222
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in electrochemical and optical sensing of the organophosphate chlorpyrifos: a review

, , & ORCID Icon
Pages 431-448 | Received 02 Jul 2022, Accepted 05 Sep 2022, Published online: 30 Sep 2022

References

  • Al-Badrany YMA, Mohammad FK. 2007. Effects of acute and repeated oral exposure to the organophosphate insecticide chlorpyrifos on open-field activity in chicks. Toxicol Lett. 174(1–3):110–116.
  • Arduini F, Amine A, Moscone D, Palleschi G. 2010. Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta. 170(3–4):193–214.
  • Azab HA, Khairy GM, Kamel RM. 2015. Time-resolved fluorescence sensing of pesticides chlorpyrifos, crotoxyphos and endosulfan by the luminescent Eu(III)-8-allyl-3-carboxycoumarin probe. Spectrochim Acta A Mol Biomol Spectrosc. 148:114–124.
  • Chatterjee TN, Mukherjee S, Pal S, Sarkar S, Roy RB, Bandyopadhyay R, Bhattacharyya N. 2019. A molecularly imprinted polymer conjugated cobalt oxide nanoparticle based screen printed sensor for enhanced sensing of chlorpyrifos. 2019 IEEE Int Symp Olfaction Electron Nose, 1–4. IEEE. https://doi.org/10.1109/ISOEN.2019.8823168
  • Chauhan N, Pundir CS. 2011. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Anal Chim Acta. 701(1):66–74.
  • Chauhan N, Pundir CS. 2012. An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides. Electrochim Acta. 67:79–86.
  • Chaumpluk P, Janduang T. 2017. Rapid on-site monitoring of organophosphorus insecticide chlorpyrifos residue using simple plastic lab-on-a-chip. Adv Environ Chem Biol Sens Technol XIV. 10215:1021506. https://doi.org/10.1117/12.2267756
  • Chen D, Fu J, Liu Z, Guo Y, Sun X, Wang X, Wang Z. 2017. A Simple acetylcholinesterase biosensor based on ionic liquid/multiwalled carbon nanotubes-modified screen-printed electrode for rapid detecting chlorpyrifos. Int J Electrochem Sci. 12(10):9465–9477.
  • Chen MJ, Yang HL, Si YM, Tang Q, Chow CF, Gong CB 2021. A hollow visible-light-responsive surface molecularly imprinted polymer for the detection of chlorpyrifos in vegetables and fruits. Food Chem. 355:129656.
  • Chen SH, Xiao XY, Li PH, Li YX, Yang M, Guo Z, Huang XJ. 2020. A direct Z-scheme ZnS/Co9S8 heterojunction-based photoelectrochemical sensor for the highly sensitive and selective detection of chlorpyrifos. Environ Sci: Nano. 7(3):753–763.
  • Cook TJ, Shenoy SS. 2003. Intestinal permeability of chlorpyrifos using the single-pass intestinal perfusion method in the rat. Toxicology. 184(2–3):125–133. https://doi.org/10.1016/s0300-483x(02)00555-3
  • Dam K, Garcia SJ, Seidler FJ, Slotkin TA. 1999. Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res Dev Brain Res. 116(1):9–20.
  • Del Carlo M, Compagnone D. 2010. Recent strategies for the biological sensing of pesticides: From the design to the application in real samples. Bioanal Rev. 1(2–4):159–176.
  • Donahoe. 2012. 基因的改变NIH public access. Mol Cell Biochem. 23(1):1–7.
  • Dou X, Zhang L, Liu C, Li Q, Luo J, Yang M. 2018. Fluorometric competitive immunoassay for chlorpyrifos using rhodamine-modified gold nanoparticles as a label. Microchim Acta. 185(1):41.
  • Du X, Sun J, Jiang D, Du W. 2021. Non-noble metal plasmonic enhanced photoelectrochemical sensing of chlorpyrifos based on 1D TiO2-x/3D nitrogen-doped graphene hydrogel heterostructure. Anal Bioanal Chem. 413(21):5373–5382.
