2,237
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny – Part IV: the ECETOC and CLE Proposal for a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS)

, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 339-371 | Received 14 Mar 2023, Accepted 22 Jun 2023, Published online: 09 Aug 2023

References

  • Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, et al. 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 29(3):730–741. doi: 10.1002/etc.34.
  • Ball N, Bars R, Botham PA, Cuciureanu A, Cronin MTD, Doe JE, Dudzina T, Gant TW, Leist M, van Ravenzwaay B. 2022. A framework for chemical safety assessment incorporating new approach methodologies within REACH. Arch Toxicol. 96(3):743–766. doi: 10.1007/s00204-021-03215-9.
  • Bartsch R, Brinkmann B, Jahnke G, Laube B, Lohmann R, Michaelsen S, Neumann I, Greim H. 2018. Human relevance of follicular thyroid tumors in rodents caused by non-genotoxic substances. Regul Toxicol Pharmacol. 98:199–208. doi: 10.1016/j.yrtph.2018.07.025.
  • Beekhuijzen M, Rijk JCW, Meijer M, de Raaf MA, Pelgrom S. 2019. A critical evaluation of thyroid hormone measurements in OECD test guideline studies: is there any added value? Reprod Toxicol. 88:56–66. doi: 10.1016/j.reprotox.2019.07.014.
  • Beyer BK, Chernoff N, Danielsson BR, Davis-Bruno K, Harrouk W, Hood RD, Janer G, Liminga UW, Kim JH, Rocca M, et al. 2011. ILSI/HESI maternal toxicity workshop summary: maternal toxicity and its impact on study design and data interpretation. Birth Defects Res B Dev Reprod Toxicol. 92(1):36–51. doi: 10.1002/bdrb.20281.
  • Bomann W, Tinwell H, Jenkinson P, Kluxen FM. 2021. Metribuzin-induced non-adverse liver changes result in rodent-specific non-adverse thyroid effects via uridine 5’-diphospho-glucuronosyltransferase (UDPGT, UGT) modulation. Regul Toxicol Pharmacol. 122:104884. doi: 10.1016/j.yrtph.2021.104884.
  • Bowers WJ, Wall PM, Nakai JS, Yagminas A, Wade M, Li N. 2015. Behavioral and thyroid effects of in utero and lactational exposure of Sprague-Dawley rats to the polybrominated diphenyl ether mixture DE71. Neurotoxicol Teratol. 52(Pt B):127–142. doi: 10.1016/j.ntt.2015.08.002.
  • Buckalew AR, Wang J, Murr AS, Deisenroth C, Stewart WM, Stoker TE, Laws SC. 2020. Evaluation of potential sodium-iodide symporter (NIS) inhibitors using a secondary Fischer rat thyroid follicular cell (FRTL-5) radioactive iodide uptake (RAIU) assay. Arch Toxicol. 94(3):873–885. doi: 10.1007/s00204-020-02664-y.
  • Cavalieri RR, Pitt-Rivers R. 1981. The effects of drugs on the distribution and metabolism of thyroid hormones. Pharmacol Rev. 33(2):55–80.
  • Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, Lau CS, Singh RJ, Wallace KB, Butenhoff JL. 2007. Negative bias from analog methods used in the analysis of free thyroxine in rat serum containing perfluorooctanesulfonate (PFOS). Toxicology. 234(1–2):21–33. doi: 10.1016/j.tox.2007.01.020.
  • Chang SC, Thibodeaux JR, Eastvold ML, Ehresman DJ, Bjork JA, Froehlich JW, Lau C, Singh RJ, Wallace KB, Butenhoff JL. 2008. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS). Toxicology. 243(3):330–339. doi: 10.1016/j.tox.2007.10.014.
  • Chen ZP, Hetzel BS. 2010. Cretinism revisited. Best Pract Res Clin Endocrinol Metab. 24(1):39–50. doi: 10.1016/j.beem.2009.08.014.
  • Collet B, Simon E, van der Linden S, El Abdellaoui N, Naderman M, Man HY, Middelhof I, van der Burg B, Besselink H, Brouwer A. 2020. Evaluation of a panel of in vitro methods for assessing thyroid receptor β and transthyretin transporter disrupting activities. Reprod Toxicol. 96:432–444. doi: 10.1016/j.reprotox.2019.05.011.
