1,105
Views
48
CrossRef citations to date
0
Altmetric
Review Articles

A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, , & show all
Pages 771-814 | Received 22 Oct 2016, Accepted 05 May 2017, Published online: 29 Jun 2017

References

  • Adjei IM, Sharma B, Labhasetwar V. 2014. Nanoparticles: cellular uptake and cytotoxicity. In: Capco DG, Chen Y, editor. Nanomaterial. Netherlands: Springer; p. 73–91.
  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25:1263–1274.
  • Al-Abed SR, Virkutyte J, Ortenzio JNR, McCarrick RM, Degn LL, Zucker R, Coates NH, Childs K, Ma H, Diamond S, et al. 2016. Environmental aging alters Al(OH)3 coating of TiO2 nanoparticles enhancing their photocatalytic and phototoxic activities. Environ Sci: Nano. 2016;3:593–601.
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular biology of the cell. New York: Garland Science.
  • Alger H, Momcilovic D, Carlander D, Duncan TV. 2014. Methods to evaluate uptake of engineered nanomaterials by the alimentary tract. Compr Rev Food Sci Food Saf. 13:705–729.
  • Almeida JPM, Chen AL, Foster A, Drezek R. 2011. In vivo biodistribution of nanoparticles. Nanomedicine (Lond). 6:815–835.
  • Andón FT, Kapralov AA, Yanamala N, Feng W, Baygan A, Chambers BJ, Hultenby K, Ye F, Toprak MS, Brandner BD, et al. 2013. Biodegradation of Single-Walled Carbon Nanotubes by Eosinophil Peroxidase. Small. 9:2721–2729.
  • ANEC, BEUC. 2010. ANEC/BEUC inventory of products claiming to contain nanoparticles available on the EU market. European Consumers Organization and the European Consumer Voice in Standardization.
  • ANEC, BEUC. 2012. ANEC/BEUC inventory of products claiming to contain nano-silver particles available on the EU market. European Consumers Organization; European Consumer Voice in Standardization.
  • Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, et al. 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 29:730–741.
  • Arts JHE, Hadi M, Keene AM, Kreiling R, Lyon D, Maier M, Michel K, Petry T, Sauer UG, Warheit D, et al. 2014. A critical appraisal of existing concepts for the grouping of nanomaterials. Regul Toxicol Pharmacol. 70:492–506.
  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ. 407:1461–1468.
  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM. 2011. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int. 37:1143–1156.
  • Asgharian B, Hofmann W, Bergmann R. 2001. Particle deposition in a multiple-path model of the human lung. Aerosol Sci Technol. 34:332–339.
  • Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP. 2012. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr. 3:2.
  • Bachler G, von Goetz N, Hungerbuhler K. 2015. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology. 9:373–380.
  • Bachler G, von Goetz N, Hungerbühler K. 2013. A physiologically based pharmacokinetic model for ionic silver and silver nanoparticles. Int J Nanomedicine. 8:3365–3382.
  • Badireddy AR, Wiesner MR, Liu J. 2012. Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced darkfield microscopy. Environ Sci Technol. 46:10081–10088.
  • Bakand S, Hayes A, Dechsakulthorn F. 2012. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol. 24:125–135.
  • Baroli B. 2010. Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality? J Pharm Sci. 99:21–50.
  • Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA. 2007. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 127:1701–1712.
  • Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P. 2010. The release of nanosilver from consumer products used in the home. J Environ Qual. 39:1875–1882.
  • Benn TM, Westerhoff P. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 42:4133–4139.
  • Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazú V, Borm P, Estrada G, Ntziachristos V, Razansky D. 2010. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol. 7:3–3.
  • Blank F, Stumbles PA, Seydoux E, Holt PG, Fink A, Rothen-Rutishauser B, Strickland DH, von Garnier C. 2013. Size-dependent uptake of particles by pulmonary antigen-presenting cell populations and trafficking to regional lymph nodes. Am J Respir Cell Mol Biol. 49:67–77.
  • Bolyard SC, Reinhart DR, Santra S. 2013. Behavior of engineered nanoparticles in landfill leachate. Environ Sci Technol. 47:8114–8122.
  • Boncagni NT, Otaegui JM, Warner E, Curran T, Ren J, Fidalgo de Cortalezzi MM. 2009. Exchange of TiO2 nanoparticles between streams and streambeds. Environ Sci Technol. 43:7699–7705.
  • Boncel S, Kyzioł-Komosińska J, Krzyżewska I, Czupioł J. 2015. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems – a review. Chemosphere. 136:211–221.
  • Boonruksa P, Bello D, Zhang J, Isaacs JA, Mead JL, Woskie SR. 2016. Characterization of potential exposures to nanoparticles and fibers during manufacturing and recycling of carbon nanotube reinforced polypropylene composites. Ann Occup Hyg. 60:40–55.
  • Bouchard D, Chang X, Chowdhury I. 2015. Heteroaggregation of multiwalled carbon nanotubes with sediments. Environ Nanotechnol Monit Manag. 4:42–50.
  • Bouldin JL, Ingle TM, Sengupta A, Alexander R, Hannigan RE, Buchanan RA. 2008. Aqueous toxicity and food chain transfer of quantum dots™ in freshwater algae and Ceriodaphnia dubia. Environ Toxicol Chem. 27:1958–1963.
  • Braakhuis HM, Park MV, Gosens I, D, Jong WH, Cassee FR. 2014. Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol. 11:1–25.
  • Brouwer DH, Spaan S, Roff M, Sleeuwenhoek A, Tuinman I, Goede H, van Duuren-Stuurman B, Filon FL, Bello D, Cherrie JW. 2016. Occupational dermal exposure to nanoparticles and nano-enabled products: Part 2, exploration of exposure processes and methods of assessment. Int J Hyg Environ Health. 219:503–512.
  • Brunetti G, Donner E, Laera G, Sekine R, Scheckel KG, Khaksar M, Vasilev K, De Mastro G, Lombi E. 2015. Fate of zinc and silver engineered nanoparticles in sewerage networks. Water Res. 77:72–84.
  • BUND. Nanoproduktdatenbank Des BUND. Germany: Der Bund für Umwelt und Naturschutz Deutschland [Friends of the Earth Germany].
  • Buono C, Anzinger JJ, Amar M, Kruth HS. 2009. Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J Clin Invest. 119:1373–1381.
  • Caballero-Guzman A, Nowack B. 2016. A critical review of engineered nanomaterial release data: are current data useful for material flow modeling? Environ Pollut. 213:502–517.
  • Caballero-Guzman A, Sun T, Nowack B. 2015. Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Manag. 36:33–43.
  • Canesi L, Corsi I. 2016. Effects of nanomaterials on marine invertebrates. Sci Total Environ. 565:933–940.
  • Canton I, Battaglia G. 2012. Endocytosis at the nanoscale. Chem Soc Rev. 41:2718–2739.
  • Cassee F, Muijser H, Duistermaat E, Freijer J, Geerse K, Marijnissen JC, Arts JH. 2002. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model. Arch Toxicol. 76:277–286.
  • Cassee FR, van Balen EC, Singh C, Green D, Muijser H, Weinstein J, Dreher K. 2011. Exposure, health- and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol. 41:213–229.
  • Chakraborty C, Sharma AR, Sharma G, Lee S-S. 2016. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol. 14:1–13.
  • Chang X, Bouchard DC. 2013. Multiwalled carbon nanotube deposition on model environmental surfaces. Environ Sci Technol. 47:10372–10380.
  • Chang X, Bouchard DC. 2016. Surfactant-wrapped multiwalled carbon nanotubes in aquatic systems: surfactant displacement in the presence of humic acid. Environ Sci Technol. 50:9214–9222.
  • Chen C-Y, Zepp RG. 2015. Probing photosensitization by functionalized carbon nanotubes. Environ Sci Technol. 49:13835–13843.
  • Chen W-Y, Cheng Y-H, Hsieh N-H, Wu B-C, Chou W-C, Ho CC, Chen JK, Liao CM, Lin P. 2015. Physiologically based pharmacokinetic modeling of zinc oxide nanoparticles and zinc nitrate in mice. Int J Nanomed. 10:6277–6292.
  • Chen Y, Qu K, Zhao C, Wu L, Ren J, Wang J, Qu X. 2012. Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. Nat Commun. 3:1074.