  • English BA, Webster AA. 2012. Acetylcholinesterase and its inhibitors. In: Robertson D, Biaggioni I, Burnstock G, Low PA, Paton JFR, editors. Primer on the autonomic nervous system. Amsterdam: Elsevier; p. 631–633.
  • Eskandari H, Amirzehni M, Hassanzadeh J, Vahid B. 2020. Mesoporous MIP-capped luminescent MOF as specific and sensitive analytical probe: application for chlorpyrifos. Microchimica Acta. 187:673. https://doi.org/10.1007/s00604-020-04654-4/Published
  • Faridbod F, Ganjali MR, Hosseini M. 2018. Lanthanide materials as chemosensors. In: Martín-Ramos P, Silva MR, editors. Lanthanide-based multifunctional materials from OLEDs to SIMs. Amsterdam: Elsevier; p. 411–454.
  • Feng S, Hu Y, Ma L, Lu X. 2017. Development of molecularly imprinted polymers-surface-enhanced Raman spectroscopy/colorimetric dual sensor for determination of chlorpyrifos in apple juice. Sens Actuat B Chem. 241:750–757.
  • Gan N, Yang X, Xie D, Wu Y, Wen W. 2010. A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors. 10(1):625–638.
  • Ganesan S, Dickson MJ, Keating AF. 2018. Pesticides. Encycl Reprod. 2:724–730.
  • Grube A, Donaldson D, Kiely T, Wu L. 2006. Pesticide industry sales and usage report: 2006 and 2007 Market estimates. https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-2006-and-2007-market-estimates
  • Grünfeld HT, Bonefeld-Jorgensen EC. 2004. Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels. Toxicol Lett. 151(3):467–480.
  • Guardino X, Obiols J, Rosell M, Farran A, Serra C. 1998. Determination of chlorpyrifos in air, leaves and soil from a greenhouse by gas-chromatography with nitrogen–phosphorus detection, high-performance liquid chromatography and capillary electrophoresis. J Chromatogr A. 823(1–2):91–96.
  • Guler M, Turkoglu V, Basi Z. 2017. Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH2 nanocomposites. Electrochim Acta. 240:129–135.
  • Hou L, Zhang X, Kong M, Jiang G, Sun Y, Mo W, Lin T, Ye F, Zhao S. 2020. A competitive immunoassay for electrochemical impedimetric determination of chlorpyrifos using a nanogold-modified glassy carbon electrode based on enzymatic biocatalytic precipitation. Microchim Acta. 187(4):204.
  • Hu M, Ou FS, Wu W, Naumov I, Li X, Bratkovsky AM, Williams RS, Li Z. 2010. Gold nanofingers for molecule trapping and detection. J Am Chem Soc. 132(37):12820–12822.
  • Huang W, Zhou X, Luan Y, Cao Y, Wang N, Lu Y, Liu T, Xu W. 2020. A sensitive electrochemical sensor modified with multi-walled carbon nanotubes doped molecularly imprinted silica nanospheres for detecting chlorpyrifos. J Sep Sci. 43(5):954–961.
  • Hulanicki A, Glab S, Ingman F. 1991. Chemical sensors: definitions and classification. Pure Appl Chem. 63(9):1247–1250.
  • Hunde T, Berhe M, Tadese A, Tirfu M, Woldu A, Menasbo B, Saini RC. 2017. Nano Fe3O4–graphite paste modified electrochemical sensor for phosphatic pesticide -chlorpyrifos. mejs. 9(1):76.
  • Itsoponpan T, Thanachayanont C, Hasin P. 2021. Sponge-like CuInS2 microspheres on reduced graphene oxide as an electrocatalyst to construct an immobilized acetylcholinesterase electrochemical biosensor for chlorpyrifos detection in vegetables. Sens Actuat B Chem. 337:129775.