  • Crofton KM, Gilbert M, Friedman KP, Demeneix B, Marty MS, Zoeller RT. 2019. Adverse outcome pathway on inhibition of thyroperoxidase and subsequent adverse neurodevelopmental outcomes in mammals. OECD Series on adverse outcome pathways No. 13. Paris: OECD.
  • Crofton KM, Kodavanti PR, Derr-Yellin EC, Casey AC, Kehn LS. 2000. PCBs, thyroid hormones, and ototoxicity in rats: cross-fostering experiments demonstrate the impact of postnatal lactation exposure. Toxicol Sci. 57(1):131–140. doi: 10.1093/toxsci/57.1.131.
  • Crofton KM, Zoeller RT. 2005. Mode of action: neurotoxicity induced by thyroid hormone disruption during development - hearing loss resulting from exposure to PHAHs. Crit Rev Toxicol. 35(8-9):757–769. doi: 10.1080/10408440591007304.
  • Curran PG, DeGroot LJ. 1991. The effect of hepatic enzyme-inducing drugs on thyroid hormones and the thyroid gland. Endocr Rev. 12(2):135–150. doi: 10.1210/edrv-12-2-135.
  • Deisenroth C, Soldatow VY, Ford J, Stewart W, Brinkman C, LeCluyse EL, MacMillan DK, Thomas RS. 2020. Development of an in vitro human thyroid microtissue model for chemical screening. Toxicol Sci. 174(1):63–78. doi: 10.1093/toxsci/kfz238.
  • Dracheva E, Norinder U, Rydén P, Engelhardt J, Weiss JM, Andersson PL. 2022. In silico identification of potential thyroid hormone system disruptors among chemicals in human serum and chemicals with a high exposure index. Environ Sci Technol. 56(12):8363–8372. doi: 10.1021/acs.est.1c07762.
  • [ECETOC] European Centre for Ecotoxicology and Toxicology of Chemicals. 2021. Technical Report No. 138. ECETOC Guidance on dose selection. Brussels (Belgium): ECETOC.
  • [ECHA] European Chemicals Agency. 2017. Read-Across Assessment Framework (RAAF). ECHA-17-R-01-EN. March 2017.
  • [EFSA] European Food Safety Authority. 2019a. Scientific Report on the establishment of cumulative assessment groups of pesticides for their effects on the thyroid (Crivellente F, Hart A, Hernandez-Jerez AF, Hougaard Bennekou S, Pedersen R, Terron A, Wolterink G, Mohimont L). EFSA J. 17(9):5801.
  • [EFSA] European Food Safety Authority. 2019b. Administrative guidance on submission of dossiers and assessment reports for the peer-review of pesticide active substances. EFSA supporting publication 2019:EN-1612.
  • [EFSA] European Food Safety Authority. 2020. Technical report on the outcome of the pesticides peer review meeting on general recurring issues in mammalian toxicology. EFSA supporting publication 2020:EN-1837.
  • [EFSA and ECHA] European Food Safety Authority and European Chemicals Agency with the technical support of the Joint Research Centre. 2018. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009 (Andersson N, Arena M, Auteri D, Barmaz S, Grignard E, Kienzler A, Lepper P, Lostia AM, Munn S, Parra Morte JM, et al.). ECHA-18-G-01-EN; EFSA J. 16:1661–1170.
  • [EFSA SC] European Food Safety Authority Scientific Committee. 2017. Scientific opinion on the guidance on the use of the weight of evidence approach in scientific assessments (Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, et al.). EFSA J. 15(8):4971.
  • EP and Council. 2006. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. OJ L. 396:1. 30 December 2006
  • EP and Council. 2009. Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. OJ L. 309:1–50.
  • EP and Council. 2010. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. OJ EU L. 276:33.
  • EP and Council. 2012. Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. OJ L. 167:1. 27 June 2012.
  • European Commission. 2013. Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. OJ L. 93:1.
  • European Commission. 2017. Commission Delegated Regulation (EU) 2017/2100 of 4 September 2017 setting out scientific criteria for the determination of endocrine-disrupting properties pursuant to Regulation (EU) No 528/2012 of the European Parliament and Council. OJ EU L. 60:1–12.
  • European Commission. 2018. Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out criteria for the determination of endocrine disrupting properties. OJ EU L. 101:33–36.
  • Felter SP, Bhat VS, Botham PA, Bussard DA, Casey W, Hayes AW, Hilton GM, Magurany KA, Sauer UG, Ohanian EV. 2021. Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop. Crit Rev Toxicol. 51(8):653–694. doi: 10.1080/10408444.2021.2003295.
