological hypothesis. Hum. Exp. Toxicol. 2000; 19: 41–75
  • Calabrese E. J., Baldwin L. A. Defining hormesis. Hum. Exp. Toxicol. 2002; 21: 91–97
  • Castanares M., Vera Y., Erkkila K., Kyttanen S., Lue Y., Dunkel L., Wang C., Swerdloff R. S., Hikim A. P. Minocycline up-regulates BCL-2 levels in mitochondria and attenuates male germ cell apoptosis. Biochem. Biophys. Res. Commun. 2005; 337: 663–669
  • Chandrasekaran Y., Richburg J. H. The p53 protein influences the sensitivity of testicular germ cells to mono-(2-ethylhexyl) phthalate-induced apoptosis by increasing the membrane levels of Fas and DR5 and decreasing the intracellular amount of c-FLIP. Biol. Reprod. 2005; 72: 206–210
  • Chen S. L., Cai L., Meng Q. Y., Xu S., Wan H., Liu S. Z. Low-dose whole-body irradiation (LD-WBI) changes protein expression of mouse thymocytes: Effect of a LD-WBI-enhanced protein RIP10 on cell proliferation and spontaneous or radiation-induced thymocyte apoptosis. Toxicol. Sci. 2000; 55: 97–106
  • Chen Z., Sakai K. Enhancement of radiation-induced apoptosis by preirradiation with low-dose x-rays in human leukemia MOLT-4 cells. J. Radiat. Res. (Tokyo) 2004; 45: 239–243
  • Cisternas P., Moreno R. D. Comparative analysis of apoptotic pathways in rat, mouse, and hamster spermatozoa. Mol. Reprod. Dev. 2006; 73: 1318–1325
  • Clarke A. R., Purdie C. A., Harrison D. J., Morris R. G., Bird C. C., Hooper M. L., Wyllie A. H. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362: 849–852
  • Coleman M. A., Yin E., Peterson L. E., Nelson D., Sorensen K., Tucker J. D., Wyrobek A. J. Low-dose irradiation alters the transcript profiles of human lymphoblastoid cells including genes associated with cytogenetic radioadaptive response. Radiat. Res. 2005; 164: 369–382
  • Cordelli E., Fresegna A. M., Leter G., Eleuteri P., Spano M., Villani P. Evaluation of DNA damage in different stages of mouse spermatogenesis after testicular X irradiation. Radiat. Res. 2003; 160: 443–451
  • Cregan S. P., Brown D. L., Mitchel R. E. Apoptosis and the adaptive response in human lymphocytes. Int. J. Radiat. Biol. 1999; 75: 1087–1094
  • Deng D. X., Cai L., Chakrabarti S., Cherian M. G. Increased radiation-induced apoptosis in mouse thymus in the absence of metallothionein. Toxicology 1999; 134: 39–49
  • Ding L. H., Shingyoji M., Chen F., Hwang J. J., Burma S., Lee C., Cheng J. F., Chen D. J. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat. Res. 2005; 164: 17–26
  • Embree-Ku M., Venturini D., Boekelheide K. Fas is involved in the p53-dependent apoptotic response to ionizing radiation in mouse testis. Biol. Reprod. 2002; 66: 1456–1461
  • Enns L., Bogen K. T., Wizniak J., Murtha A. D., Weinfeld M. Low-dose radiation hypersensitivity is associated with p53-dependent apoptosis. Mol. Cancer Res. 2004; 2: 557–566
  • Franco N., Lamartine J., Frouin V., Le Minter P., Petat C., Leplat J. J., Libert F., Gidrol X., Martin M. T. Low-dose exposure to gamma rays induces specific gene regulations in normal human keratinocytes. Radiat. Res. 2005; 163: 623–635
  • Ghiassi-nejad M. S., Cameton J. R. Very high background radiation areas of Ramsar, Iran: Prelimary biological studies. Health Phys. 2002; 82: 87–93
  • Gong S. L., Liu S. C., Liu J. X., Zhang Y. C., Liu S. Z. Adaptive response of thymocyte apoptosis and cell cycle progression induced by low dose x-ray irradiation in mice. Biomed. Environ. Sci. 2000; 13: 180–188
  • Haines G. A., Hendry J. H., Daniel C. P., Morris I. D. Germ cell and dose-dependent DNA damage measured by the comet assay in murine spermatozoaa after testicular X-irradiation. Biol. Reprod. 2002; 67: 854–861
  • Hamer G., Gademan I. S., Kal H. B., de Rooij D. G. Role for c-Abl and p73 in the radiation response of male germ cells. Oncogene 2001; 20: 4298–4304
  • Hamer G., Roepers-Gajadien H. L., Gademan I. S., Kal H. B., De Rooij D. G. Intercellular bridges and apoptosis in clones of male germ cells. Int. J. Androl 2003; 26: 348–353
  • Hasegawa M., Wilson G., Russell L. D., Meistrich M. L. Radiation-induced cell death in the mouse testis: relationship to apoptosis. Radiat. Res. 1997; 147: 457–467
  • Hasegawa M., Zhang Y., Niibe H., Terry N. H., Meistrich M. L. Resistance of differentiating spermatogonia to radiation-induced apoptosis and loss in p53-deficient mice. Radiat. Res. 1998; 149: 263–270
  • Henriksen K., Hakovirta H., Parvinen M. In-situ quantification of stage-specific apoptosis in the rat seminiferous epithelium: Effects of short-term experimental cryptorchidism. Int. J. Androl. 1995; 18: 256–262
  • Heyer B. S., MacAuley A., Behrendtsen O., Werb Z. Hypersensitivity to DNA damage leads to increased apoptosis during early mouse development. Genes Dev. 2000; 14: 2072–2084
  • Hirota A., Kawachi Y., Itoh K., Nakamura Y., Xu X., Banno T., Takahashi T., Yamamoto M., Otsuka F. Ultraviolet A irradiation induces NF-E2-related factor 2 activation in dermal fibroblasts: Protective role in UVA-induced apoptosis. J. Invest. Dermatol. 2005; 124: 825–832
  • Hirst C. E., Buzza M. S., Sutton V. R., Trapani J. A., Loveland K. L., Bird P. I. Perforin-independent expression of granzyme B and proteinase inhibitor 9 in human testis and placenta suggests a role for granzyme B-mediated proteolysis in reproduction. Mol. Hum. Reprod. 2001; 7: 1133–1142
  • Hussein M. R., Abu-Dief E. E., Abou El-Ghait A. T., Adly M. A., Abdelraheem M. H. Morphological evaluation of the radioprotective effects of melatonin against x-ray-induced early and acute testis damage in Albino rats: an animal model. Int. J. Exp. Pathol. 2006; 87: 237–250
  • Ishii K., Watanabe M. Participation of gap-junctional cell communication on the adaptive response in human cells induced by low dose of x-rays. Int. J. Radiat. Biol. 1996; 69: 291–299
  • Joksic G., Petrovic S. Lack of adaptive response of human lymphocytes exposed in vivo to low doses of ionizing radiation. J. Environ. Pathol. Toxicol. Oncol. 2004; 23: 195–206
  • Kang K. W., Choi S. H., Kim S. G. Peroxynitrite activates NF-E2-related factor 2/antioxidant response element through the pathway of phosphatidylinositol 3-kinase: The role of nitric oxide synthase in rat glutathione S-transferase A2 induction. Nitric Oxide 2002; 7: 244–253
  • Kang K. W., Lee S. J., Kim S. G. Molecular mechanism of nrf2 activation by oxidative stress. Antioxidant Redox. Signal. 2005; 7: 1664–1673
  • Kensler T. W., Wakabayashi N., Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007; 47: 89–116
  • Kim Y. M., Yang I., Lee J., Koo H. S. Deficiency of Bloom's syndrome protein causes hypersensitivity of C. elegans to ionizing radiation but not to UV radiation, and induces p53-dependent physiological apoptosis. Mol. Cells 2005; 20: 228–234
  • Koana T., Okada M. O., Ogura K., Tsujimura H., Sakai K. Reduction of background mutations by low-dose X irradiation of Drosophila spermatocytes at a low dose rate. Radiat. Res. 2007; 167: 217–221
  • Koji T., Hishikawa Y. Germ cell apoptosis and its molecular trigger in mouse testes. Arch. Histol. Cytol. 2003; 66: 1–16
  • Korystov Y. N., Eliseeva N. A., Kublik L. N., Narimanov A. A. The effect of low-dose irradiation on proliferation of mammalian cells in vitro. Radiat. Res. 1996; 146: 329–332
  • Kumamoto H., Ohki K., Ooya K. Expression of p63 and p73 in ameloblastomas. J. Oral. Pathol. Med. 2005; 34: 220–226
  • Kunugita N., Kakihara H., Kawamoto T., Norimura T. Micronuclei induced by low dose rate irradiation in early spermatids of p53 null and wild mice. J. Radiat. Res. 2002; 43: S205–207
  • Lambrot R., Coffigny H., Pairault C., Lecureuil C., Frydman R., Habert R., Rouiller-Fabre V. High radiosensitivity of germ cells in human male fetus. J. Clin. Endocrinol. Metab. 2007; 24, Epub ahead of print
  • Leblond C. P., Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann. NY Acad. Sci. 1952; 55: 548–573
  • Lee J., Richburg J. H., Shipp E. B., Meistrich M. L., Boekelheide K. The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testis. Endocrinology 1999; 140: 852–858
  • Lee N. P., Leung K. W., Wo J. Y., Tam P. C., Yeung W. S., Luk J. M. Blockage of testicular connexins induced apoptosis in rat seminiferous epithelium. Apoptosis 2006; 11: 1215–1229
  • Liu G., Gong P., Zhao H., Wang Z., Gong S., Cai L. Effect of low-level radiation on the death of male germ cells. Radiat. Res. 2006; 165: 379–389
  • Liu S. Z., Zhang Y. C., Mu Y., Su X., Liu J. X. Thymocyte apoptosis in response to low-dose radiation. Mutat. Res. 1996; 358: 185–191
  • Luckey T. D. Physiological benefits from low levels of ionizing radiation. Health Phys. 1982; 43: 771–789
  • Mohammadi S. T.-D.M., Gharaati M. R., Masoomi R., Ghiassi-Nejad M. Adaptive response of blood lymphocytes of inhabitants residing in high background radiation areas of Ramsar—Micronuclei, apoptosi s and comet assays. J. Radiat. Res. (Tokyo) 2006; 21: 135–140
  • Morales E., Ferrer C., Zuasti A., Garcia-Borron J. C., Canteras M., Pastor L. M. Apoptosis and molecular pathways in the seminiferous epithelium of aged and photoinhibited syrian hamsters (Mesocricetus auratus). J. Androl. 2007; 28: 123–135
  • Moreno S. G., Dutrillaux B., Coffigny H. High sensitivity of rat foetal germ cells to low dose-rate irradiation. Int. J. Radiat. Biol. 2001; 77: 529–538
  • Nagasawa H., Little J. B. Unexpected sensitivity to the induction of mutations by very low doses of alpha-particle radiation: Evidence for a bystander effect. Radiat. Res. 1999; 152: 552–557
  • Nair R., Shaha C. Diethylstilbestrol induces rat spermatogenic cell apoptosis in vivo through increased expression of spermatogenic cell Fas/FasL system. J. Biol. Chem. 2003; 278: 6470–6481
  • National Research Council of the National Academies. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. The National Academies Press, Washington, DC 2006
  • Olivieri G., Bodycote J., Wolff S. Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science 1984; 223: 594–597
  • Ono T., Ikehata H., Vishnu Priya P., Uehara Y. Molecular nature of mutations induced by irradiation with repeated low doses of x-rays in spleen, liver, brain and testis of lacZ-transgenic mice. Int. J. Radiat. Biol. 2003; 79: 635–641