  • Jiang L, Mehedi Hassan M, Jiao T, Li H, Chen Q. 2021. Rapid detection of chlorpyrifos residue in rice using surface-enhanced Raman scattering coupled with chemometric algorithm. Spectrochim Acta A Mol Biomol Spectrosc. 261:119996.
  • Jiao Y, Hou W, Fu J, Guo Y, Sun X, Wang X, Zhao J. 2017. A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos. Sens Actuat B Chem. 243:1164–1170.
  • Jiao Y, Jia H, Guo Y, Zhang H, Wang Z, Sun X, Zhao J. 2016. An ultrasensitive aptasensor for chlorpyrifos based on ordered mesoporous carbon/ferrocene hybrid multiwalled carbon nanotubes. RSC Adv. 6(63):58541–58548.
  • Jin JC, Zhu YJ, Li J, Zhang YL, Xie CG. 2020. A novel microporous metal–organic framework for highly sensitive and selective photochemical determination of chlorpyrifos. Inorg Chem Commun. 119:108062.
  • Kadirsoy S, Atar N, Yola ML. 2020. Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation. New J Chem. 44(16):6524–6532.
  • Kamyabi MA, Moharramnezhad M. 2020. An ultra-sensitive electrochemiluminescence platform based on ZnONPs/Ni-foam and K2S2O8 for detection of chlorpyrifos. J Electroanal Chem. 865:114120.
  • Kamyabi MA, Moharramnezhad M. 2021. An enzyme-free electrochemiluminescence sensing probe based on ternary nanocomposite for ultrasensitive determination of chlorpyrifos. Food Chem. 351:129252.
  • Karimian N, Fakhri H, Amidi S, Hajian A, Arduini F, Bagheri H. 2019. A novel sensing layer based on metal-organic framework UiO-66 modified with TiO2-graphene oxide: application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos. New J Chem. 43(6):2600–2609.
  • Kaur N, Thakur H, Kumar R, Prabhakar N. 2016. An electrochemical sensor modified with poly(3,4-ethylenedioxythiophene)-wrapped multi-walled carbon nanotubes for enzyme inhibition-based determination of organophosphates. Microchim Acta. 183(7):2307–2315.
  • Kim A, Barcelo SJ, Li Z. 2015. SERS-based pesticide detection by using nanofinger sensors. Nanotechnology. 26(1):015502.
  • Koshlukova SE, Reed NR. 2014. Chlorpyrifos. In Wexler P, editor. Encyclopedia of toxicology. 3rd ed. New York: Academic Press; p. 930–934. https://doi.org/10.1016/B978-0-12-386454-3.00115-9
  • Kumaravel A, Chandrasekaran M. 2015. Electrochemical determination of chlorpyrifos on a nano-TiO2/cellulose acetate composite modified glassy carbon electrode. J Agric Food Chem. 63(27):6150–6156.
  • Kushwaha A, Singh G, Sharma M. 2020. Colorimetric sensing of chlorpyrifos through negative feedback inhibition of the catalytic activity of silver phosphate oxygenase nanozymes. RSC Adv. 10(22):13050–13065.
  • Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, et al. 2020. Present and future of surface-enhanced Raman scattering. ACS Nano. 14(1):28–117.
  • Li A, Liu X, Kong J, Huang R, Wu C. 2008. Chemiluminescence determination of organophosphorus pesticides chlorpyrifos in vegetable. Anal Lett. 41(8):1375–1386.
  • Li H, Li J, Xu Q, Hu X. 2011. Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential photoelectrochemical sensing of organophosphorus pesticide chlopyrifos. Anal Chem. 83(24):9681–9686.
  • Lin GF, Wang YH, Li GC, Bai W, Zhang H, Wang SC. 2014. Construction and application of molecularly imprinted film sensor on determination of chlorpyrifos in water. AMR. 936:843–849.
  • Lin Z, Liu X, Li Y, Li C, Yang L, Ma K, Zhang Z, Huang H. 2021. Electrochemical aptasensor based on Mo2C/Mo2N and gold nanoparticles for determination of chlorpyrifos. Microchim Acta. 188(5):170.
  • Liu J, Chen P, Xia F, Liu Z, Liu H, Yi J, Zhou C. 2020. Sensitive electrochemiluminescence aptasensor for chlorpyrifos detection based on resonance energy transfer between MoS2/CdS nanospheres and Ag/CQDs. Sens Actuat B Chem. 315:128098.
  • Liu J, Kong D, Liu Z, Liu H, Yi J, Tian D, Xia F, Zhou C. 2020. Three-dimensional mesoporous dendritic fibrous nanosilica as a highly efficient DNA amplification platform for ultrasensitive detection of chlorpyrifos residues. Sens Actuat B Chem. 319:128246.
  • Liu Q, Wang H, Han P, Feng X. 2019. Fluorescent aptasensing of chlorpyrifos based on the assembly of cationic conjugated polymer-aggregated gold nanoparticles and luminescent metal–organic frameworks. Analyst. 144(20):6025–6032.
  • Liu T, Xu M, Yin H, Ai S, Qu X, Zong S. 2011. A glassy carbon electrode modified with graphene and tyrosinase immobilized on platinum nanoparticles for sensing organophosphorus pesticides. Microchim Acta. 175(1–2):129–135.
  • Lobnik A, Turel M, pela K. 2012. Optical chemical sensors: design and applications. In: Wang W, editor. Advances in chemical sensors. London: IntechOpen.
  • Lu Y, Wei M, Wang C, Wei W, Liu Y. 2020. Enhancing hydrogel-based long-lasting chemiluminescence by a platinum-metal organic framework and its application in array detection of pesticides and d-amino acids. Nanoscale. 12(8):4959–4967.
  • Mane PC, Shinde MD, Varma S, Chaudhari BP, Fatehmulla A, Shahabuddin M, Amalnerkar DP, Aldhafiri AM, Chaudhari RD. 2020. Highly sensitive label-free bio-interfacial colorimetric sensor based on silk fibroin-gold nanocomposite for facile detection of chlorpyrifos pesticide. Sci Rep. 10(1):4198.
  • Marasinghe J, Yu Q, Connell D. 2014. Assessment of health risk in human populations due to chlorpyrifos. Toxics. 2(2):92–114.
  • Marín S, Merkoçi A. 2012. Nanomaterials Based electrochemical sensing applications for safety and security. Electroanalysis. 24(3):459–469.
  • Maxwell T, Nogueira Campos MG, Smith S, Doomra M, Thwin Z, Santra S. 2019. Quantum dots. In: Chung EJ, Leon L, Rinaldi C, editors. Nanoparticles for biomedical applications: fundamental concepts, biological interactions and clinical applications (micro and nano technologies). Amsterdam: Elsevier; p. 243–265.
  • McHardy SF, Wang H-YL, McCowen SV, Valdez MC. 2017. Recent advances in acetylcholinesterase inhibitors and reactivators: an update on the patent literature (2012-2015). Expert Opin Ther Pat. 27(4):455–476.
  • Mogha NK, Sahu V, Sharma M, Sharma RK, Masram DT. 2016. Biocompatible ZrO2-reduced graphene oxide immobilized AChE biosensor for chlorpyrifos detection. Mater Des. 111:312–320.
  • Mu T, Wang S, Li T, Wang B, Ma X, Huang B, Zhu L, Guo J. 2019. Detection of pesticide residues using nano-SERS chip and a smartphone-based raman sensor. IEEE J Select Topics Quantum Electron. 25(2):1–6.
  • Nagabooshanam S, Roy S, Deshmukh S, Wadhwa S, Sulania I, Mathur A, Krishnamurthy S, Bharadwaj LM, Roy SS. 2020. Microfluidic affinity sensor based on a molecularly imprinted polymer for ultrasensitive detection of chlorpyrifos. ACS Omega. 5(49):31765–31773.
  • Namsheer K, Rout CS. 2021. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 11(10):5659–5697.
  • Narlawar SS, Gandhi S. 2021. Fabrication of graphene nanoplatelets embedded “partition cartridge” for efficient separation of target-bound ssDNA during SELEX. Mater Today Adv. 12:100174.
  • Shrikrishna NS, Mahari S, Abbineni N. 2021. New trends in biosensor development for pesticide detection. In: Pudake RN, Jain U, Kole C, editors. Biosensors in agriculture: recent trends and future perspectives. concepts and strategies in plant sciences. Cham: Springer; p. 137–168.
  • Prueitt RL, Goodman JE, Bailey LA, Rhomberg LR. 2011. Hypothesis-based weight-of-evidence evaluation of the neurodevelopmental effects of chlorpyrifos. Crit Rev Toxicol. 41(10):822–903.
  • Qian J, Yang Z, Wang C, Wang K, Liu Q, Jiang D, Yan Y, Wang K. 2015. One-pot synthesis of BiPO4 functionalized reduced graphene oxide with enhanced photoelectrochemical performance for selective and sensitive detection of chlorpyrifos. J Mater Chem A. 3(26):13671–13678.
  • Qiu Z, Tang D. 2020. Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J Mater Chem B. 8(13):2541–2561.
  • Račáková V, Jun D, Opletalová V, Kuča K. 2006. Reactivation of acetycholinesterase inhibited by the pesticide chlorpyrifos. J Appl Biomed. 4(3):147–151.
  • Raj P, Singh A, Kaur K, Aree T, Singh A, Singh N. 2016. Fluorescent chemosensors for selective and sensitive detection of phosmet/chlorpyrifos with octahedral Ni2+ complexes. Inorg Chem. 55(10):4874–4883.
  • Raman Suri C, Boro R, Nangia Y, Gandhi S, Sharma P, Wangoo N, Rajesh K, Shekhawat GS. 2009. Immunoanalytical techniques for analyzing pesticides in the environment. Trends Anal Chem. 28(1):29–39.
  • Ramin M, Omidi F, Khadem M, Shahtaheri SJ. 2021. Combination of dispersive solid-phase extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for trace determination of chlorpyrifos in urine samples. Int J Environ Anal Chem. 101(6):810–820.
  • Ramírez‐Sánchez K, Alvarado‐Hidalgo F, Zamora‐Sequeira R, Sáenz‐Arce G, Rojas‐Carrillo O, Avedaño-Soto E, Ruepert C, Mena‐Torres F, Starbird‐Pérez R. 2019. Biosensor based on the directly enzyme immobilization into a gold nanotriangles/conductive polymer biocompatible coat for electrochemical detection of chlorpyrifos in water. Med Devices Sens. 2(5–6): e10047.
  • Rana S, Kaur R, Jain R, Prabhakar N. 2019. Ionic liquid assisted growth of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide based electrode: an improved electro-catalytic performance for the detection of organophosphorus pesticides in beverages. Arab J Chem. 12(7):1121–1133.
  • Ren X, Liu H, Chen L. 2015. Fluorescent detection of chlorpyrifos using Mn(II)-doped ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta. 182(1–2):193–200.
  • Ribeiro B, Botelho EC, Costa ML, Bandeira CF. 2017. Carbon nanotube buckypaper reinforced polymer composites: a review. Polimeros. 27(3):247–255.
  • Rotariu L, Zamfir LG, Bala C. 2012. A rational design of the multiwalled carbon nanotube-7,7,8,8-tetracyanoquinodimethan sensor for sensitive detection of acetylcholinesterase inhibitors. Anal Chim Acta. 748:81–88.
  • Roushani M, Nezhadali A, Jalilian Z. 2018. An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods. Microchim Acta. 185(12):551.
  • Sagar N, Samraggi C, Gandhi S. 2022. Magnetic properties-based biosensors for early detection of cancer. In: Khan R, Parihar A, Sanghi SK, editors. Biosensor based advanced cancer diagnostics. New York: Academic Press; p. 165–178.
  • Salm P, Taylor PJ, Roberts D, de Silva J. 2009. Liquid chromatography-tandem mass spectrometry method for the simultaneous quantitative determination of the organophosphorus pesticides dimethoate, fenthion, diazinon and chlorpyrifos in human blood. J Chromatogr B Anal Technol Biomed Life Sci. 877(5–6):568–574.
  • Serp P. 2013. Carbon. Compr Inorg Chem II. 7:323–369.
  • Sgobbi LF, Machado SAS. 2018. Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosens Bioelectron. 100:290–297.
  • Sharma A, Khan R, Catanante G, Sherazi TA, Bhand S, Hayat A, Marty JL. 2018. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins. 10(5):197.
  • Shende C, Inscore F, Sengupta A, Stuart J, Farquharson S. 2010. Rapid extraction and detection of trace chlorpyrifos-methyl in orange juice by surface-enhanced Raman spectroscopy. Sens Instrumen Food Qual. 4(3–4):101–107.
  • Shu J, Tang D. 2020. Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes. Anal Chem. 92(1):363–377.
  • Silver MK, Shao J, Zhu B, Chen M, Xia Y, Kaciroti N, Lozoff B, Meeker JD. 2017. Prenatal naled and chlorpyrifos exposure is associated with deficits in infant motor function in a cohort of Chinese infants. Environ Int. 106(May):248–256.
  • Sinha SN, Pal R, Dewan A, Mansuri MM, Saiyed HN. 2006. Effect of dissociation energy on ion formation and sensitivity of an analytical method for determination of chlorpyrifos in human blood, using gas chromatography-mass spectrometer (GC-MS in MS/MS). Int J Mass Spectrom. 253(1–2):48–57.
  • Smegal DC, Assessor R. 2000. Human health risk assessment chlorpyrifos. https://archive.epa.gov/scipoly/sap/meetings/web/pdf/hed_ra.pdf.
  • Solomon KR, Williams WM, Mackay D, Purdy J, Giddings JM, Giesy JP. 2014. Properties and uses of chlorpyrifos in the United States. Rev Environ Contam Toxicol. 231:13–34.
  • Song D, Wang Y, Lu X, Gao Y, Li Y, Gao F. 2018. Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides. Sens Actuat B Chem. 267:5–13.
  • Song Z, Hou S, Zhang N. 2002. A new green analytical procedure for monitoring sub-nanogram amounts of chlorpyrifos on fruits using flow injection chemiluminescence with immobilized reagents. J Agric Food Chem. 50(16):4468–4474.
  • Soongsong J, Lerdsri J, Jakmunee J. 2021. A facile colorimetric aptasensor for low-cost chlorpyrifos detection utilizing gold nanoparticle aggregation induced by polyethyleneimine. Analyst. 146(15):4848–4857.
  • Sreedhar NY, Sunil Kumar M, Krishnaveni K. 2015. Sensitive determination of chlorpyrifos using Ag/Cu alloy nanoparticles and graphene composite paste electrode. Sens Actuat B Chem. 210:475–482.
  • Sun X, Cao Y, Gong Z, Wang X, Zhang Y, Gao J. 2012. An amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan nanocomposite film for chlorpyrifos detection. Sensors. 12(12):17247–17261.
  • Sun X, Gao C, Zhang L, Yan M, Yu J, Ge S. 2017. Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection. Sens Actuat B Chem. 251:1–8.
  • Sun X, Gong Z, Cao Y, Wang X. 2012. Amperometric acetylcholinesterase biosensor based on poly (diallyldimethylammonium chloride)/gold nanoparticles/multi-walled carbon nanotubes-chitosans composite film-modified electrode. Sensors Transducers J. 146:78–89. http://www.sensorsportal.com.
  • Sun X, Li F, Wang X. 2012. Immunosensor based on gold nanoparticles-multi-walled carbon nanotubes-chitosans composite and prussian blue for detection of chlorpyrifos. Sens Transducers J. 146:121–132. http://www.sensorsportal.com.
  • Sun X, Shen G, Wang X, Zhang Y, Gao J. 2013. A novel label-free immunosensor based on l-cysteine/deposited gold nanocrystals for the chlorpyrifos detection. http://www.sensorsportal.com.
  • Sun Z, Wang W, Wen H, Gan C, Lei H, Liu Y. 2015. Sensitive electrochemical immunoassay for chlorpyrifos by using flake-like Fe3O4 modified carbon nanotubes as the enhanced multienzyme label. Anal Chim Acta. 899:91–99.
  • Talan A, Mishra A, Eremin SA, Narang J, Kumar A, Gandhi S. 2018. Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosens Bioelectron. 105:14–21.
  • Tang J, Chen W, Ju H. 2019. Rapid detection of pesticide residues using a silver nanoparticles coated glass bead as nonplanar substrate for SERS sensing. Sens Actuat B Chem. 287:576–583.
  • Tang Z, Chen Z, Li G, Hu Y. 2020. Multicolor nitrogen dots for rapid detection of thiram and chlorpyrifos in fruit and vegetable samples. Anal Chim Acta. 1136:72–81.
  • Tanvir EM, Afroz R, Chowdhury MAZ, Gan SH, Karim N, Islam MN, Khalil MI. 2016. A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats. Hum Exp Toxicol. 35(9):991–1004.
  • Tse Sum Bui B, Haupt K. 2022. Molecularly imprinted polymer hydrogel nanoparticles: synthetic antibodies for cancer diagnosis and therapy. Chembiochem. 23(8):e202100598.
  • Ubaid ur Rahman H, Asghar W, Nazir W, Sandhu MA, Ahmed A, Khalid N. 2021. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: evidence of mechanisms, exposures and mitigation strategies. Sci Total Environ. 755(Pt 2):142649.
  • Uygun ZO, Dilgin Y. 2013. A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos. Sens Actuat B Chem. 188:78–84.
  • Wang H, Liang D, Xu Y, Liang X, Qiu X, Lin Z. 2021. A highly efficient photoelectrochemical sensor for detection of chlorpyrifos based on 2D/2D β-Bi2O3/g-C3N4 heterojunctions. Environ Sci: Nano. 8(3):773–783.
  • Wang H, Zhang B, Zhao F, Zeng B. 2018. One-pot synthesis of N-graphene quantum dot-functionalized I-BiOCl Z-scheme cathodic materials for “signal-off” photoelectrochemical sensing of chlorpyrifos. ACS Appl Mater Interfaces. 10(41):35281–35288.
  • Wang L, Jiang X, Yan D, Wu J, Bian Y, Wang F. 2007. Behavior and fate of chlorpyrifos introduced into soil-crop systems by irrigation. Chemosphere. 66(3):391–396.
  • Wang P, Dai W, Ge L, Yan M, Ge S, Yu J. 2013. Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2 nanotubes for specific and sensitive detection chlorpyrifos. Analyst. 138(3):939–945.
  • Wei W, Wang J, Tian CB, Du SW, Wu KC. 2018. A highly hydrolytically stable lanthanide organic framework as a sensitive luminescent probe for DBP and chlorpyrifos detection. Analyst. 143(22):5481–5486.
  • Wei W, Zong X, Wang X, Yin L, Pu Y, Liu S. 2012. A disposable amperometric immunosensor for chlorpyrifos-methyl based on immunogen/platinum doped silica sol-gel film modified screen-printed carbon electrode. Food Chem. 135(3):888–892.
  • Wu J, Fu X, Xie C, Yang M, Fang W, Gao S. 2011. TiO2 nanoparticles-enhanced luminol chemiluminescence and its analytical applications in organophosphate pesticide imprinting. Sens Actuat B Chem. 160(1):511–516.
  • Xia N, Zhang Y, Chang K, Gai X, Jing Y, Li S, Liu L, Qu G. 2015. Ferrocene-phenylalanine hydrogels for immobilization of acetylcholinesterase and detection of chlorpyrifos. J Electroanal Chem. 746:68–74.
  • Xie C, Li H, Li S, Wu J, Zhang Z. 2010. Surface molecular self-assembly for organophosphate pesticide imprinting in electropolymerized poly(p-aminothiophenol) membranes on a gold nanoparticle modified glassy carbon electrode. Anal Chem. 82(1):241–249.
  • Xu G, Huo D, Hou C, Zhao Y, Bao J, Yang M, Fa H. 2018. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta. 178:1046–1052.
  • Xu Q, Guo X, Xu L, Ying Y, Wu Y, Wen Y, Yang H. 2017. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sens Actuat B Chem. 241:1008–1013.
  • Xu W, Wang Q, Huang W, Yang W. 2017. Construction of a novel electrochemical sensor based on molecularly imprinted polymers for the selective determination of chlorpyrifos in real samples. J Sep Sci. 40(24):4839–4846.
  • Yola ML, Atar N. 2017. A highly efficient nanomaterial with molecular imprinting polymer: carbon nitride nanotubes decorated with graphene quantum dots for sensitive electrochemical determination of chlorpyrifos. J Electrochem Soc. 164(6):B223–B229.
  • Zahran M, Khalifa Z, A-H Zahran M, Abdel Azzem M. 2021. Abiotic sensor for electrochemical determination of chlorpyrifos in natural water based on the inhibition of silver nanoparticles oxidation. Microchem J. 165:106173.
  • Zamfir LG, Rotariu L, Bala C. 2011. A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel. Biosens Bioelectron. 26(8):3692–3695.
  • Zhai C, Sun X, Zhao W, Gong Z, Wang X. 2013. Acetylcholinesterase biosensor based on chitosan/prussian blue/multiwall carbon nanotubes/hollow gold nanospheres nanocomposite film by one-step electrodeposition. Biosens Bioelectron. 42(1):124–130.
  • Zhang D, Liang P, Ye J, Xia J, Zhou Y, Huang J, Ni D, Tang L, Jin S, Yu Z. 2019. Detection of systemic pesticide residues in tea products at trace level based on SERS and verified by GC–MS. Anal Bioanal Chem. 411(27):7187–7196.
  • Zhang K, Mei Q, Guan G, Liu B, Wang S, Zhang Z. 2010. Ligand replacement-induced fluorescence switch of quantum dots for ultrasensitive detection of organophosphorothioate pesticides. Anal Chem. 82(22):9579–9586.
  • Zhang L, Feng L, Jiang J, Li P, Chen X, Zhang S, Gao Y, Hong R, Chen G, Mao G, et al. 2021. A highly sensitive and visible-light-driven photoelectrochemical sensor for chlorpyrifos detection using hollow Co9S8@CdS heterostructures. Sens Actuat B Chem. 348:130719.
  • Zhang Y, Xia Z, Li Q, Gui G, Zhao G, Lin L. 2017. Surface controlled electrochemical sensing of chlorpyrifos in pinellia ternate based on a one step synthesis of palladium-reduced graphene nanocomposites. J Electrochem Soc. 164(2):B48–B53.
  • Zheng W, Sui J, Chen T, Qi Q, Lv Y. 2021. Synthesis and application of nanocomposite of ZnS, Ni2P and reduced graphene oxide as electroche mical sensor for determination of chlorpyrifos in farmland water. Int J Electrochem Sci. 16: 211227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.