  • Filer DL, Kothiya P, Setzer RW, Judson RS, Martin MT. 2017. tcpl: the ToxCast pipeline for high-throughput screening data. Bioinformatics. 33(4):618–620. doi: 10.1093/bioinformatics/btw680.
  • Ford J, Riutta C, Kosian PA, O’Shaughessy K, Gilbert M. 2023. Reducing uncertainties in quantitative adverse outcome pathways by analysis of thyroid hormone in the neonatal rat brain. Toxicol Sci. 193(2):192–203. 2023 Apr 26: doi: 10.1093/toxsci/kfad040.
  • Foster JR, Tinwell H, Melching-Kollmuss S. 2021. A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Arch Toxicol. 95(3):807–836. doi: 10.1007/s00204-020-02961-6.
  • Franzosa JA, Bonzo JA, Jack J, Baker NC, Kothiya P, Witek RP, Hurban P, Siferd S, Hester S, Shah I, et al. 2021. High-throughput toxicogenomic screening of chemicals in the environment using metabolically competent hepatic cell cultures. NPJ Syst Biol Appl. 7(1):7. doi: 10.1038/s41540-020-00166-2.
  • Gadaleta D, d‘Alessandro L, Marzo M, Benfenati E, Roncaglioni A. 2021. Quantitative structure-activity relationship modeling of the Amplex Ultrared Assay to predict thyroperoxidase inhibitory activity. Front Pharmacol. 12:713037. doi: 10.3389/fphar.2021.713037.
  • Garcia de Lomana M, Weber AG, Birk B, Landsiedel R, Achenbach J, Schleifer KJ, Mathea M, Kirchmair J. 2021. In silico models to predict the perturbation of molecular initiating events related to thyroid hormone homeostasis. Chem Res Toxicol. 34(2):396–411. doi: 10.1021/acs.chemrestox.0c00304.
  • Gilbert ME, Rovet J, Chen Z, Koibuchi N. 2012. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicol. 33(4):842–852. doi: 10.1016/j.neuro.2011.11.005.
  • Gilbert ME, Ramos RL, McCloskey DP, Goodman JH. 2014. Subcortical band heterotopia in rat offspring following maternal hypothyroxinaemia: structural and functional characteristics. J Neuroendocrinol. 26(8):528–541. doi: 10.1111/jne.12169.
  • Gilbert ME, O'Shaughnessy KL, Axelstad M. 2020. Regulation of thyroid-disrupting chemicals to protect the developing brain. Endocrinol. 161(10):bqaa106.
  • Gilbert ME, O'Shaughnessy KL, Thomas SE, Riutta C, Wood CR, Smith A, Oshiro WO, Ford RL, Hotchkiss M, Hassan I. 2021. Thyroid disruptors: extrathyroidal sites of chemical action and neurodevelopmental outcome - an examination using triclosan and perfluorohexane sulfonate (PFHxS). Toxicol Sci. 16:kfab080.
  • Goldey ES, Kehn LS, Lau C, Rehnberg GL, Crofton KM. 1995. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol Appl Pharmacol. 135(1):77–88. doi: 10.1006/taap.1995.1210.
  • Goodman JH, Gilbert ME. 2007. Modest thyroid hormone insufficiency during development induces a cellular malformation in the corpus callosum: a model for cortical dysplasia. Endocrinol. 148(6):2593–2597. doi: 10.1210/en.2006-1276.
  • Hall AP, Elcombe CR, Foster JR, Harada T, Kaufmann W, Knippel A, Küttler K, Malarkey DE, Maronpot RR, Nishikawa A, et al. 2012. Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes - conclusions from the 3rd International ESTP Expert Workshop. Toxicol Pathol. 40(7):971–994. doi: 10.1177/0192623312448935.
  • Hallinger DR, Murr AS, Buckalew AR, Simmons SO, Stoker TE, Laws SC. 2017. Development of a screening approach to detect thyroid disrupting chemicals that inhibit the human sodium iodide symporter (NIS). Toxicol In Vitro. 40:66–78. doi: 10.1016/j.tiv.2016.12.006.
  • Handa S, Hassan I, Gilbert M, El-Masri H. 2021. Mechanistic computational model for extrapolating in vitro thyroid peroxidase (TPO) inhibition data to predict serum thyroid hormone levels in rats. Toxicol Sci. 183(1):36–48. doi: 10.1093/toxsci/kfab074.