  • Cheng CY, Mruk DD. 2012. The blood–testis barrier and its implications for male contraception. Pharmacol Rev. 64:16–64.
  • Cheng CY, Wong EWP, Lie PPY, Li MWM, Mruk DD, Yan HH, Mok KW, Mannu J, Mathur PP, Lui WY, et al. 2011. Regulation of blood–testis barrier dynamics by desmosome, gap junction, hemidesmosome and polarity proteins. Spermatogenesis. 1:105–115.
  • Chichiriccò G, Poma A. 2015. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials (Basel). 5:851.
  • Chithrani BD, Chan WCW. 2007. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7:1542–1550.
  • Chithrani BD, Ghazani AA, Chan WCW. 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6:662–668.
  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi M, Frangioni JV. 2007. Renal clearance of quantum dots. Nat Biotechnol. 25:1165–1170.
  • Chorley B, Ward W, Simmons SO, Vallanat B, Veronesi B. 2014. The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver. NeuroToxicology. 45:12–21.
  • Chou C-C, Hsiao H-Y, Hong Q-S, Chen C-H, Peng Y-W, Chen HW, Yang PC. 2008. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 8:437–445.
  • Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D. 2013. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ Sci Technol. 47:6288–6296.
  • Chowdhury I, Hou WC, Goodwin D, Henderson M, Zepp RG, Bouchard D. 2015a. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment. Water Res. 78:37–46.
  • Chowdhury I, Mansukhani ND, Guiney LM, Hersam MC, Bouchard D. 2015b. Aggregation and stability of reduced graphene oxide: complex roles of divalent cations, pH, and natural organic matter. Environ Sci Technol. 49:10886–10893.
  • Clift MJD, Raemy DO, Endes C, Ali Z, Lehmann AD, Brandenberger C, Petri-Fink A, Wick P, Parak WJ, Gehr P, et al. 2013. Can the Ames test provide an insight into nano-object mutagenicity? Investigating the interaction between nano-objects and bacteria. Nanotoxicology. 7:1373–1385.
  • Cohen J, Deloid G, Pyrgiotakis G, Demokritou P. 2013a. Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology. 7:417–431.
  • Cohen JM, Teeguarden JG, Demokritou P. 2014. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part Fibre Toxicol. 11:20–20.
  • Cohen Y, Rallo R, Liu R, Liu HH. 2013b. In silico analysis of nanomaterials: hazard and risk. Acc Chem Res. 46:802–812.
  • Coleman DC, Crossley DA, Hendrix PF. 2004. Fundamentals of soil ecology. New York: Elsevier Academic Press.
  • Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr., Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, et al. 2013. Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One. 8:e57189.
  • Costa PM, Fadeel B. 2016. Emerging systems biology approaches in nanotoxicology: towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicol Appl Pharmacol. 299:101–111.
  • Dale AL, Casman EA, Lowry GV, Lead JR, Viparelli E, Baalousha M. 2015. Modeling nanomaterial environmental fate in aquatic systems. Environ Sci Technol. 49:2587–2593.
  • Davda J, Labhasetwar V. 2002. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm. 233:51–59.
  • de Castro JA, Pereira BA, Tassi E, Pini R, Araujo ASF, Valadão ICP. 2012. Modeling the transport phenomena of TiO2 nanoparticles into Leachate of Municipal Waste Landfills. In: Salgado L, Filho FA, editors. Materials science forum. Switzerland: Trans Tech Publications; p. 1695–1700.
  • De Lorenzo AJD. 2008. The olfactory neuron and the blood-brain barrier. In: Ciba Foundation Symposium: internal secretions of the pancreas (Colloquia on Endocrinology). New York: John Wiley & Sons, Ltd.; p. 151–1 76.
  • DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, Wohlleben W, Philip Demokritou P. 2014. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun. 5:3514.
  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ. 1996. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 13:1838–1845.
  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. 1997. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res. 14:1568–1573.
  • Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan C, Pavlou S, Allen H. 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem. 10:1541–1583.
  • Dietz K-J, Herth S. 2011. Plant nanotoxicology. Trends Plant Sci. 16:582–589.
  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S. 2012. Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma. 173:19–27.
  • Dobrovolskaia MA, McNeil SE. 2007. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2:469–478.
  • Domínguez A, Suárez-Merino B, Goñi-de-Cerio F. 2014. Nanoparticles and blood-brain barrier: the key to central nervous system diseases. J Nanosci Nanotechnol. 14:766–779.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 7:5.
  • Donaldson K, Poland CA. 2013. Nanotoxicity: challenging the myth of nano-specific toxicity. Curr Opin Biotechnol. 24:724–734.
  • Donner E, Howard DL, Jonge MDd, Paterson D, Cheah MH, Naidu R, Lombi E. 2011. X-ray absorption and micro X-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids. Environ Sci Technol. 45:7249–7257.
  • Donner E, Scheckel K, Sekine R, Popelka-Filcoff RS, Bennett JW, Brunetti G, Naidu R, McGrath SP, Lombi E. 2015. Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing. Environ Pollut. 205:78–86.
  • Duan J, Yu Y, Li Y, Yu Y, Li Y, Zhou X, Huang P, Sun Z. 2013. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS One. 8:e62087.
  • Dwivedi AD, Dubey SP, Sillanpää M, Kwon Y-N, Lee C, Varma RS. 2015. Fate of engineered nanoparticles: implications in the environment. Coord Chem Rev. 287:64–78.
  • Eastlake A, Zumwalde R, Geraci C. 2016a. Can control banding be useful for the safe handling of nanomaterials? A systematic review. J Nanopart Res: Interdiscip Forum Nanoscale Sci Technol. 18:169.
  • Eastlake AC, Beaucham C, Martinez KF, Dahm MM, Sparks C, Hodson LL, Geraci CL. 2016b. Refinement of the nanoparticle emission assessment technique into the Nanomaterial Exposure Assessment Technique (NEAT 2.0). J Occup Environ Hygiene. 13:708–717.
  • El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol. 44:1260–1266.
  • Elder A, Vidyasagar S, DeLouise L. 2009. Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 1:434–450.
  • EPA. 2009. Targeted National Sewage Sludge Survey Sampling and Analysis Technical Report. Washington (DC): U.S. Environmental Protection Agency, Office of Water.
  • EPA. 2012. Water: Sewage Sludge (Biosolids): Frequently Asked Questions. U.S. Environmental Protection Agency.
  • EPA. 2017. Chemical Substances When Manufactured or Processed as Nanoscale Materials; TSCA Reporting and Recordkeeping Requirements ed. OoPPa Toxics. Washington (DC): Federal Register; p. 3641–3655.
  • Erdakos GB, Bhave PV, Pouliot GA, Simon H, Mathur R. 2014. Predicting the effects of nanoscale cerium additives in diesel fuel on regional-scale air quality. Environ Sci Technol. 48:12775–12782.
  • Essington ME. 2015. Soil and water chemistry: an integrative approach. 2nd ed. Boca Raton (FL): CRC Press, Taylor and Francis Group.
  • Evans DE, Ku BK, Birch ME, Dunn KH. 2010. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg. 54:514–531.
  • Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B. 2008. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol. 82.
  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. 2011. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int. 37:517–531.
  • Fako VE, Furgeson DY. 2009. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv Drug Deliv Rev. 61:478–486.
  • Farcal L, Torres Andón F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E, Mech A, Hartmann NB, Rasmussen K, Riego-Sintes J, et al. 2015. Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One. 2015;10:e0127174.
  • Federici G, Shaw BJ, Handy RD. 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol. 84:415–430.
  • Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Paul LP, Michael HF, Geoff SI, Alan WD, Shosaku K, et al. 2009. Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nano. 4:441–444.
  • Fleischer CC, Payne CK. 2014. Nanoparticle–cell interactions: molecular structure of the protein corona and cellular outcomes. Accounts Chem Res. 47:2651–2659.
  • Foldbjerg R, Dang DA, Autrup H. 2011. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 85:743–750.
  • Froggett SJ, Clancy SF, Boverhof DR, Canady RA. 2014. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol. 11:1–28.
  • Frohlich E. 2016. Cellular elimination of nanoparticles. Environ Toxicol Pharmacol. 46:90–94.
  • Frohlich E, Roblegg E. 2012. Models for oral uptake of nanoparticles in consumer products. Toxicology. 291:10–17.