  • Osburn W. O., Wakabayashi N., Misra V., Nilles T., Biswal S., Trush M. A., Kensler T. W. Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Arch. Biochem. Biophys. 2006; 454: 7–15
  • Otala M., Suomalainen L., Pentikainen M. O., Kovanen P., Tenhunen M., Erkkila K., Toppari J., Dunkel L. Protection from radiation-induced male germ cell loss by sphingosine-1-phosphate. Biol. Reprod. 2004; 70: 759–767
  • Otsuka K., Koana T., Tauchi H., Sakai K. Activation of antioxidative enzymes induced by low-dose-rate whole-body gamma irradiation: Adaptive response in terms of initial DNA damage. Radiat. Res. 2006; 166: 474–478
  • Park S. H., Lee Y., Jeong K., Yoo S. Y., Cho C. K., Lee Y. S. Different induction of adaptive response to ionizing radiation in normal and neoplastic cells. Cell. Biol. Toxicol. 1999; 15: 111–119
  • Peltola V., Parvinen M., Huhtaniemi I., Kulmala J., Ahotupa M. Comparison of effects of 0.5 and 3.0 Gy X-irradiation on lipid peroxidation and antioxidant enzyme function in rat testis and liver. J. Androl. 1993; 14: 267–274
  • Petre-Lazar B., Livera G., Moreno S. G., Trautmann E., Duquenne C., Hanoux V., Habert R., Coffigny H. The role of p63 in germ cell apoptosis in the developing testis. J. Cell. Physiol. 2007; 210: 87–98
  • Pinon-Lataillade G., Velez de la Calle J. F., Viguier-Martinez M. C., Garnier D. H., Folliot R., Maas J., Jegou B. Influence of germ cells upon Sertoli cells during continuous low-dose rate gamma-irradiation of adult rats. Mol. Cell. Endocrinol. 1988; 58: 51–63
  • Planel H., Soleilhavoup J. P., Tixador R., Richoilley G., Conter A., Croute F., Caratero C., Gaubin Y. Influence on cell proliferation of background radiation or exposure to very low, chronic gamma radiation. Health Phys. 1987; 52: 571–578
  • Rasoulpour T., DiPalma K., Kolvek B., Hixon M. Akt1 suppresses radiation-induced germ cell apoptosis in vivo. Endocrinology 2006; 147: 4213–4221
  • Richburg J. H. The relevance of spontaneous- and chemically-induced alterations in testicular germ cell apoptosis to toxicology. Toxicol. Lett. 2000; 113: 79–86
  • Rodriguez I., Ody C., Araki K., Garcia I., Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J. 1997; 16: 2262–2270
  • Rotter V., Schwartz D., Almon E., Goldfinger N., Kapon A., Meshorer A., Donehower L. A., Levine A. J. Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. Proc. Natl. Acad. Sci. USA 1993; 90: 9075–9079
  • Russell L. D., Ettlin R. A., Sinha Hikim A. P., Clegg E. D. Histological and histopathological evaluation of the testis. Cache River Press, Philadelphia, PA 1990
  • Sasagawa I., Yazawa H., Suzuki Y., Nakada T. Stress and testicular germ cell apoptosis. Arch. Androl. 2001; 47: 211–216
  • Schwartz D., Goldfinger N., Rotter V. Expression of p53 protein in spermatogenesis is confined to the tetraploid pachytene primary spermatocytes. Oncogene 1993; 8: 1487–1494
  • Scott B. R. A biological-based model that links genomic instability, bystander effects, and adaptive response. Mutati. Res. 2004; 568: 129–143
  • Seong J., Kim S. H., Pyo H. R., Chung E. J., Suh C. O. Effect of low-dose irradiation on induction of an apoptotic adaptive response in the murine system. Radiat. Environ. Biophys. 2001; 40: 335–339
  • Shaposhnikova V. V., Korystov Y. N. Thymocyte proliferation and apoptosis induced by ionizing radiation. Scan. Microsc. 1995; 9: 1203–1206
  • Sinha Hikim A. P., Lue Y., Diaz-Romero M., Yen P. H., Wang C., Swerdloff R. S. Deciphering the pathways of germ cell apoptosis in the testis. J. Steroid. Biochem. Mol. Biol. 2003; 85: 175–182