  • Hassan I, El-Masri H, Kosian PA, Ford J, Degitz SJ, Gilbert ME. 2017. Neurodevelopment and thyroid hormone synthesis inhibition in the rat: quantitative understanding within the adverse outcome pathway framework. Toxicol Sci. 160(1):57–73. doi: 10.1093/toxsci/kfx163.
  • He G, Tsutsumi T, Zhao B, Baston DS, Zhao J, Heath-Pagliuso S, Denison MS. 2011. Third-generation Ah receptor–responsive luciferase reporter plasmids: amplification of dioxin-responsive elements dramatically increases CALUX bioassay sensitivity and responsiveness. Toxicol Sci. 123(2):511–522. doi: 10.1093/toxsci/kfr189.
  • Hornung MW, Korte JJ, Olker JH, Denny JS, Knutsen C, Hartig PC, Cardon MC, Degitz SJ. 2018. Screening the ToxCast phase 1 chemical library for inhibition of deiodinase type 1 activity. Toxicol Sci. 162(2):570–581. doi: 10.1093/toxsci/kfx279.
  • [JRC] Joint Research Centre. 2023. Validation of a battery of mechanistic methods relevant for the detection of chemicals that can disrupt the thyroid hormone system. (Bernasconi C, Langezaal I, Bartnicka J, Asturiol D, Bowe G, Coecke S, Kienzler A, Liska R, Milcamps A, Munoz Pineiro A, Pistollato F, Whelan M). JRC Technical Report. JRC132532/EUR 31456 EN, Publications Office of the European Union.
  • Jomaa B, Aarts JM, de Haan LH, Peijnenburg AA, Bovee TF, Murk AJ, Rietjens IM. 2013. In vitro pituitary and thyroid cell proliferation assays and their relevance as alternatives to animal testing. ALTEX. 30(3):293–307. doi: 10.14573/altex.2013.3.293.
  • Judson R, Houck K, Martin M, Richard AM, Knudsen TB, Shah I, Little S, Wambaugh J, Setzer RW, Kothiya P, et al. 2016. Analysis of the effects of cell stress and cytotoxicity on in vitro assay activity across a diverse chemical and assay space. TOXICOL SCI. 153(2):409. Erratum for: TOXICOL SCI. 2016. 152(2):323–39. doi: 10.1093/toxsci/kfw148.
  • Karwelat D, Kühnlenz J, Steger-Hartmann T, Bars R, Tinwell H, Marx U, Bauer S, Born O, Raschke M. 2023. A rodent thyroid-liver chip to capture thyroid toxicity on organ functional level. ALTEX. 40(1):83–102. doi: 10.14573/altex.2108262.
  • Knapen D, Angrish MM, Fortin MC, Katsiadaki I, Leonard M, Margiotta-Casaluci L, Munn S, O'Brien JM, Pollesch N, Smith LC, et al. 2018. Adverse outcome pathway networks I: development and applications. Environ Toxicol Chem. 37(6):1723–1733. doi: 10.1002/etc.4125.
  • Kodavanti PR, Coburn CG, Moser VC, MacPhail RC, Fenton SE, Stoker TE, Rayner JL, Kannan K, Birnbaum LS. 2010. Developmental exposure to a commercial PBDE mixture, DE-71: neurobehavioral, hormonal, and reproductive effects. Toxicol Sci. 116(1):297–312. doi: 10.1093/toxsci/kfq105.
  • Kortenkamp A, Axelstad M, Baig AH, Bergman A, Bornehag C-G, Cenijn P, Christiansen S, Demeneix B, Derakhshan A, Fini JB, et al. 2020. Removing critical gaps in chemical test methods by developing new assays for the identification of thyroid hormone system – Disrupting chemicals – The ATHENA Project. IJMS. 21(9):3123. doi: 10.3390/ijms21093123.
  • Kühnlenz J, Karwelat D, Steger-Hartmann T, Raschke M, Bauer S, Vural Ö, Marx U, Tinwell H, Bars R. 2023. A microfluidic thyroid-liver platform to assess chemical safety in humans. ALTEX. 40(1):61–82.
  • Leonard JA, Tan YM, Gilbert M, Isaacs K, El-Masri H. 2016. Estimating margin of exposure to thyroid peroxidase inhibitors using high-throughput in vitro data, high-throughput exposure modeling, and physiologically based pharmacokinetic/pharmacodynamic modeling. Toxicol Sci. 151(1):57–70. doi: 10.1093/toxsci/kfw022.
  • Lewis RW, Billington R, Debryune E, Gamer A, Lang B, Carpanini F. 2002. Recognition of adverse and nonadverse effects in toxicity studies. Toxicol Pathol. 30(1):66–74. doi: 10.1080/01926230252824725.
  • Li J, Wang X, Yan Y, Wang K, Qin D, Xin Z, Wei J. 1986. The effects of a severely iodine deficient diet derived from an endemic area on fetal brain development in the rat. Neuropathol Appl Neurobiol. 12(3):261–276. doi: 10.1111/j.1365-2990.1986.tb00139.x.
  • Li H, Zhang M, Vervoort J, Rietjens IM, van Ravenzwaay B, Louisse J. 2017. Use of physiologically based kinetic modeling-facilitated reverse dosimetry of in vitro toxicity data for prediction of in vivo developmental toxicity of tebuconazole in rats. Toxicol Lett. 266:85–93. doi: 10.1016/j.toxlet.2016.11.017.
  • Li AA, Makris SL, Marty MS, Strauss V, Gilbert ME, Blacker A, Zorrilla LM, Coder PS, Hannas B, Lordi S, et al. 2019. Practical considerations for developmental thyroid toxicity assessments: what’s working, what’s not, and how can we do better? Regul Toxicol Pharmacol. 106:111–136. doi: 10.1016/j.yrtph.2019.04.010.
  • Louisse J, Beekmann K, Rietjens IM. 2017. Use of physiologically based kinetic modeling-based reverse dosimetry to predict in vivo toxicity from in vitro data. Chem Res Toxicol. 30(1):114–125. doi: 10.1021/acs.chemrestox.6b00302.
  • Maglich JM, Parks DJ, Moore LB, Collins JL, Goodwin B, Billin AN, Stoltz CA, Kliewer SA, Lambert MH, Willson TM, et al. 2003. Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J Biol Chem. 278(19):17277–17283. doi: 10.1074/jbc.M300138200.
  • Marty S, Beekhuijzen M, Charlton A, Hallmark N, Hannas BR, Jacobi S, Melching-Kollmuss S, Sauer UG, Sheets LP, Strauss V, et al. 2021. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - part II: how can key events of relevant adverse outcome pathways be addressed in toxicological assessments? Crit Rev Toxicol. 51(4):328–358. doi: 10.1080/10408444.2021.1910625.
  • Marty S, Sauer UG, Charlton A, Ghaffari R, Guignard D, Hallmark N, Hannas BR, Jacobi S, Marxfeld H-A, Melching-Kollmuss S, et al. 2022. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny – part III: how is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelopmental effects? Crit Rev Toxicol. 52(7):546–617. doi: 10.1080/10408444.2022.2130166.
  • Meek ME, Boobis A, Cote I, Dellarco V, Fotakis G, Munn S, Seed J, Vickers C. 2014. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J Appl Toxicol. 34(1):1–18. doi: 10.1002/jat.2949.
  • Meek ME, Palermo CM, Bachman AN, North CM, Jeffrey Lewis R. 2014. Mode of action human relevance (species concordance) framework: evolution of the Bradford Hill considerations and comparative analysis of weight of evidence. J Appl Toxicol. 34(6):595–606. doi: 10.1002/jat.2984.
  • Moroni L, Barbaro F, Caiment F, Coleman O, Costagliola S, Conza GD, Elviri L, Giselbrecht S, Krause C, Mota C, et al. 2020. SCREENED: a multistage model of thyroid gland function for screening endocrine-disrupting chemicals in a biologically sex-specific manner. IJMS. 21(10):3648. doi: 10.3390/ijms21103648.
  • Morse DC, Wehler EK, Wesseling W, Koeman JH, Brouwer A. 1996. Alterations in rat brain thyroid hormone status following pre- and postnatal exposure to polychlorinated biphenyls (Aroclor 1254). Toxicol Appl Pharmacol. 136(2):269–279. doi: 10.1006/taap.1996.0034.
  • Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Jr, Crofton KM, Laws SC, Stoker TE, et al. 2019. Evaluating chemicals for thyroid disruption: opportunities and challenges with in vitro testing and adverse outcome pathway approaches. Environ Health Perspect. 127(9):95001. doi: 10.1289/EHP5297.
  • O'Shaughnessy KL, Kosian PA, Ford JL, Oshiro WM, Degitz SJ, Gilbert ME. 2018. Developmental thyroid hormone insufficiency induces a cortical brain malformation and learning impairments: a cross-fostering study. Toxicol Sci. 163(1):101–115. doi: 10.1093/toxsci/kfy016.
  • O'Shaughnessy KL, Thomas SE, Spring ST, Ford JL, Ford RL, Gilbert ME. 2019. A transient window of hypothyroidism alters neural progenitor cells and results in abnormal brain development. Sci Rep. 9(1):4662. doi: 10.1038/s41598-019-40249-7.
  • O'Shaughnessy KL, Gilbert ME. 2020. Thyroid disrupting chemicals and developmental neurotoxicity - new tools and approaches to evaluate hormone action. Mol Cell Endocrinol. 518:110663. doi: 10.1016/j.mce.2019.110663.
  • [OECD] Organisation for Economic Co-operation and Development. 2000. Series on testing and assessment No. 19. Guidance Document on the recognition, assessment and use of clinical signs as humane endpoints for experimental animals used in safety evaluation. ENV/JM/MONO(2000)7. Paris: OECD Publishing.
  • [OECD] Organisation for Economic Cooperation and Development. 2002. Series on Testing and Assessment No. 35 and Series on Pesticides No. 14. Guidance notes for analysis and evaluation of chronic toxicity and carcinogenicity studies. ENV/JM/MONO(2002)19. Paris: OECD Publishing.
  • [OECD] Organisation for Economic Cooperation and Development. 2012. Conceptual Framework for testing and assessment of endocrine disruptors (as revised in 2012); https://www.oecd.org/env/ehs/testing/OECD%20Conceptual%20Framework%20for%20Testing%20and%20Assessment%20of%20Endocrine%20Disrupters%20for%20the%20public%20website.pdf [accessed 2023 May].
  • [OECD] Organisation for Economic Cooperation and Development. 2017. Series on testing and assessment No. 184. Revised guidance document on developing and assessing adverse outcome pathways. ENV/JM/MONO(2013)6. Paris: OECD Publishing.
  • [OECD] Organisation for Economic Cooperation and Development. 2018. Series on testing and assessment. Revised Guidance Document No. 150 on standardised test guidelines for evaluating chemicals for endocrine disruption. Paris: OECD Publishing.
  • Olker JH, Korte JJ, Denny JS, Hartig PC, Cardon MC, Knutsen CN, Kent PM, Christensen JP, Degitz SJ, Hornung MW. 2019. Screening the ToxCast Phase 1, Phase 2, and e1k Chemical Libraries for inhibitors of iodothyronine deiodinases. Toxicol Sci. 168(2):430–442. doi: 10.1093/toxsci/kfy302.
  • Papineni S, Marty MS, Rasoulpour RJ, LeBaron MJ, Pottenger LH, Eisenbrandt DL. 2015. Mode of action and human relevance of pronamide-induced rat thyroid tumors. Regul Toxicol Pharmacol. 71(3):541–551. doi: 10.1016/j.yrtph.2015.02.012.
  • Parmentier C, Baze A, Untrau M, Kampkoetter A, Lasserre D, Richert L. 2022. Evaluation of human relevance of Nicofluprole-induced rat thyroid disruption. Toxicol Appl Pharmacol. 435:115831. doi: 10.1016/j.taap.2021.115831.
  • Paul KB, Hedge JM, Macherla C, Filer DL, Burgess E, Simmons SO, Crofton KM, Hornung MW. 2013. Cross-species analysis of thyroperoxidase inhibition by xenobiotics demonstrates conservation of response between pig and rat. Toxicol. 312:97–107. doi: 10.1016/j.tox.2013.08.006.
  • Paul Friedman K, Watt ED, Hornung MW, Hedge JM, Judson RS, Crofton KM, Houck KA, Simmons SO. 2016. Tiered high-throughput screening approach to identify thyroperoxidase inhibitors within the ToxCast phase I and II chemical libraries. Toxicol Sci. 151(1):160–180. doi: 10.1093/toxsci/kfw034.
  • Paul-Friedman K, Martin M, Crofton KM, Hsu C-W, Sakamuru S, Zhao J, Xia M, Huang R, Stavreva DA, Soni V, et al. 2019. Limited chemical structural diversity found to modulate thyroid hormone receptor in the Tox21 Chemical Library. Env Health Perspect. 127(9):97009.
  • Plummer S, Beaumont B, Elcombe M, Wallace S, Wright J, Mcinnes EF, Currie RA, Cowie D. 2021. Species differences in phenobarbital-mediated UGT gene induction in rat and human liver microtissues. Toxicol Rep. 8:155–161. doi: 10.1016/j.toxrep.2020.12.019.
  • Raffaele KC, Rowland J, May B, Makris SL, Schumacher K, Scarano LJ. 2010. The use of developmental neurotoxicity data in pesticide risk assessments. Neurotoxicol Teratol. 32(5):563–572. doi: 10.1016/j.ntt.2010.04.053.
  • Ramhøj L, Hass U, Boberg J, Scholze M, Christiansen S, Nielsen F, Axelstad M. 2018. Perfluorohexane sulfonate (PFHxS) and a mixture of endocrine disrupters reduce thyroxine levels and cause antiandrogenic effects in rats. Toxicol Sci. 163(2):579–591. doi: 10.1093/toxsci/kfy055.
  • Ramhøj L, Hass U, Gilbert ME, Wood C, Svingen T, Usai D, Vinggaard AM, Mandrup K, Axelstad M. 2020. Evaluating thyroid hormone disruption: investigations of long-term neurodevelopmental effects in rats after perinatal exposure to perfluorohexane sulfonate (PFHxS). Sci Rep. 10(1):2672. doi: 10.1038/s41598-020-59354-z.
  • Renko K, Schäche S, Hoefig CS, Welsink T, Schwiebert C, Braun D, Becker N-P, Köhrle J, Schomburg L. 2015. An improved nonradioactive screening method identifies genistein and xanthohumol as potent inhibitors of iodothyronine deiodinases. Thyroid. 25(8):962–968. doi: 10.1089/thy.2015.0058.
  • Richardson VM, Ferguson SS, Sey YM, Devito MJ. 2014. In vitro metabolism of thyroxine by rat and human hepatocytes. Xenobiotica. 44(5):391–403. doi: 10.3109/00498254.2013.847990.
  • Rolaki A, Pistollato F, Munn S, Price AB. 2019. Adverse outcome pathway on inhibition of Na+/I- symporter (NIS) leads to learning and memory impairment. OECD Series on adverse outcome pathways No. 14; Paris: OECD.
  • Romanov S, Medvedev A, Gambarian M, Poltoratskaya N, Moeser M, Medvedeva L, Gambarian M, Diatchenko L, Makarov S. 2008. Homogeneous reporter system enables quantitative functional assessment of multiple transcription factors. Nat Methods. 5(3):253–260. doi: 10.1038/nmeth.1186.
  • Rosenfeld JM, Vargas R, Jr, Xie W, Evans RM. 2003. Genetic profiling defines the xenobiotic gene network controlled by the nuclear receptor pregnane X receptor. Mol Endocrinol. 17(7):1268–1282. doi: 10.1210/me.2002-0421.
  • Russell WMS, Burch RL. 1959. The principles of humane experimental technique. London. Methuen. Reprinted by UFAW, 1992: 8 Hamilton Close, South Mimms, Potters Bar, Herts EN6 3QD England. p. 238.
  • Salas-Lucia F, Pacheco-Torres J, González-Granero S, García-Verdugo JM, Berbel P. 2020. Transient hypothyroidism during lactation alters the development of the corpus callosum in rats. An in vivo magnetic resonance image and electron microscopy study. Front Neuroanat. 14:33. doi: 10.3389/fnana.2020.00033.
  • Sauer UG, Asiimwe A, Botham PA, Charlton A, Hallmark N, Jacobi S, Marty S, Melching-Kollmuss S, Palha JA, Strauss V, et al. 2020. Toward a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny – part I: which parameters from human studies are most relevant for toxicological assessments? Crit Rev Toxicol. 50(9):740–763. doi: 10.1080/10408444.2020.1839380.
  • Sewell F, Kimber I, Boobis AR. 2020. Use of the kinetically-derived maximum dose: opportunities for delivering 3Rs benefits. Regul Toxicol Pharmacol. 116:104734. doi: 10.1016/j.yrtph.2020.104734.
  • Sewell F, