146
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Effects of pyrethroids on the cerebellum and related mechanisms: a narrative review

, , , , &
Pages 229-243 | Received 17 Apr 2023, Accepted 15 Jun 2023, Published online: 07 Jul 2023

References

  • Abdel-Daim MM, Abd Eldaim MA, Mahmoud MM. 2014. Trigonella foenum-graecum protection against deltamethrin-induced toxic effects on haematological, biochemical, and oxidative stress parameters in rats. Can J Physiol Pharmacol. 92(8):679–685. doi: 10.1139/cjpp-2014-0144.
  • Abdel-Daim MM, Abuzead S, Halawa SM, Partha M. 2013. Protective role of spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS One. 8(9):e72991. doi: 10.1371/journal.pone.0072991.
  • Abdel-Rahman A, Abou-Donia SM, EL-Masry EM, Shetty AK, Abou-Donia MB. 2004. Stress and combined exposure to low doses of pyridostigmine bromide, deet, and permethrin produce neurochemical and neuropathological alterations in cerebral cortex, hippocampus, and cerebellum. J Toxicol Environ Health A. 67(2):163–192. doi: 10.1080/15287390490264802.
  • Abdel-Rahman A, Dechkovskaia AM, Goldstein LB, Bullman SH, Khan W, El-Masry EM, Abou-Donia MB. 2004. Neurological deficits induced by malathion, DEET, and permethrin, alone or in combination in adult rats. J Toxicol Environ Health A. 67(4):331–356. doi: 10.1080/15287390490273569.
  • Abdel-Rahman A, Shetty AK, Abou-Donia MB. 2001. Subchronic dermal application of N,N-diethyl m-toluamide (DEET) and permethrin to adult rats, alone or in combination, causes diffuse neuronal cell death and cytoskeletal abnormalities in the cerebral cortex and the hippocampus, and Purkinje neuron loss in the cerebellum. Exp Neurol. 172(1):153–171. doi: 10.1006/exnr.2001.7807.
  • Abou-Donia MB, Dechkovskaia AM, Goldstein LB, Abdel-Rahman A, Bullman SL, Khan WA. 2004. Co-exposure to pyridostigmine bromide, DEET, and/or permethrin causes sensorimotor deficit and alterations in brain acetylcholinesterase activity. Pharmacol Biochem Behav. 77(2):253–262. doi: 10.1016/j.pbb.2003.10.018.
  • Abreu-Villaca Y, Levin ED. 2017. Developmental neurotoxicity of succeeding generations of insecticides. Environ Int. 99:55–77. doi: 10.1016/j.envint.2016.11.019.
  • Ahdab R, Ayache SS, Maltonti F, Brugieres P, Lefaucheur JP. 2011. Motor neuron disorder with tongue spasms due to pyrethroid insecticide toxicity. Neurology. 76(2):196–197. doi: 10.1212/WNL.0b013e318206ca30.
  • Ahmed T, Tripathi AK, Ahmed RS, Das S, Suke SG, Pathak R, Chakraboti A, Banerjee BD. 2008. Endosulfan-induced apoptosis and glutathione depletion in human peripheral blood mononuclear cells: attenuation by N-acetylcysteine. J Biochem Mol Toxicol. 22(5):299–304. doi: 10.1002/jbt.20240.
  • Aldridge WN, Clothier B, Froshaw P, Johnson MK, Parker VH, Price RJ, Skilleter DN, Verscholyle RD, Stevens C. 1978. The effect of DDT and the pyrethroids cismethrin and decamethriin on the acetyl choline and cyclic nucleotide content of rat brain. Biochem Pharmacol. 27(12):1703–1706. doi: 10.1016/0006-2952(78)90185-5.
  • Ansari RW, Shukla RK, Yadav RS, Seth K, Pant AB, Singh D, Agrawal AK, Islam F, Khanna VK. 2012. Involvement of dopaminergic and serotonergic systems in the neurobehavioral toxicity of lambda-cyhalothrin in developing rats. Toxicol Lett. 211(1):1–9. doi: 10.1016/j.toxlet.2012.02.012.
  • Asari MA, Abdullah MS, Abdullah S. 2008. Effect of early neonatal exposure to deltamethrin on the purkinje cell number in rat cerebellum. Malays J Med Sci. 15(3):14–21.
  • Asari MA, Abdullah MS, Ismail ZIM. 2010. Histomorphometric study on the effect of low dose deltamethrin on the developing cerebellar cortex. Turk J Med Sci. 40(6):943–948. doi: 10.3906/sag-0904-32.
  • Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F., al. e. 2014. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases–a mechanistic approach. Toxicol Lett. 230(2):85–103. doi: 10.1016/j.toxlet.2014.01.039.
  • Barlow SM, Sullivan FM, Lines J. 2001. Risk assessment of the use of deltamethrin on bednets for the prevention of malaria. Food Chem Toxicol. 39(5):407–422. doi: 10.1016/s0278-6915(00)00152-6.
  • Beghoul A, Kebieche M, Gasmi S, Chouit Z, Amiour C, Lahouel A, Lakroun Z, Rouabhi R, Fetoui H, Soulimani R. 2017. Impairment of mitochondrial integrity and redox status in brain regions during a low-dose long-term exposition of rats to pyrethrinoids: the preventive effect of quercetin. Environ Sci Pollut Res Int. 24(24):19714–19722. doi: 10.1007/s11356-017-9675-0.
  • Boix J, Cauli O, Felipo V. 2010. Developmental exposure to polychlorinated biphenyls 52, 138 or 180 affects differentially learning or motor coordination in adult rats. Mechanisms involved. Neuroscience. 167(4):994–1003. doi: 10.1016/j.neuroscience.2010.02.068.
  • Bouktif Zarrouk M, Gharbi E, Maatouk I, Leblanc JC, Landoulsi A. 2020. Dietary exposure of Tunisian adult population aged from 19 to 65 years old to pesticides residues. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 37(7):1165–1179. doi: 10.1080/19440049.2020.1744065.
  • Burton GJ, Jauniaux E. 2011. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 25(3):287–299. doi: 10.1016/j.bpobgyn.2010.10.016.
  • Byrne JH, Heidelberger R, Waxham MN. 2014. From molecules to networks: an introduction to cellular and molecular neuroscience. Academic Press. 3rd ed. Elsevier.
  • Carloni M, Nasuti C, Fedeli D, Montani M, Amici A, Vadhana M, Gabbianelli R. 2012. The impact of early life permethrin exposure on development of neurodegeneration in adulthood. Exp Gerontol. 47(1):60–66. doi: 10.1016/j.exger.2011.10.006.
  • Carloni M, Nasuti C, Fedeli D, Montani M, Vadhana MS, Amici A, Gabbianelli R. 2013. Early life permethrin exposure induces long-term brain changes in Nurr1, NF-kB and Nrf-2. Brain Res. 1515:19–28. doi: 10.1016/j.brainres.2013.03.048.
  • Cates MS, Berry MB, Ho EL, Li Q, Potter JD, Phillips GN. 1999. Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin. Structure. 7(10):1269–1278. doi: 10.1016/S0969-2126(00)80060-X.
  • Cederbaum AI, Wu D, Mari M, Bai J. 2001. CYP2E1-dependent toxicity and oxidative stress in HepG2 cells. Free Radic Biol Med. 31(12):1539–1543. doi: 10.1016/s0891-5849(01)00743-2.
  • Chen H, Yang L, Huang J, Wu J, Zhou J, Tang S, Huang S, Cheng D, Zhang Z. 2023. Effect of bifenthrin application at different maturity stages on its dissipation and residues in kumquat (Citrus japonica) and dietary intake risk assessment. Environ Sci Pollut Res Int. 30(8):21588–21597. doi: 10.1007/s11356-022-23698-y.
  • Chiu C-S, Brickley S, Jensen K, Southwell A, Mckinney S, Cull-Candy S, Mody I, Lester HA. 2005. GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci. 25(12):3234–3245. doi: 10.1523/JNEUROSCI.3364-04.2005.
  • Costa LG. 2015. The neurotoxicity of organochlorine and pyrethroid pesticides. Handb Clin Neurol. 131:135–148.
  • Cremer JE, Seville MP. 1985. Changes in regional cerebral blood flow and glucose metabolism associated with symptoms of pyrethroid toxicity. Neurotoxicology. 6(3):1–12.
  • Dayal M, Parmar D, Ali M, Dhawan A, Dwivedi UN, Seth PK. 2001. Induction of rat brain cytochrome P450s (P450s) by deltamethrin: regional specificity and correlation with neurobehavioral toxicity. Neurotox Res. 3(4):351–357. doi: 10.1007/BF03033196.
  • Ding R, Cao Z, Wang Y, Gao X, Luo H, Zhang C, Ma S, Ma X, Jin H, Lu C. 2017. The implication of p66shc in oxidative stress induced by deltamethrin. Chem Biol Interact. 278:162–169. doi: 10.1016/j.cbi.2017.10.005.