  • Somers C. M., Sharma R., Quinn J. S., Boreham D. R. Gamma radiation-induced heritable mutations at repetitive DNA loci in out-bred mice. Mutat. Res. 2004; 568: 69–78
  • Spierings D. C., de Vries E. G., Stel A. J., te Rietstap N., Vellenga E., de Jong S. Low p21Waf1/Cip1 protein level sensitizes testicular germ cell tumor cells to Fas-mediated apoptosis. Oncogene 2004; 23: 4862–4872
  • Stambolsky P., Weisz L., Shats I., Klein Y., Goldfinger N., Oren M., Rotter V. Regulation of AIF expression by p53. Cell. Death Differ. 2006; 13: 2140–2149
  • Suzuki K., Kodama S., Watanabe M. Extremely low-dose ionizing radiation causes activation of mitogen-activated protein kinase pathway and enhances proliferation of normal human diploid cells. Cancer Res. 2001; 61: 5396–5401
  • Takano N., Matusi H., Takahashi T. Granzyme N, a novel granzyme, is expressed in spermatocytes and spermatids of the mouse testis. Biol. Reprod. 2004; 71: 1785–1795
  • Taylor S. L.W.S., Fox P., Duran E. H., Morshedi M. S., Oehninger S., Beebe S. J. Somatic cell apoptosis markers and pathways in human ejaculated sperm: Potential utility as indicators of sperm quality. Mol. Hum. Reprod. 2004; 10: 825–834
  • Adaptive responses to radiation in cells and organisms. United Nations, New York 1994; 302–338, UNSCEAR Report Aunex B
  • Vera Y., Erkkila K., Wang C., Nunez C., Kyttanen S., Lue Y., Dunkel L., Swerdloff R. S., Sinha Hikim A. P. Involvement of p38 mitogen-activated protein kinase and inducible nitric oxide synthase in apoptotic signaling of murine and human male germ cells after hormone deprivation. Mol. Endocrinol 2006; 20: 1597–1609
  • Verheij M., Bartelink H. Radiation-induced apoptosis. Cell. Tissue. Res. 2000; 301: 133–142
  • Vydra N., Malusecka E., Jarzab M., Lisowska K., Glowala-Kosinska M., Benedyk K., Widlak P., Krawczyk Z., Widlak W. Spermatocyte-specific expression of constitutively active heat shock factor 1 induces HSP70i-resistant apoptosis in male germ cells. Cell. Death. Differ. 2006; 13: 212–222
  • Wang G. J., Cai L. Induction of cell-proliferation hormesis and cell-survival adaptive response in mouse hematopoietic cells by whole-body low-dose radiation. Toxicol. Sci. 2000; 53: 369–376
  • Wang X., Matsumoto H., Okaichi K., Ohnishi T. p53 accumulation in various organs of rats after whole-body exposure to low-dose x-ray irradiation. Anticancer Res. 1996; 16: 1671–1674
  • Xu X., Aprelikova O., Moens P., Deng C. X., Furth P. A. Impaired meiotic DNA-damage repair and lack of crossing-over during spermatogenesis in BRCA1 full-length isoform deficient mice. Development 2003; 130: 2001–2012
  • Zhang H., Liu B., Zhou Q., Zhou G., Yuan Z., Li W., Duan X., Min F., Xie Y., Li X. Alleviation of preexposure of mouse brain with low-dose C ion or Co gamma-ray on male reproductive endocrine damages induced by subsequent high-dose irradiation. Int. J. Androl. 2006; 29: 592–596
  • Zhang H., Zheng R. L., Wei Z. Q., Li W. J., Gao Q. X., Chen W. Q., Wang Z. H., He J., Liang J. P., Han G. W., et al. Effects of preexposure of mouse testis with low-dose (16)O8+ ions or 60Co gamma-rays on sperm shape abnormalities, lipid peroxidation and superoxide dismutase (SOD) activity induced by subsequent high-dose irradiation. Int. J. Radiat. Biol. 1998; 73: 163–167

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.