  • Gantt B, Hoque S, Willis RD, Fahey KM, Delgado-Saborit JM, Harrison RM, Erdakos GB, Bhave PV, Zhang KM, Kovalcik K, Pye HO. 2014. Near-road modeling and measurement of cerium-containing particles generated by nanoparticle diesel fuel additive use. Environ Sci Technol. 48:10607–10613.
  • Gao H, Shi W, Freund LB. 2005. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA. 102:9469–9474.
  • García-Alonso J, Rodriguez-Sanchez N, Misra SK, Valsami-Jones E, Croteau M-N, Luoma SN, Rainbow PS. 2014. Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii. Sci Total Environ. 476–477:688–695.
  • Ge Y, Priester JH, Mortimer M, Chang CH, Ji Z, Schimel JP, Holden PA. 2016. Long-term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil. Environ Sci Technol. 50:3965–3974.
  • George R, Merten S, Wang TT, Kennedy P, Maitz P. 2014. In vivo analysis of dermal and systemic absorption of silver nanoparticles through healthy human skin. Australas J Dermatol. 55:185–190.
  • Gerloff K, Landesmann B, Worth A, Munn S, Palosaari T, Whelan M. 2017. The adverse outcome pathway approach in nanotoxicology. Comput Toxicol. 1:3–11.
  • Gitipour A, El Badawy A, Arambewela M, Miller B, Scheckel K, Elk M, Ryu H, Gomez-Alvarez V, Domingo JS, Thiel S, et al. 2013. The impact of silver nanoparticles on the composting of municipal solid waste. Environ Sci Technol. 47:14385–14393.
  • Godwin H, Nameth C, Avery D, Bergeson LL, Bernard D, Beryt E, Boyes W, Brown S, Clippinger AJ, Cohen Y, et al. 2015. Nanomaterial categorization for assessing risk potential to facilitate regulatory decision-making. ACS Nano. 9:3409–3417.
  • Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MT. 2015. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale. 7:2154–2198.
  • Gomes T, Pereira CG, Cardoso C, Pinheiro JP, Cancio I, Bebianno MJ. 2012. Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis. Aquat Toxicol. 118–119:72–79.
  • Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ. 2011. Effects of copper nanoparticles exposure in the Mussel Mytilus galloprovincialis. Environ Sci Technol. 45:9356–9362.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol. 43:9216–9222.
  • Gottschalk F, Sun T, Nowack B. 2013. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut. 181:287–300.
  • Grassian VH, Haes AJ, Mudunkotuwa IA, Demokritou P, Kane AB, Murphy CJ, Hutchinson JE, Issacs JA, Jun Y-S, Karn B, et al. 2016. NanoEHS: defining fundamental science needs: no easy feat when the simple itself is complex. Environ Sci: Nano. 3:15–27.
  • Grieger KD, Linkov I, Hansen SF, Baun A. 2012. Environmental risk analysis for nanomaterials: review and evaluation of frameworks. Nanotoxicology. 6:196–212.
  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS. 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci. 107:404–415.
  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS. 2007. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol. 41:8178–8186.
  • Guadagnini R, Halamoda Kenzaoui B, Walker L, Pojana G, Magdolenova Z, Bilanicova D, Saunders M, Juillerat-Jeanneret L, Marcomini A, Huk A, et al. 2015. Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology. 9:13–24.
  • Guan R, Kang T, Lu F, Zhang Z, Shen H, Liu M. 2012. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res Lett. 7:602.
  • Gunduz N, Ceylan H, Guler MO, Tekinay AB. 2017. Intracellular accumulation of gold nanoparticles leads to inhibition of macropinocytosis to reduce the endoplasmic reticulum stress. Sci Rep. 7:40493.
  • Guo X, Chen T. 2015. Chapter 7. Progress in genotoxicity evaluation of engineered nanomaterials. In: Soloneski S, Larramendy ML, editors. Nanomaterials: toxicity and risk assessment. Rijeka: Intech.
  • Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ. 2007. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol. 49:217–229.
  • Hall S, Bradley T, Moore JT, Kuykindall T, Minella L. 2009. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology. 3:91–97.
  • Handy R, Henry T, Scown T, Johnston B, Tyler C. 2008. Manufactured nanoparticles: their uptake and effects on fish – a mechanistic analysis. Ecotoxicology. 17:396–409.
  • Hansen S, Jensen K, Baun A. 2013. NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. J Nanopart Res. 16:1–25.
  • Hansen SF, Heggelund LR, Revilla Besora P, Mackevica A, Boldrin A, Baun A. 2016. Nanoproducts -what is actually available to European consumers? Environ Sci: Nano. 3:169–180.
  • Harper SL, Carriere JL, Miller JM, Hutchison JE, Maddux BL, Tanguay RL. 2011. Systematic evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. ACS Nano. 5.
  • He X, Zhang H, Ma Y, Bai W, Zhang Z, Lu K, Ding Y, Zhao Y, Chai Z. 2010. Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology. 21:285103.
  • Hendren CO, Lowry GV, Unrine JM, Wiesner MR. 2015. A functional assay-based strategy for nanomaterial risk forecasting. Sci Total Environ. 536:1029–1037.
  • Hendren CO, Lowry M, Grieger KD, Money ES, Johnston JM, Wiesner MR, Beaulieu SM. 2013. Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making. Environ Sci Technol. 47:1190–1205.
  • Hillyer JF, Albrecht RM. 2001. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci. 90:1927–1936.
  • Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, Teeguarden JG. 2010. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol. 7:36.
  • Holbrook RD, Murphy KE, Morrow JB, Cole KD. 2008. Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nano. 3:352–355.
  • Holden PA, Gardea-Torresdey JL, Klaessig F, Turco RF, Mortimer M, Hund-Rinke K, Cohen Hubal EA, Avery D, Barceló D, Behra R, et al. 2016. Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ Sci Technol. 50:6124–6145.
  • Holden PA, Nisbet RM, Lenihan HS, Miller RJ, Cherr GN, Schimel JP, Gardea-Torresdey JL. 2013. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc Chem Res. 46:813–822.
  • Holder AL, Vejerano EP, Zhou X, Marr LC. 2013. Nanomaterial disposal by incineration. Environ Sci Process Impacts. 15:1652–1664.
  • Hou W-C, Chowdhury I, Goodwin DG, Henderson WM, Fairbrother DH, Bouchard D, Zepp RG. 2015. Photochemical transformation of graphene oxide in sunlight. Environ Sci Technol. 49:3435–3443.
  • Hou W-C, Henderson WM, Chowdhury I, Goodwin DG Jr., Chang X, Martinf S, Fairbrotherd DH, Boucharde D, Zepp RG. 2016. The contribution of indirect photolysis to the degradation of graphene oxide in sunlight. Carbon. 110:426–437.
  • Hou WC, Stuart B, Howes R, Zepp RG. 2013. Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles. Environ Sci Technol. 47:7713–7721.
  • Hristozov D, Gottardo S, Semenzin E, Oomen A, Bos P, Peijnenburg W, van Tongeren M, Nowack B, Hunt N, Brunelli A, et al. 2016. Frameworks and tools for risk assessment of manufactured nanomaterials. Environ Int. 95:36–53.
  • Hu R, Gong X, Duan Y, Li N, Che Y, Cui Y, Zhou M, Liu C, Wang H, Hong F. 2010. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials. 31:8043–8050.
  • Huang S, Chueh PJ, Lin YW, Shih TS, Chuang SM. 2009. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol Appl Pharmacol. 241:182–194.
  • Huang YW, Wu C, Aronstam RS. 2010. Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials. 3:4842–4859.
  • Hull MS, Chaurand P, Rose J, Auffan M, Bottero J-Y, Jones JC, Schultz IR, Vikesland PJ. 2011. Filter-feeding bivalves store and biodeposit colloidally stable gold nanoparticles. Environ Sci Technol. 45:6592–6599.
  • Hund-Rinke K, Simon M. 2006. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids (8 pp). Environ Sci Pollut Res Int. 13:225–232.
  • Hunter RJ. 2001. Foundations of colloid science. Oxford (UK): Oxford University Press.
  • Huynh KA, Siska E, Heithmar E, Tadjiki S, Pergantis SA. 2016. Detection and quantification of silver nanoparticles at environmentally relevant concentrations using asymmetric flow field–flow fractionation online with single particle inductively coupled plasma mass spectrometry. Anal Chem. 88:4909–4916.
  • Hyung H, Fortner JD, Hughes JB, Kim J-H. 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol. 41:179–184.
  • Impellitteri CA, Harmon S, Silva RG, Miller BW, Scheckel KG, Luxtona TP, Schuppb D, Panguluri S. 2013. Transformation of silver nanoparticles in fresh, aged, and incinerated biosolids. Water Res. 47:3878–3886.
  • Isaacs KK, Glen WG, Egeghy P, Goldsmith M-R, Smith L, Vallero D, Brooks R, Grulke CM, Özkaynak H. 2014. SHEDS-HT: an integrated probabilistic exposure model for prioritizing exposures to chemicals with near-field and dietary sources. Environ Sci Technol. 48:12750–12759.
  • Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V, Kasemets K, Blinova I, Heinlaan M, Slaveykova V, Kahru A. 2013. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology. 8:57–71.
  • Jackson P, Vogel U, Wallin H, Hougaard KS. 2011. Prenatal exposure to carbon black (printex 90): effects on sexual development and neurofunction. Basic Clin Pharmacol Toxicol. 109:434–437.
  • Jimeno-Romero A, Berhanu D, Reip P, Oron M, Gilliland D, Valsami-Jones E, Cajaraville MP, Warley A, Marigómez I, Soto M. 2012. Down the rabbit hole: Subcellular localization and x-ray microanalysis of a set of metallic nanoparticles in mussels. Comp Biochem Physiol A: Mol Integr Physiol. 163:S23–S24.
  • Jin H, Heller DA, Sharma R, Strano MS. 2009. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano. 3:149–158.
  • Johnston H, Pojana G, Zuin S, Jacobsen NR, Moller P, Loft S, Semmler-Behnke M, McGuiness C, Balharry D, Marcomini A, et al. 2013. Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol. 43:1–20.
  • Joubert Y, Pan J-F, Buffet P-E, Pilet P, Gilliland D, Valsami-Jones E, Mouneyrac C, Amiard-Triquet C. 2013. Subcellular localization of gold nanoparticles in the estuarine bivalve Scrobicularia plana after exposure through the water. Gold Bull. 46:47–56.
  • Juch H, Nikitina L, Debbage P, Dohr G, Gauster M. 2013. Nanomaterial interference with early human placenta: sophisticated matter meets sophisticated tissues. Reprod Toxicol. 41:73–79.
  • Judy JD, Unrine JM, Bertsch PM. 2011. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol. 45:776–781.
  • Judy JD, Unrine JM, Rao W, Wirick S, Bertsch PM. 2012. Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol. 46:8467–8474.
  • Kádár E, Lowe D, Solé M, Fisher A, Jha A, Readman JW, Hutchinson TH. 2010. Uptake and biological responses to nano-Fe versus soluble FeCl3 in excised mussel gills. Anal Bioanal Chem. 396:657–666.
  • Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismerb J, Hagendorferc H, Elumelua M, Mueller E. 2013. Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. 47:3866–3877.
  • Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H. 2011. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol. 45:3902–3908.
  • Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov A, et al. 2010. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nano. 5:354–359.
  • Karmakar A, Zhang Q, Zhang Y. 2014. Neurotoxicity of nanoscale materials. J Food Drug Anal. 22:147–160.
  • Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, Fukushima S. 2015. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol. 13:53.
  • Keller A, McFerran S, Lazareva A, Suh S. 2013a. Global life cycle releases of engineered nanomaterials. J Nanopart Res. 15:1–17.
  • Keller AA, McFerran S, Lazareva A, Suh S. 2013b. Global life cycle releases of engineered nanomaterials. J Nanopart Res. 15:1692.
  • Kennedy AJ, Gunter JC, Chappell MA, Goss JD, Hull MS, Kirgan RA, Steevens JA. 2009. Influence of nanotube preparation in aquatic bioassays. Environ Toxicol Chem. 28:1930–1938.
  • Kim B, Murayama M, Colman BP, Hochella MF. 2012. Characterization and environmental implications of nano- and larger TiO2 particles in sewage sludge, and soils amended with sewage sludge. J Environ Monit. 14:1128–1136.
  • Kim B, Park C-S, Murayama M, Hochella MF. 2010a. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol. 44:7509–7514.
  • Kim JS, Sung JH, Choi BG, Ryu HY, Song KS, Shin JH, Lee JS, Hwang JH, Lee JH, Lee GH, et al. 2014. In vivo genotoxicity evaluation of lung cells from Fischer 344 rats following 28 days of inhalation exposure to MWCNTs, plus 28 days and 90 days post-exposure. Inhal Toxicol. 26:222–234.
  • Kim S, Choi I-H. 2012. Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages. Yonsei Med J. 53:654–657.
  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY. 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro. 23:1076–1084.
  • Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, et al. 2010b. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 7:20.
  • Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D, Roberts J, Sayre P, Shelton B, Sultan Y, et al. 2014. Release characteristics of selected carbon nanotube polymer composites. Carbon. 68:33–57.
  • Kiser MA, Westerhoff P, Benn T, Wang Y, Pérez-Rivera J, Hristovski K. 2009. Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol. 43:6757–6763.
  • Kitchin KT, Prasad RY, Wallace K. 2011. Oxidative stress studies of six TiO2 and two CeO2 nanomaterials: immuno-spin trapping results with DNA. Nanotoxicology. 5:546–556.
  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 27:1825–1851.
  • Klaunig JE, Wang Z, Pu X, Zhou S. 2011. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol. 254:86–99.
  • Kleber M, Johnson MG. 2010. Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. Adv Agronomy. 106:77–142.
  • Knight MR, Knight H. 2012. Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol. 195:737–751.
  • Knightes C. 2015. Simulating the fate and transport of nanomaterials in surface waters. In: Quantifying exposure to engineered nanomaterials from manufactured products: addressing environmental, health, and safety implications, consumer products safety commission. Washington, DC: National Nanotechnology Initiative.
  • Koelmans AA, Nowack B, Wiesner MR. 2009. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environ Pollut. 157:1110–1116.
  • Kraeuter JN, Castagna M. 2001. Biology of the hard clam. Amsterdam: Elsevier.
  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J. 2009. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm. 72:370–377.
  • Kuempel ED, Castranova V, Geraci CL, Schulte PA. 2012. Development of risk-based nanomaterial groups for occupational exposure control. J Nanopart Res. 14:1029.
  • Kumar A, Dhawan A. 2013. Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol. 87:1883–1900.
  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. 2011. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere. 83:1124–1132.
  • Kumar A, Shanker R, Alok D. 2015. Nanotoxicity: aquatic organisms and ecosystems. In: Reisner D, editor. Aquananotechnology: global prospects. London: CRC Press; p. 97–106.
  • Kumar V, Guleria P, Kumar V, Yadav SK. 2013. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ. 461–462:462–468.
  • Kwak JI, An Y-J. 2015. A review of the ecotoxicological effects of nanowires. Int J Environ Sci Technol. 12:1163–1172.
  • Labib S, Williams A, Yauk CL, Nikota JK, Wallin H, Vogel U, Halappanavar S. 2016. Nano-risk science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes. Part Fibre Toxicol. 13:1–17.
  • Landsiedel R, Fabian E, Ma-Hock L, Wohlleben W, Wiench K, Oesch F. 2012. Toxico-/biokinetics of nanomaterials. Arch Toxicol. 86:1021–1060.
  • Larese FF, D'Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G. 2009. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology. 255:33–37.
  • Larese Filon F, Bello D, Cherrie JW, Sleeuwenhoek A, Spaan S, Brouwer DH. 2016. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I. Factors affecting skin absorption. Int J Hyg Environ Health. 219:536–544.
  • Larsen ST, Jackson P, Poulsen SS, Levin M, Jensen KA, Wallin H, Nielsen GD, Koponen IK. 2016. Airway irritation, inflammation, and toxicity in mice following inhalation of metal oxide nanoparticles. Nanotoxicology. 10:1254–1262.
  • Lee Y, Kim P, Yoon J, Lee B, Choi K, Kil KH, Park K. 2012. Serum kinetics, distribution and excretion of silver in rabbits following 28 days after a single intravenous injection of silver nanoparticles. Nanotoxicology. 7:1120–1130.