  • Domingues VF, Nasuti C, Piangerelli M, Correia-Sá L, Ghezzo A, Marini M, Abruzzo PM, Visconti P, Giustozzi M, Rossi G, et al. 2016. Pyrethroid pesticide metabolite in urine and microelements in hair of children affected by autism spectrum disorders: a preliminary investigation. Int J Environ Res Public Health. 13(4):388.
  • Du G, Shen O, Sun H, Fei J, Lu C, Song L, Xia Y, Wang S, Wang X., al. e. 2010. Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays. Toxicol Sci. 116(1):58–66. doi: 10.1093/toxsci/kfq120.
  • El-Beltagy AE-FB, Elbakry KA, Elghazaly MM, Ali LS, EL Daqaqq NH. 2019. Adverse effects of deltamethrin on the cerebellum of mothers rats and their offspring and the possible ameliorative of melatonin. Int J Pure Appl Zool. 7(4):55–74. doi: 10.35841/2320-9585.7.55-74.
  • Elsawy H, Al-Omair MA, Sedky A, Al-Otaibi L. 2017. Protective effect of alpha-lipoic acid against alpha-cypermethrin-induced changes in rat cerebellum. J Chem Neuroanat. 86:52–58. doi: 10.1016/j.jchemneu.2017.08.005.
  • El-Shabasy A, Salama S. 2019. Taxonomy study of some members of lamiaceae through morphological traits and effects on general condition of the honey bee (Apis mellifera L.). Inter J Pure Appl Zool. 7(4):75–81.
  • Enogieru AB, Momodu OI. 2021. The developing cerebellum as a target for toxic substances: protective role of antioxidants. Cerebellum. 20(4):614–630. doi: 10.1007/s12311-021-01231-0.
  • Fetoui H, Gdoura R. 2012. Synthetic pyrethroid increases lipid and protein oxidation and induces glutathione depletion in the cerebellum of adult rats: ameliorative effect of vitamin C. Hum Exp Toxicol. 31(11):1151–1160. doi: 10.1177/0960327112444478.
  • Field LM, Emyr Davies TG, O'Reilly AO, Williamson MS, Wallace BA. 2017. Voltage-gated sodium channels as targets for pyrethroid insecticides. Eur Biophys J. 46(7):675–679. doi: 10.1007/s00249-016-1195-1.
  • Fogal B, Hewett SJ. 2008. Interleukin‐1β a bridge between inflammation and excitotoxicity? J Neurochem. 106(1):1–23. doi: 10.1111/j.1471-4159.2008.05315.x.
  • Fonnum F, Lock EA. 2000. Cerebellum as a target for toxic substances. Toxicol Lett. 112-113:9–16. doi: 10.1016/s0378-4274(99)00246-5.
  • Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI. 2009. Environmental toxicity, oxidative stress and apoptosis: ménage à trois. Mutat Res. 674(1-2):3–22. doi: 10.1016/j.mrgentox.2008.11.012.
  • Frank DF, Brander SM, Hasenbein S, Harvey DJ, Lein PJ, Geist J, Connon RE. 2019. Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). Aquat Toxicol. 206:1–13. doi: 10.1016/j.aquatox.2018.10.014.
  • Furlong MA, Barr DB, Wolff MS, Engel SM. 2017. Prenatal exposure to pyrethroid pesticides and childhood behavior and executive functioning. NeuroToxicology. 62:231–238. doi: 10.1016/j.neuro.2017.08.005.
  • Gabbianelli R, Falcioni ML, Nasuti C, Cantalamessa F, Imada I, Inoue M. 2009. Effect of permethrin insecticide on rat polymorphonuclear neutrophils. Chem Biol Interact. 182(2-3):245–252. doi: 10.1016/j.cbi.2009.09.006.
  • Garofalo T, Misasi R, Mattei V, Giammarioli AM, Malorni W, Pontieri GM, Pavan A, Sorice M. 2003. Association of the death-inducing signaling complex with microdomains after triggering through CD95/Fas. Evidence for caspase-8-ganglioside interaction in T cells. J Biol Chem. 278(10):8309–8315. doi: 10.1074/jbc.M207618200.
  • Gómez-Giménez B, Felipo V, Cabrera-Pastor A, Agustí A, Hernández-Rabaza V, Llansola M. 2018. Developmental exposure to pesticides alters motor activity and coordination in rats: sex differences and underlying mechanisms. Neurotox Res. 33(2):247–258. doi: 10.1007/s12640-017-9823-9.
  • Gómez-Giménez B, Llansola M, Cabrera-Pastor A, Hernández‐Rabaza V, Agustí A, Felipo V. 2018. Endosulfan and cypermethrin pesticide mixture induces synergistic or antagonistic effects on developmental exposed rats depending on the analyzed behavioral or neurochemical end points. ACS Chem Neurosci. 9(2):369–380. doi: 10.1021/acschemneuro.7b00364.
  • Guo J, Xu J, Zhang J, An L. 2018. Alteration of mice cerebral cortex development after prenatal exposure to cypermethrin and deltamethrin. Toxicol Lett. 287:1–9. doi: 10.1016/j.toxlet.2018.01.019.
  • Gupta G, Chaitanya RK, Golla M, Karnati R. 2013. Allethrin toxicity on human corneal epithelial cells involves mitochondrial pathway mediated apoptosis. Toxicol in Vitro. 27(8):2242–2248. doi: 10.1016/j.tiv.2013.09.011.
  • Hanchar HJ, Dodson PD, Olsen RW, Otis TS, Wallner M. 2005. Alcohol-induced motor impairment caused by increased extrasynaptic GABAA receptor activity. Nat Neurosci. 8(3):339–345. doi: 10.1038/nn1398.
  • Hansen MRH, Jørs E, Lander F, Condarco G, Debes F, Bustillos NT, Schlünssen V. 2017. Neurological deficits after long-term pyrethroid exposure. Environ Health Insights. 11:1178630217700628. doi: 10.1177/1178630217700628.
  • Hirano T, Suzuki N, Ikenaka Y, Hoshi N, Tabuchi Y. 2021. Neurotoxicity of a pyrethroid pesticide deltamethrin is associated with the imbalance in proteolytic systems caused by mitophagy activation and proteasome inhibition. Toxicol Appl Pharmacol. 430:115723. doi: 10.1016/j.taap.2021.115723.
  • Hossain MM, Belkadi A, Al-Haddad S, Richardson JR. 2020. Deltamethrin exposure inhibits adult hippocampal neurogenesis and causes deficits in learning and memory in mice. Toxicol Sci. 178(2):347–357. doi: 10.1093/toxsci/kfaa144.
  • Hossain MM, Richardson JR. 2011. Mechanism of pyrethroid pesticide-induced apoptosis: role of calpain and the ER stress pathway. Toxicol Sci. 122(2):512–525. doi: 10.1093/toxsci/kfr111.
  • Husain R, Husain R, Adhami VM, Seth PK. 1996. Behavioral, neurochemical, and neuromorphological effects of deltamethrin in adult rats. J Toxicol Environ Health. 48(5):515–526. doi: 10.1080/009841096161212.
  • Imamura L, Hasegawa H, Kurashina K, Hamanishi A, Tabuchi A, Tsuda M. 2000. Repression of activity-dependent c-fos and brain-derived neurotrophic factor mRNA expression by pyrethroid insecticides accompanying a decrease in Ca(2+) influx into neurons. J Pharmacol Exp Ther. 295(3):1175–1182.
  • Imamura L, Hasegawa H, Kurashina K, Matsuno T, Tsuda M. 2002. Neonatal exposure of newborn mice to pyrethroid (permethrin) represses activity-dependent c-fos mRNA expression in cerebellum. Arch Toxicol. 76(7):392–397. doi: 10.1007/s00204-002-0358-2.
  • Imamura L, Kurashina K, Kawahira T, Omoteno M, Tsuda M. 2005. Additional repression of activity-dependent c-fos and BDNF mRNA expression by lipophilic compounds accompanying a decrease in Ca2+ influx into neurons. Neurotoxicology. 26(1):17–25. doi: 10.1016/j.neuro.2004.07.008.
  • Imanishi S, Okura M, Zaha H, Yamamoto T, Akanuma H, Nagano R, Shiraishi H, Fujimaki H, Sone H. 2013. Prenatal exposure to permethrin influences vascular development of fetal brain and adult behavior in mice offspring. Environ Toxicol. 28(11):617–629. doi: 10.1002/tox.20758.
  • Iteire KA, Adejumo A, Adenike , Tebamifor T, Witness , Oyiborhoro O. 2020. Immunotoxicological Investigation of The Intracranial Auditory Centers In Pyrethroids Formulation Treated Wistar Rat. Cell & Developmental Biology. 9(1):202.
  • Jacobi H, Faber J, Timmann D, Klockgether T. 2021. Update cerebellum and cognition. J Neurol. 268(10):3921–3925. doi: 10.1007/s00415-021-10486-w.
  • Ji ZY, Shi N, Wang SQ, Jie D, Chen MS. 2003. Effects of pyrethroids on the activity of gamma-aminobutyric acid transferase in rat brain. Chin J Industrial Hyg Occupat Dis. 21(3):197–199.
  • Joya J, Sangha GK. 2016. Development and behavioural toxicity of deltamethrin on Rattus norvegicus following gestational exposure. JANS. 8(1):40–45. doi: 10.31018/jans.v8i1.743.
  • Kakko I, Toimela T, Tahti H. 2003. The synaptosomal membrane bound ATPase as a target for the neurotoxic effects of pyrethroids, permethrin and cypermethrin. Chemosphere. 51(6):475–480. doi: 10.1016/S0045-6535(02)00854-8.
  • Kassab A. 2018. Wheat germ oil attenuates deltamethrin-induced injury in rat cerebellar cortex: histological and immunohistochemical study. Egyp J Histol. 41(2):182–191. doi: 10.21608/EJH.2018.13840.
  • Khalatbary A, Mohammadnegad B, Ghaffari E, Rafiei A. 2015. Oleuropein attenuates deltamethrin-induced apoptosis in rat cerebellar purkinje neurons. Res Mol Med. 3(4):10–16.
  • Kolaczinski JH, Curtis CF. 2004. Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides: a review of the debate. Food Chem Toxicol. 42(5):697–706. doi: 10.1016/j.fct.2003.12.008.
  • Kumar A, Sasmal D, Sharma N. 2014. Deltamethrin induced an apoptogenic signalling pathway in murine thymocytes: exploring the molecular mechanism. J Appl Toxicol. 34(12):1303–1310. doi: 10.1002/jat.2948.
  • Kumar A, Sasmal D, Sharma N. 2015. An insight into deltamethrin induced apoptotic calcium, p53 and oxidative stress signalling pathways. Toxicol Environ Health Sci. 7(1):25–34. doi: 10.1007/s13530-015-0217-1.
  • Kumar K, Patro N, Patro I. 2013. Impaired Structural and functional development of cerebellum following gestational exposure of deltamethrin in rats: role of reelin. Cell Mol Neurobiol. 33(5):731–746. doi: 10.1007/s10571-013-9942-7.
  • Lawrence LJ, Casida JE. 1982. Pyrethroid toxicology: mouse intracerebral structure-toxicity relationships. Pestic Biochem Physiol. 18(1):9–14. doi: 10.1016/0048-3575(82)90082-7.
  • Lazarini CA, Florio JC, Lemonica IP, Bernardi MM. 2001. Effects of prenatal exposure to deltamethrin on forced swimming behavior, motor activity, and striatal dopamine levels in male and female rats. Neurotoxicol Teratol. 23(6):665–673. doi: 10.1016/s0892-0362(01)00170-2.
  • Lee AG, East JM, Balgavy P. 1991. Interactions of insecticides with biological membranes. Pestic Sci. 32(3):317–327. doi: 10.1002/ps.2780320306.
  • Lee I, Eriksson P, Fredriksson A, Buratovic S, Viberg H. 2015. Developmental neurotoxic effects of two pesticides: behavior and neuroprotein studies on endosulfan and cypermethrin. Toxicology. 335:1–10. doi: 10.1016/j.tox.2015.06.010.
  • Li HY, Wu SY, Ma Q, Shi N. 2011. The pesticide deltamethrin increases free radical production and promotes nuclear translocation of the stress response transcription factor Nrf2 in rat brain. Toxicol Ind Health. 27(7):579–590. doi: 10.1177/0748233710393400.
  • Li HY, Wu SY, Shi N. 2007. Transcription factor Nrf2 activation by deltamethrin in PC12 cells: involvement of ROS. Toxicol Lett. 171(1-2):87–98. doi: 10.1016/j.toxlet.2007.04.007.
  • López-Aceves TG, Coballase-Urrutia E, Estrada-Rojo F, Vanoye-Carlo A, Carmona-Aparicio L, Hernández ME, Pedraza-Chaverri J, Navarro L, Aparicio-Trejo OE, Pérez-Torres A, et al. 2021. Exposure to sub-lethal doses of permethrin is associated with neurotoxicity: changes in bioenergetics, redox markers, neuroinflammation and morphology. Toxics. 9(12):337. doi: 10.3390/toxics9120337.
  • Lu Q, Sun Y, Ares I, Anadón A, Martínez M, Martínez-Larrañaga M-R, Yuan Z, Wang X, Martínez M-A. 2019. Deltamethrin toxicity: a review of oxidative stress and metabolism. Environ Res. 170:260–281. doi: 10.1016/j.envres.2018.12.045.
  • Maggioni DA, Signorini ML, Michlig N, Repetti MR, Sigrist ME, Beldomenico HR. 2017. Comprehensive estimate of the theoretical maximum daily intake of pesticide residues for chronic dietary risk assessment in Argentina. J Environ Sci Health B. 52(4):256–266. doi: 10.1080/03601234.2016.1272997.
  • Manna S, Bhattacharyya D, Mandal TK, Das S. 2004. Repeated dose toxicity of alfa-cypermethrin in rats. J Vet Sci. 5(3):241–245. doi: 10.4142/jvs.2004.5.3.241.
  • Manna S, Bhattacharyya D, Mandal TK, Das S. 2005. Repeated dose toxicity of deltamethrin in rats. Indian J Pharmacol. 37(3):160–164. doi: 10.4103/0253-7613.16212.
  • Manna S, Bhattacharyya D, Mandal TK, DAS S. 2006. Sub-chronic toxicity study of alfa-cypermethrin in rats. Iran J Pharmacol Therapeut. 5(2):163–166.
  • Manna S, Bhattacharyya D, Mandal TK, Dey S. 2006. Neuropharmacological effects of deltamethrin in rats. J Vet Sci. 7(2):133–136. doi: 10.4142/jvs.2006.7.2.133.
  • Martinez MA, Lopez-Torres B, Rodriguez JL, Martinez M, Maximiliano JE, Martinez-Larranaga MR, Anadon A, Ares I. 2020. Toxicologic evidence of developmental neurotoxicity of Type II pyrethroids cyfluthrin and alpha-cypermethrin in SH-SY5Y cells. Food Chem Toxicol. 137:111173. doi: 10.1016/j.fct.2020.111173.
  • Mekircha F, Fedeli D, Nasuti C, Kecies H, Gabbianelli R, Bordoni L. 2023. Early-life exposure to commercial formulation containing deltamethrin and cypermethrin insecticides impacts redox system and induces unexpected regional effects in rat offspring brain. Antioxidants. 12(5):1047. doi: 10.3390/antiox12051047.
  • Narahashi T. 2000. Neuroreceptors and ion channels as the basis for drug action: past, present, and future. J Pharmacol Exp Ther. 294(1):1–26.
  • Nasreddine L, Rehaime M, Kassaify Z, Rechmany R, Jaber F. 2016. Dietary exposure to pesticide residues from foods of plant origin and drinks in Lebanon. Environ Monit Assess. 188(8):485. doi: 10.1007/s10661-016-5505-y.
  • Nasuti C, Cantalamessa F, Falcioni G, Gabbianelli R. 2003. Different effects of Type I and Type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology. 191(2-3):233–244. doi: 10.1016/s0300-483x(03)00207-5.
  • Nasuti C, Carloni M, Fedeli D, Di Stefano A, Marinelli L, Cerasa LS, Meda C, Maggi A, Gabbianelli R. 2014. Effect of 17β-estradiol on striatal dopaminergic transmission induced by permethrin in early childhood rats. Chemosphere. 112:496–502. doi: 10.1016/j.chemosphere.2014.05.035.
  • Ogaly HA, Khalaf AA, Ibrahim MA, Galal MK, Abd-Elsalam RM. 2015. Influence of green tea extract on oxidative damage and apoptosis induced by deltamethrin in rat brain. Neurotoxicol Teratol. 50:23–31. doi: 10.1016/j.ntt.2015.05.005.
  • Oikawa D, Kimata Y, Kohno K. 2007. Self-association and BiP dissociation are not sufficient for activation of the ER stress sensor Ire1. J Cell Sci. 120(Pt 9):1681–1688. doi: 10.1242/jcs.002808.
  • Olney JW, Collins RC, Sloviter RS. 1986. Exotoxic mechanisms of epileptic brain damage. Adv Neurol. 44:857–877.
  • Osimitz TG, Sommers N, Kingston R. 2009. Human exposure to insecticide products containing pyrethrins and piperonyl butoxide (2001-2003). Food Chem Toxicol. 47(7):1406–1415. doi: 10.1016/j.fct.2009.03.015.
  • Ostrea EM, Reyes A, Villanueva-Uy E, Pacifico R, Benitez B, Ramos E, Bernardo RC, Bielawski DM, Delaney-Black V, Chiodo L, et al. 2012. Fetal exposure to propoxur and abnormal child neurodevelopment at 2 years of age. Neurotoxicology. 33(4):669–675. doi: 10.1016/j.neuro.2011.11.006.
  • Oulhote Y, Bouchard MF. 2013. Urinary metabolites of organophosphate and pyrethroid pesticides and behavioral problems in canadian children. Environ Health Perspect. 121(11-12):1378–1384. doi: 10.1289/ehp.1306667.