  • Li M, Panagi Z, Avgoustakis K, Reineke J. 2012. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content. Int J Nanomedicine. 7:1345–1356.
  • Li N, Xia T, Nel AE. 2008. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med. 44:1689–1699.
  • Liang G, Pu Y, Yin L, Liu R, Ye B, Su Y, Li Y. 2009. Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. J Toxicol Environ Health Part A. 72:740–745.
  • Liao H-Y, Chung Y-T, Lai C-H, Wang S-L, Chiang H-C, Li LA, Tsou TC, Li WF, Lee HL, Wu WT, et al. 2014. Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials. Nanotoxicology. 8:100–110.
  • Lim JH, Kim SH, Shin IS, Park NH, Moon C, Kang SS, Kim SH, Park SC, Kim JC. 2011. Maternal exposure to multi-wall carbon nanotubes does not induce embryo-fetal developmental toxicity in rats. Birth Defects Res Part B Dev Reprod Toxicol. 92:69–76.
  • Lin Z, Monteiro-Riviere NA, Riviere JE. 2015. Pharmacokinetics of metallic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 7:189–217.
  • Liu Q, Zhao N, Yamaguch-Shinozaki K, Shinozaki K. 2000. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chin Sci Bull. 45:970–975.
  • Liu W, Rose J, Plantevin S, Auffan M, Bottero J-Y, Vidaud C. 2013. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale. 5:1658–1668.
  • Liu Z, Liu Y, Peng D. 2015. Carboxylation of multiwalled carbon nanotube attenuated the cytotoxicity by limiting the oxidative stress initiated cell membrane integrity damage, cell cycle arrestment, and death receptor mediated apoptotic pathway. J Biomed Mater Res Part A. 103:2770–2777.
  • Lombi E, Donner E, Taheri S, Tavakkoli E, Jämting ÅK, McClure S, Naidu R, Miller BW, Scheckel KG, Vasilev K. 2013. Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut. 176:193–197.
  • Lombi E, Donner E, Tavakkoli E, Turney TW, Naidu R, Miller BW, Scheckel KG. 2012. Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ Sci Technol. 46:9089–9096.
  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. 2010. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem. 58:3689–3693.
  • Lorenz C, Hagendorfer H, von Goetz N, Kaegi R, Gehrig R, Ulrich A, Scheringer M, Hungerbühler K. 2011. Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J Nanopart Res. 13:3377–3391.
  • Lowry GV, Gregory KB, Apte SC, Lead JR. 2012. Transformations of nanomaterials in the environment. Environ Sci Technol. 46:6893–6899.
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci. 105:14265–14270.
  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA. 2007. The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci. 134–135:167–174.
  • Ma H, Diamond SA. 2013. Phototoxicity of TiO2 nanoparticles to zebrafish (Danio rerio) is dependent on life stage. Environ Toxicol Chem. 32:2139–2143.
  • Ma R, Stegemeier J, Levard C, Dale JG, Noack CW, Yang T, Brown G, Lowry GV. 2014. Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide. Environ Sci: Nano. 1:347–357.
  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A. 2010. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ. 408:3053–3061.
  • Madl AK, Plummer LE, Carosino C, Pinkerton KE. 2014. Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol. 76:447–465.
  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. 2014. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 8:233–278.
  • Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S. 2011. Effect of nanoparticles on the cell life cycle. Chem Rev. 111:3407–3432.
  • Majumdar S, Trujillo-Reyes J, Hernandez-Viezcas JA, White JC, Peralta-Videa JR, Gardea-Torresdey JL. 2016. Cerium biomagnification in a terrestrial food chain: influence of particle size and growth stage. Environ Sci Technol. 50:6782–6792.
  • Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, Kirpichtchikova T. 2008. Formation of metallic copper nanoparticles at the soil–root interface. Environ Sci Technol. 42:1766–1772.
  • Manke A, Wang L, Rojanasakul Y. 2013. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int. 2013:942916.
  • Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S. 2011. Nanoparticles: molecular targets and cell signalling. Arch Toxicol. 85:733–741.
  • Marisa I, Marin MG, Caicci F, Franceschinis E, Martucci A, Matozzo V. 2015. In vitro exposure of haemocytes of the clam Ruditapes philippinarum to titanium dioxide (TiO2) nanoparticles: nanoparticle characterisation, effects on phagocytic activity and internalisation of nanoparticles into haemocytes. Mar Environ Res. 103:11–17.
  • Maynard AD. 2014. Is novelty overrated? Nat Nanotechnol. 9:409–410.
  • McClure J, Lathrop D, Jacob M. 2013. After West disaster, News study finds U.S. chemical safety data about 90 percent wrong. The Dallas Morning News. Aug 24, 2013.
  • Meier C, Voegelin A, Pradas del Real A, Sarret G, Mueller CR, Kaegi R. 2016. Transformation of silver nanoparticles in sewage sludge during incineration. Environ Sci Technol. 50:3503–3510.
  • Mercer JR, Cheng KK, Figg N, Gorenne I, Mahmoudi M, Griffin J, Vidal-Puig A, Logan A, Murphy MP, Bennett M. 2010. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res. 107:1021–1031.
  • Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, Castranova V, Porter DW. 2013. Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol. 10:38.
  • Minetto D, Libralato G, Volpi Ghirardini A. 2014. Ecotoxicity of engineered TiO2 nanoparticles to saltwater organisms: an overview. Environ Int. 66:18–27.
  • MINTEQ V. 2013. [Cited 2017 Feb 15]. Available from: https://vminteq.lwr.kth.se/
  • Mitchell LA, Lauer FT, Burchiel SW, McDonald JD. 2009. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nano. 4:451–456.
  • Mitrano DM, Motellier S, Clavaguera S, Nowack B. 2015. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ Int. 77:132–147.
  • Miura K, Furumoto T. 2013. Cold signaling and cold response in plants. Int J Mol Sci. 14:5312–5337.
  • Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K. 2007. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med. 64:609–615.
  • Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE. 2011. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci. 123:264–280.
  • Morimoto Y, Horie M, Kobayashi N, Shinohara N, Shimada M. 2013. Inhalation toxicity assessment of carbon-based nanoparticles. Acc Chem Res. 46:770–781.
  • Mueller NC, Nowack B. 2008. Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol. 42:4447–4453.
  • Muller EB, Lin S, Nisbet RM. 2015. Quantitative adverse outcome pathway analysis of hatching in zebrafish with CuO nanoparticles. Environ Sci Technol. 49:11817–11824.
  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D. 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 207:221–231.
  • Murphy CJ, Vartanian AM, Geiger FM, Hamers RJ, Pedersen J, Cui Q, Haynes CL, Carlson EE, Hernandez R, Klaper RD, et al. 2015. Biological responses to engineered nanomaterials: needs for the next decade. ACS Cent Sci. 1:117–123.
  • Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA. 2009. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology. 257:161–171.
  • Mwilu SK, El Badawy AM, Bradham K, Nelson C, Thomas D, Scheckel KG, Tolaymat T, Ma L, Rogers KR. 2013. Changes in silver nanoparticles exposed to human synthetic stomach fluid: effects of particle size and surface chemistry. Sci Total Environ. 447:90–98.
  • Nabi IR, Le PU. 2003. Caveolae/raft-dependent endocytosis. J Cell Biol. 161:673–677.
  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L. 2008a. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17:372–386.
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R. 2008b. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol. 42:8959–8964.
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science. 311:622–627.
  • Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. 2013. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high throughput screening. Acc Chem Res. 46:607–621.
  • Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 8:543–557.
  • Nowack B, Bucheli TD. 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 150:5–22.
  • Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintzf M, Zeppg R, Brouwer D. 2013. Potential release scenarios for carbon nanotubes used in composites. Environ Int. 59:1–11.
  • NRC. 1983. Risk assessment in the federal government: managing the process. Washington (DC): The National Academies Press. 191 p.
  • NRC. 2007. Toxicity testing in the 21st century: a vision and a strategy. Washington, DC: The National Academies Press. 216 p.
  • NRC. 2012. A research strategy for environmental, health, and safety aspects of engineered nanomaterials. Washington (DC): The National Academies Press. 212 p.
  • NRC. 2013. Research progress on environmental, health, and safety aspects of engineered nanomaterials. Washington (DC): The National Academies Press. 162 p.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 113:823–839.
  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. 2004. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 16:437–445.
  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C. 2002. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health Part A. 65:1531–1543.
  • OECD OfEC-oaD. 2000. Guidance document on aquatic toxicity testing of difficult substances and mixtures. ed. Paris: OfEC-oa Development.
  • OECD OfEC-oaD. 2004. Test No. 218: sediment water chironomid toxicity using spiked sediment. ed. Paris: OfEC-oa Development.
  • OECD OfEC-oaD. 2016. Adverse outcome pathways, molecular screening and toxicogenomics. Organisation for Economic Co-operation and Development.
  • Ogawara K-I, Yoshida M, Furumoto K, Takakura Y, Hashida M, Higaki K, Kimura T. 1999. Uptake by hepatocytes and biliary excretion of intravenously administered polystyrene microspheres in rats. J Drug Target. 7:213–221.
  • Oh N, Park J-H. 2014. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 9:51–63.
  • Oksel C, Ma CY, Wang XZ. 2015. Current situation on the availability of nanostructure – biological activity data. SAR QSAR Environ Res. 26:79–94.
  • Oomen AG, Bos PMJ, Fernandes TF, Hund-Rinke K, Boraschi D, Byrne HJ, Aschberger K, Gottardo S, von der Kammer F, Kühnel D, et al. 2014. Concern-driven integrated approaches to nanomaterial testing and assessment – report of the NanoSafety Cluster Working Group 10. Nanotoxicology. 8:334–348.
  • Pacurari M, Castranova V, Vallyathan V. 2010. Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J Toxicol Environ Health A. 73:378–395.
  • Pan J-F, Buffet P-E, Poirier L, Amiard-Triquet C, Gilliland D, Joubert Y, Pilet P, Guibbolini M, Risso de Faverney C, Roméo M, et al. 2012. Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: the Tellinid clam Scrobicularia plana. Environ Poll. 168:37–43.
  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K. 2010. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol. 30:162–168.
  • Park S, Woodhall J, Ma G, Veinot JGC, Cresser MS, Boxall ABA. 2014. Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment? Nanotoxicology. 8:583–592.
  • Parks AN, Chandler GT, Ho KT, Burgess RM, Ferguson PL. 2015. Environmental biodegradability of [14C] single-walled carbon nanotubes by Trametes versicolor and natural microbial cultures found in New Bedford Harbor sediment and aerated wastewater treatment plant sludge. Environ Toxicol Chem. 34:247–251.
  • Parks AN, Chandler GT, Portis LM, Sullivan JC, Perron MM, Cantwell MG, Burgess RM, Ho KT, Ferguson PL. 2014. Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments. Nanotoxicology. 8:111–117.
  • Part F, Zecha G, Causon T, Sinner E-K, Huber-Humer M. 2015. Current limitations and challenges in nanowaste detection, characterisation and monitoring. Waste Manag. 43:407–420.
  • PCAST. 2014. Report to the President and Congress on the Fifth Assessment of the National Nanotechnology Initiative. Washington (DC): PsCoAoSa Technology.
  • Pearson RM, Juettner V, Hong S. 2014. Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery. Front Chem. 2:108.
  • Petersen EJ, Diamond SA, Kennedy AJ, Goss GG, Ho K, Lead J, Hanna SK, Hartmann NB, Hund-Rinke K, Mader B, et al. 2015. Adapting OECD aquatic toxicity tests for use with manufactured nanomaterials: key issues and consensus recommendations. Environ Sci Technol. 49:9532–9547.
  • Petersen EJ, Nelson BC. 2010. Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem. 398:613–650.
  • Petersen EJ, Zhang L, Mattison NT, O’Carroll DM, Whelton AJ, Uddin N, Nguyen T, Huang Q, Henry TB, Holbrook RD, Chen KL. 2011. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol. 45:9837–9856.
  • Pflucker F, Wendel V, Hohenberg H, Gartner E, Will T, Pfeiffer S, Wepf R, Gers-Barlag H. 2001. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol. 14(Suppl 1):92–97.
  • Pietroiusti A, Campagnolo L, Fadeel B. 2013. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small. 9:1557–1572.
  • Pietroiusti A, Magrini A. 2014. Engineered nanoparticles at the workplace: current knowledge about workers’ risk. Occup Med. 64:319–330.
  • Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, Camaioni A, Magrini A, Siracusa G, Bergamaschi A, et al. 2011. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano. 5:4624–4633.
  • Pilou M, Vaquero-Moralejo C, Jaen M, Lopez D, Ipina Pena J, Neofytou P, Housiadas C. 2016. Modeling of occupational exposure to accidentally released manufactured nanomaterials in a production facility and calculation of internal doses by inhalation. Int J Occup Environ Health. 22:249–258.
  • Platten WE III, Sylvest N, Warren C, Arambewela M, Harmon S, Bradham K, Rogers K, Thomas T, Luxton TP. 2016. Estimating dermal transfer of copper particles from the surfaces of pressure-treated lumber and implications for exposure. Sci Total Environ. 548–549:441–449.
  • Powers CM, Grieger K, Meacham CA, Gooding ML, Gift JS, Lehmann GM, Hendren CO, Davis JM, Burgoon L. 2016. Applying comprehensive environmental assessment to research planning for multiwalled carbon nanotubes: refinements to inform future stakeholder engagement. Integr Environ Assess Manag. 12:96–108.
  • Praetorius A, Scheringer M, Hungerbühler K. 2012. Development of environmental fate models for engineered nanoparticles—a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol. 46:6705–6713.
  • Prasad RY, Simmons SO, Killius MG, Zucker RM, Kligerman AD, Blackman CF, Fry RC, Demarini DM. 2014. Cellular interactions and biological responses to titanium dioxide nanoparticles in HepG2 and BEAS-2B cells: role of cell culture media. Environ Mol Mutagen. 55:336–342.
  • Prasad RY, Wallace K, Daniel KM, Tennant AH, Zucker RM, Strickland J, Dreher K, Kligerman AD, Blackman CF, Demarini DM. 2013. Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS Nano. 7:1929–1942.
  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, et al. 2012. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci U S A. 109:E2451–E2456.
  • Project on Emerging Nanotechnologies P. 2013. Consumer products inventory. Virginia: Wilson Center, Virginia Tech.
  • Pu Y, Tang F, Adam PM, Laratte B, Ionescu RE. 2016. Fate and characterization factors of nanoparticles in seventeen subcontinental freshwaters: a case study on copper nanoparticles. Environ. Sci. Technol. 50:9370–9379.
  • Quadros ME, Marr LC. 2011. Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ Sci Technol. 45:10713–10719.
  • Quadros ME, Pierson R, Tulve NS, Willis R, Rogers K, Thomas T, Marr L. 2013. Release of silver from nanotechnology-based consumer products for children. Environ Sci Technol. 47:8894–8901.
  • Quik JTK, de Klein JJM, Koelmans AA. 2015. Spatially explicit fate modelling of nanomaterials in natural waters. Water Res. 80:200–208.
  • Radhika RSR, Ganesh KV, Stanley AL, Inbakandan D. 2010. Studies on the toxicological effects of engineered nanoparticles in environment – a review. Int J Appl Bioeng. 4:44–53.
  • RCC-NI. 2014. Work Element 3: Risk Assessment/Risk Management, Regulatory Cooperation Council Nanotechnology Initiative
  • Rico CM, Johnson MG, Marcus MA, Andersen CP. 2017. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure. Environ Sci: Nano. 4:700–711.
  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 59:3485–3498.
  • Ritz S, Schöttler S, Kotman N, Baier G, Musyanovych A, Kuharev J, Landfester K, Schild H, Jahn O, Tenzer S, et al. 2015. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules. 16:1311–1321.
  • Riviere JE. 2009. Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots. WIREs Nanmed Nanobiotechnol. 1:26–34.
  • Roco MC. 1999. Nanoparticles and nanotechnology research. J Nanopart Res. 1:1–6.
  • Rodrigues DF, Jaisi DP, Elimelech M. 2013. Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol. 47:625–633.
  • Rodriguez-Yañez Y, Muñoz B, Albores A. 2013. Mechanisms of toxicity by carbon nanotubes. Toxicol Mech Methods. 23:178–195.
  • Rogers KR, Bradham K, Tolaymat T, Thomas DJ, Hartmann T, Ma L, Williams A. 2012. Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid. Sci Total Environ. 420:334–339.
  • Rosenbaum R, Bachmann T, Gold L, Huijbregts MJ, Jolliet O, Juraske R, Koehler A, Larsen HF, Macleod M, Margni M, et al. 2008. USEtox: the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess. 13:532–546.
  • Royce SG, Mukherjee D, Cai T, Xu SS, Alexander JA, Mi Z, Calderon L, Mainelis G, Lee K, Lioy PJ, et al. 2014. Modeling population exposures to silver nanoparticles present in consumer products. J Nanopart Res. 16:1–25.
  • Sadeghi L, Yousefi Babadi V, Espanani HR. 2015. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratisl Lek Listy. 116:373–378.
  • Sakhtianchi R, Minchin RF, Lee K-B, Alkilany AM, Serpooshan V, Mahmoudi M. 2013. Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interface Sci. 201–202:18–29.
  • Saleh NB, Pfefferle LD, Elimelech M. 2008. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ Sci Technol. 42:7963–7969.
  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskienė V, Halamic J, et al. 2005. Geochemical Atlas of Europe. Part 1: Background Information, Methodology and Maps. Espoo, Finland: Geological Survey of Finland.
  • Sanders K, Degn LL, Mundy WR, Zucker RM, Dreher K, Zhao B, Roberts JE, Boyes WK. 2012. In vitro phototoxicity and hazard identification of nano-scale titanium dioxide. Toxicol Appl Pharmacol. 258:226–236.
  • Santiago-Rodríguez L, Griggs JL, Bradham KD, Nelson C, Luxton T, Platten WE, Rogers KR. 2015. Assessment of the bioaccessibility of micronized copper wood in synthetic stomach fluid. Environ Nanotechnol Monit Manag. 4:85–92.
  • Saunders M. 2009. Transplacental transport of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 1:671–684.
  • Sayre LM, Perry G, Smith MA. 2008. Oxidative stress and neurotoxicity. Chem Res Toxicol. 21:172–188.
  • Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schäffler M, Schmid G, Simon U, Kreyling WG. 2012. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology. 6:36–46.
  • Schulte PA, Geraci CL, Murashov V, Kuempel ED, Zumwalde RD, Castranova V, Hoover MD, Hodson L, Martinez KF. 2014. Occupational safety and health criteria for responsible development of nanotechnology. J Nanopart Res. 16:2.
  • Sekine R, Brunetti G, Donner E, Khaksar M, Vasilev K, Jämting ÅK, Scheckel KG, Kappen P, Zhang H, Lombi E. 2015. Speciation and lability of Ag-, AgCl-, and Ag2S-nanoparticles in soil determined by X-ray absorption spectroscopy and diffusive gradients in thin films. Environ Sci Technol. 49:897–905.
  • Sekine R, Khaksar M, Brunetti G, Donner E, Scheckel KG, Lombi E, Vasilev K. 2013. Surface immobilization of engineered nanomaterials for in situ study of their environmental transformations and fate. Environ Sci Technol. 47:9308–9316.
  • Settimio L, McLaughlin MJ, Kirby JK, Langdon KA. 2014. A method to determine silver partitioning and lability in soils. Environ Chem. 11:63–71.
  • Shandilya N, Le Bihan O, Bressot C, Morgeneyer M. 2015. Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather. Environ Sci Technol. 49:2163–2170.
  • Shannahan JH, Podila R, Aldossari AA, Emerson H, Powell BA, Ke PC, Rao AM, Brown JM. 2015. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci. 143:136–146.
  • Shaw BJ, Handy RD. 2011. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int. 37:1083–1097.
  • Shen C, James SA, de Jonge MD, Turney TW, Wright PF, Feltis BN. 2013. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci. 120–130.
  • Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, Dhawan A. 2013. TiO(2) nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology. 7:48–60.
  • Shukla RK, Kumar A, Pandey AK, Singh SS, Dhawan A. 2011. Titanium dioxide nanoparticles induce oxidative stress-mediated apoptosis in human keratinocyte cells. J Biomed Nanotechnol. 7:100–101.
  • Simonin M, Richaume A. 2015. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res Int. 22:13710–13723.
  • Singh RP, Ramarao P. 2012. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett. 213:249–259.
  • Skalska J, Dabrowska-Bouta B, Struzynska L. 2016. Oxidative stress in rat brain but not in liver following oral administration of a low dose of nanoparticulate silver. Food Chem Toxicol. 97:307–315.
  • Snow SJ, McGee J, Miller DB, Bass V, Schladweiler MC, Thomas RF, Krantz T, King C, Ledbetter AD, Richards J, et al. 2014. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicol Sci. 142:403–417.
  • Soenen SJ, Parak WJ, Rejman J, Manshian B. 2015. (Intra)Cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev. 115:2109–2135.
  • Som C, Nowack B, Krug HF, Wick P. 2012. Toward the development of decision supporting tools that can be used for safe production and use of nanomaterials. Acc Chem Res. 46:863–872.
  • Sotiriou GA, Singh D, Zhang F, Chalbot M-CG, Spielman-Sun E, Hoering L, Kavouras IG, Lowry GV, Wohlleben W, Demokritou P. 2016. Thermal decomposition of nano-enabled thermoplastics: possible environmental health and safety implications. J Hazard Mater. 305:87–95.
  • Stapleton PA, Nurkiewicz TR. 2014. Vascular distribution of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 6:338–348.
  • Stevenson FJ, Cole MA. 1999. Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. 2nd ed. New York: John Wiley and Sons, Inc.
  • Stone V, Pozzi-Mucelli S, Tran L, Aschberger K, Sabella S, Vogel U, Poland C, Balharry D, Fernandes T, Gottardo S, et al. 2014. ITS-NANO-prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part Fibre Toxicol. 11:9.
  • Sun TY, Conroy G, Donner E, Hungerbuhler K, Lombi E, Nowack B. 2015. Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach. Environ Sci: Nano. 2:340–351.
  • Sun TY, Gottschalk F, Hungerbühler K, Nowack B. 2014. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut. 185:69–76.
  • Suzui M, Futakuchi M, Fukamachi K, Numano T, Abdelgied M, Takahashi S, Ohnishi M, Omori T, Tsuruoka S, Hirose A, et al. 2016. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Sci. 107:924–935.
  • Takahashi S, Matsuoka O. 1981. Cross placental transfer of 198Au-colloid in near term rats. J Radiat Res. 22:242–249.
  • Tamai I, Tsuji A. 2000. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci. 89:1371–1388.
  • Tantra R, Oksel C, Puzyn T, Wang J, Robinson KN, Wang XZ, Ma CY, Wilkins T. 2014. Nano(Q)SAR: challenges, pitfalls and perspectives. Nanotoxicology. 9:636–642.
  • Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. 2007. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci. 95:300–312.
  • Thai S-F, Wallace KA, Jones CP, Ren H, Castellon BT, Crooks J, Grulke EA, Kitchin KT. 2015. Differential genomic effects on signaling pathways by two different CeO2 nanoparticles in HepG2 cells. J Nanosci Nanotechnol. 15:9925–9937.
  • Thalmann B, Voegelin A, Sinnet B, Morgenroth E, Kaegi R. 2014. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. Environ Sci Technol. 48:4885–4892.
  • Thomas RS, Philbert MA, Auerbach SS, Wetmore BA, Devito MJ, Cote I, Rowlands JC, Whelan MP, Hays SM, Andersen ME, et al. 2013. Incorporating new technologies into toxicity testing and risk assessment: moving from 21st century vision to a data-driven framework. Toxicol Sci. 136:4–18.
  • Thomas T, Bahadori T, Savage N, Thomas K. 2009. Moving toward exposure and risk evaluation of nanomaterials: challenges and future directions. Nanomed Nanobiotechnol. 1:426–433.
  • Thompson D, Chen S-C, Wang J, Pui DY. 2015. Aerosol emission monitoring and assessment of potential exposure to multi-walled carbon nanotubes in the manufacture of polymer nanocomposites. Ann Occup Hyg. 49:1135–1151.
  • Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL. 2003. Multifunctional gold nanoparticle–peptide complexes for nuclear targeting. J Am Chem Soc. 125:4700–4701.