  • Park YS, Park JH, Ko J, Shin IC, Koh HC. 2017. mTOR inhibition by rapamycin protects against deltamethrin-induced apoptosis in PC12 cells. Environ Toxicol. 32(1):109–121. doi: 10.1002/tox.22216.
  • Patro N, Patro IK. 2005. Effects of deltamethrin on granule cell migration during postnatal development of rat cerebellum. Indian J Exp Biol. 43(2):158–162.
  • Patro N, Shrivastava M, Tripathi S, Patro IK. 2009. S100beta upregulation: a possible mechanism of deltamethrin toxicity and motor coordination deficits. Neurotoxicol Teratol. 31(3):169–176. doi: 10.1016/j.ntt.2008.12.001.
  • Pham HC, Navarro-Delmasure C, Clavel P, Haverbeke GV, Cheav SL. 1984. Toxicological studies of deltamethrin. Inter J Tissue React. 6(2):127–133.
  • Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J, Nishigaki I. 2014. Antioxidants and human diseases. Clin Chim Acta. 436:332–347. doi: 10.1016/j.cca.2014.06.004.
  • Ravula AR, Yenugu S. 2021. Pyrethroid based pesticides - chemical and biological aspects. Crit Rev Toxicol. 51(2):117–140. doi: 10.1080/10408444.2021.1879007.
  • Ray DE, Fry JR. 2006. A reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol Ther. 111(1):174–193. doi: 10.1016/j.pharmthera.2005.10.003.
  • Richardson JR, Taylor MM, Shalat SL, Guillot TS, 3rd, Caudle WM, Hossain MM, Mathews TA, Jones SR, Cory-Slechta DA, Miller GW. 2015. Developmental pesticide exposure reproduces features of attention deficit hyperactivity disorder. Faseb J. 29(5):1960–1972. doi: 10.1096/fj.14-260901.
  • Romero A, Ramos E, Castellano V, Martinez MA, Ares I, Martinez M, Martinez-Larranaga MR, Anadon A. 2012. Cytotoxicity induced by deltamethrin and its metabolites in SH-SY5Y cells can be differentially prevented by selected antioxidants. Toxicol in Vitro. 26(6):823–830. doi: 10.1016/j.tiv.2012.05.004.
  • Ryan KR, Sirenko O, Parham F, Hsieh JH, Cromwell EF, Tice RR, Behl M. 2016. Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity. Neurotoxicol. 53:271–281. doi: 10.1016/j.neuro.2016.02.003.
  • Saillenfait A-M, Ndiaye D, Sabaté J-P. 2015. Pyrethroids: exposure and health effects-an update. Int J Hyg Environ Health. 218(3):281–292. doi: 10.1016/j.ijheh.2015.01.002.
  • Schmahmann JD. 2010. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 20(3):236–260. doi: 10.1007/s11065-010-9142-x.
  • Schwaller B, Meyer M, Schiffmann S. 2002. New’ functions for 'old’ proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum. 1(4):241–258. doi: 10.1080/147342202320883551.
  • Sergaki CM, Guillemot F, Matsas R. 2010. Impaired cerebellar development and deficits in motor coordination in mice lacking the neuronal protein BM88/Cend1. Mol Cell Neurosci. 44(1):15–29. doi: 10.1016/j.mcn.2010.01.011.
  • Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Ritz B, Hansen RL, Hertz-Picciotto I. 2014. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the charge study. Environ Health Perspect. 122(10):1103–1109. doi: 10.1289/ehp.1307044.
  • Shi H, Hudson LG, Liu KJ. 2004. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med. 37(5):582–593. doi: 10.1016/j.freeradbiomed.2004.03.012.
  • Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP. 2012. Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging. 33(2):404–415. doi: 10.1016/j.neurobiolaging.2010.02.018.
  • Sinha C, Seth K, Islam F, Chaturvedi RK, Shukla S, Mathur N, Srivastava N, Agrawal AK. 2006. Behavioral and neurochemical effects induced by pyrethroid-based mosquito repellent exposure in rat offsprings during prenatal and early postnatal period. Neurotoxicol Teratol. 28(4):472–481. doi: 10.1016/j.ntt.2006.03.005.
  • Soderlund DM. 2012. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol. 86(2):165–181. doi: 10.1007/s00204-011-0726-x.
  • Sukanya N, Doss PJ. 2013. Neurotoxic effects of cypermethrin in wistar strain rats: detoxification mechanisms. CIBTech J Zool. 2(3):37–43.
  • Syed F, John PJ, Soni I. 2016. Neurodevelopmental consequences of gestational and lactational exposure to pyrethroids in rats. Environ Toxicol. 31(12):1761–1770. doi: 10.1002/tox.22178.
  • Symington SB, Toltin AC, Murenzi E, Lansky D, Clark JM. 2023. Determination of potential toxicodynamic differences of pyrethroid insecticides on native voltage-sensitive sodium channels in juvenile versus adult rat brain. Pestic Biochem Physiol. 189:105296. doi: 10.1016/j.pestbp.2022.105296.
  • Tiwari MN, Singh AK, Ahmad I, Upadhyay G, Singh D, Patel DK, Singh C, Prakash O, Singh MP. 2010. Effects of cypermethrin on monoamine transporters, xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free Radic Res. 44(12):1416–1424. doi: 10.3109/10715762.2010.512041.
  • Tran V, Hoffman N, Mofunanaya A, Pryor SC, Ojugbele O, McLaughlin A, Gibson L, Bonventre JA, Flynn K, Weeks BS. 2006. Bifenthrin inhibits neurite outgrowth in differentiating PC12 cells. Med Sci Monit. 12(2):BR57–62.
  • Tsakiris S, Angelogianni P, Schulpis KH, Stavridis JC. 2000. Protective effect of L-phenylalanine on rat brain acetylcholinesterase inhibition induced by free radicals. Clin Biochem. 33(2):103–106. doi: 10.1016/s0009-9120(99)00090-9.
  • Vanacker M, Quindroit P, Angeli K, Mandin C, Glorennec P, Brochot C, Crépet A. 2020. Aggregate and cumulative chronic risk assessment for pyrethroids in the French adult population. Food Chem Toxicol. 143:111519. doi: 10.1016/j.fct.2020.111519.
  • Vences-Mejía A, Gómez-Garduño J, Caballero-Ortega H, Dorado-González V, Nosti-Palacios R, Labra-Ruíz N, Espinosa-Aguirre JJ. 2012. Effect of mosquito mats (pyrethroid-based) vapor inhalation on rat brain cytochrome P450s. Toxicol Mech Methods. 22(1):41–46. doi: 10.3109/15376516.2011.591448.
  • Viel JF, Rouget F, Warembourg C, Monfort C, Limon G, Cordier S, Chevrier C. 2017. Behavioural disorders in 6-year-old children and pyrethroid insecticide exposure: the PELAGIE mother-child cohort. Occup Environ Med. 74(4):275–281. doi: 10.1136/oemed-2016-104035.
  • Wagner-Schuman M, Richardson JR, Auinger P, Braun JM, Lanphear BP, Epstein JN, Yolton K, Froehlich TE. 2015. Association of pyrethroid pesticide exposure with attention-deficit/hyperactivity disorder in a nationally representative sample of U.S. children. Environ Health. 14:44. doi: 10.1186/s12940-015-0030-y.
  • Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B. 2006. Tumor necrosis factor α triggers proliferation of adult neural stem cells via IKK/NF-κB signaling. BMC Neurosci. 7(1):64–64. doi: 10.1186/1471-2202-7-64.
  • Woodruff-Pak DS, Foy MR, Akopian GG, Lee KH, Zach J, Nguyen K, Comalli DM, Kennard JA, Agelan A, Thompson RF. 2010. Differential effects and rates of normal aging in cerebellum and hippocampus. Proc Natl Acad Sci U S A. 107(4):1624–1629. doi: 10.1073/pnas.0914207107.
  • Xu Y, Yang X, Chen D, Xu Y, Lan L, Zhao S, Liu Q, Snijders AM, Xia Y. 2023. Maternal exposure to pesticides and autism or attention-deficit/hyperactivity disorders in offspring: a meta-analysis. Chemosphere. 313:137459. doi: 10.1016/j.chemosphere.2022.137459.
  • Yadav S, Johri A, Dhawan A, Seth PK, Parmar D. 2006. Regional specificity in deltamethrin induced cytochrome P450 expression in rat brain. Toxicol Appl Pharmacol. 217(1):15–24. doi: 10.1016/j.taap.2006.07.008.
  • Yahia D, Ali MF. 2018. Assessment of neurohepatic DNA damage in male Sprague-Dawley rats exposed to organophosphates and pyrethroid insecticides. Environ Sci Pollut Res Int. 25(16):15616–15629. doi: 10.1007/s11356-018-1776-x.
  • Zhao X, Dai S, Chen G. 1995. Inhibition of glutamate uptake in rat brain synaptosome by pyrethroids. Chin J Prevent Med. 29(2):89.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.