  • Tolaymat T, El Badawy A, Sequeira R, Genaidy A. 2015. A system-of-systems approach as a broad and integrated paradigm for sustainable engineered nanomaterials. Sci Total Environ. 511:595–607.
  • Tourinho PS, van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S. 2012. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem. 31:1679–1692.
  • Treuel L, Brandholt S, Maffre P, Wiegele S, Shang L, Nienhaus GU. 2014. Impact of protein modification on the protein corona on nanoparticles and nanoparticle–cell interactions. ACS Nano. 8:503–513.
  • Treuel L, Jiang X, Nienhaus GU. 2013. New views on cellular uptake and trafficking of manufactured nanoparticles. J R Soc Interface. 10:20120939.
  • Trevisan R, Delapedra G, Mello DF, Arl M, Schmidt ÉC, Meder F, Monopoli M, Cargnin-Ferreira E, Bouzon ZL, Fisher AS, et al. 2014. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquat Toxicol. 153:27–38.
  • Tulve NS, Stefaniak AB, Vance ME, Rogers K, Mwilu S, LeBouf RF, Schwegler-Berry D, Willis R, Thomas TA, Marr LC, et al. 2015. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures. Int J Hyg Environ Health. 218:345–357.
  • Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR. 2015. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. Environ Toxicol Chem. 34:70–83.
  • Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR. 2017. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis. Environ Toxicol Chem. 36:71–82.
  • U.S. 1999. PART 503: standards for the use or disposal of sewage sludge. In: Code of Federal Regulations: Title 40. UEP Agency, US Government Publishing Office.
  • Unfried K, Sydlik U, Bierhals K, Weissenberg A, Abel J. 2008. Carbon nanoparticle-induced lung epithelial cell proliferation is mediated by receptor-dependent Akt activation. Am J Physiol./Lung Cell Mol Physiol. 294:L358–LL67.
  • Uskokovic V. 2013. Entering the era of nanoscience: time to be so small. J Biomed Nanotechnol. 9:1441–1470.
  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS. 2015. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 6:1769–1780.
  • Velzeboer I, Quik JTK, van de Meent D, Koelmans AA. 2014. Rapid settling of nanoparticles due to heteroaggregation with suspended sediment. Environ Toxicol Chem. 33:1766–1773.
  • Verma A, Stellacci F. 2010. Effect of surface properties on nanoparticle–cell interactions. Small. 6:12–21.
  • Vietti G, Lison D, van den Brule S. 2016. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). Part Fibre Toxicol. 13:11.
  • Walczak AP, Fokkink R, Peters R, Tromp P, Herrera Rivera ZE, Rietjens IM, Hendriksen PJ, Bouwmeester H. 2013. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology. 7:1198–1210.
  • Walczak AP, Kramer E, Hendriksen PJ, Helsdingen R, van der Zande M, Rietjens IM, Bouwmeester H. 2015. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model. Nanotoxicology. 9:886–894.
  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. 2012. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 134:2139–2147.
  • Walters CR, Pool EJ, Somerset VS. 2014. Ecotoxicity of silver nanomaterials in the aquatic environment: a review of literature and gaps in nano-toxicological research. J Environ Sci Health A Tox Hazard Subst Environ Eng. 49:1588–1601.
  • Wang H, Burgess RM, Cantwell MG, Portis LM, Perron MM, Wu F, Ho KT. 2014a. Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: role of salinity and dissolved organic carbon. Environ Toxicol Chem. 33:1023–1029.
  • Wang H, Ho KT, Scheckel KG, Wu F, Cantwell MG, Katz DR, Horowitz DB, Boothman WS, Burgess RM. 2014b. Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms. Environ Sci Technol. 48:13711–13717.
  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, et al. 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett. 168:176–185.
  • Wang Y, Wu Q, Sui K, Chen X-X, Fang J, Hu X, Wu M, Liu Y. 2013. A quantitative study of exocytosis of titanium dioxide nanoparticles from neural stem cells. Nanoscale. 5:4737–4743.
  • Wehmas LC, Anders C, Chess J, Punnoose A, Pereira CB, Greenwood JA, Tanguay RL. 2015. Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep. 2:702–715.
  • Werlin R, Priester JH, Mielke RE, Kramer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA, et al. 2011. Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol. 6:65–71.
  • West GH, Lippy BE, Cooper MR, Marsick D, Burrelli LG, Griffin KN, Segrave AM. 2016. Toward responsible development and effective risk management of nano-enabled products in the U.S. construction industry. J Nanopart Res. 18:49.
  • WHO-IARC. 2010. Titanium dioxide. In: IARC monographs on the evaluation of carcinogenic risks to humans. Lyon (France): International Agency for Research on Cancer; p. 193–276.
  • Wiecinski PN, Metz KM, Mangham AN, Jacobson KH, Hamers RJ, Pedersen JA. 2009. Gastrointestinal biodurability of engineered nanoparticles: development of an in vitro assay. Nanotoxicology. 3:202–214.
  • Wiesner MR, Lowry GV, Casman E, Bertsch PM, Matson CW, Di Giulio RT, Liu J, Hochella MF. 2011. Meditations on the ubiquity and mutability of nano-sized materials in the environment. ACS Nano. 5:8466–8470.
  • Woodruff RS, Li Y, Yan J, Bishop M, Jones MY, Watanabe F, Biris AS, Rice P, Zhou T, Chen T, et al. 2012. Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay. J Appl Toxicol. 32:934–943.
  • Xie H, Mason MM, Wise JP, Sr. 2011. Genotoxicity of metal nanoparticles. Rev Environ Health. 26:251–268.
  • Xin L, Wang J, Wu Y, Guo S, Tong J. 2015. Increased oxidative stress and activated heat shock proteins in human cell lines by silver nanoparticles. Hum Exp Toxicol. 34:315–323.
  • Xu J, Alexander DB, Futakuchi M, Numano T, Fukamachi K, Suzui M, Omori T, Kanno J, Hirose A, Tsuda H. 2014. Size-and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci. 105:763–769.
  • Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, Yoshida T, Ogura T, Nabeshi H, Nagano K, et al. 2011. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 6:321–328.
  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res. 110:179–190.
  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng L, Hong F, Yang P. 2007. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res. 119:77–88.
  • Yang Y, Westerhoff P. 2014. Presence in, and release of, nanomaterials from consumer products in nanomaterial. In: Capco DG, Chen Y, editors. Netherlands: Springer; p. 1–17.
  • Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, Wang C. 2010. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 6:427–441.
  • Yokel RA, Au TC, MacPhail R, Hardas SS, Butterfield DA, Sultana R, Goodman M, Tseng MT, Dan M, Haghnazar H, et al. 2012. Distribution, elimination, and biopersistence to 90 days of a systemically introduced 30 nm ceria-engineered nanomaterial in rats. Toxicol Sci. 127:256–268.
  • Zartarian V, Bahadori T, McKone T. 2004. Adoption of an official ISEA glossary. J Expo Anal Environ Epidemiol. 15:1–5.
  • Zeni O, Sannino A, Romeo S, Micciulla F, Bellucci S, Scarfi MR. 2015. Growth inhibition, cell-cycle alteration and apoptosis in stimulated human peripheral blood lymphocytes by multiwalled carbon nanotube buckypaper. Nanomedicine (Lond). 10:351–360.
  • Zhang Y, Yan B. 2012. Cell cycle regulation by carboxylated multiwalled carbon nanotubes through p53-independent induction of p21 under the control of the BMP signaling pathway. Chem Resn Toxicol. 25:1212–1221.
  • Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. 2011. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 7:1322–1337.
  • Zheng L, Hong F, Lu S, Liu C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res. 104:83–91.
  • Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y. 2012. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res. 46:622–631.
  • Zhu M, Wang H, Keller AA, Wang T, Li F. 2014. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Sci Total Environ. 487:375–380.
  • Zhu Z-J, Carboni R, Quercio MJ, Yan B, Miranda OR, et al. 2010. Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish. Small. 6:2261–2265.
  • Zucker RM, Daniel KM, Massaro EJ, Karafas SJ, Degn LL, Boyes WK. 2013. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence. Cytometry A. 83:962–972.
  • Zucker RM, Massaro EJ, Sanders KM, Degn LL, Boyes WK. 2010. Detection of TiO2 nanoparticles in cells by flow cytometry. Cytometry A. 77:677–685.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.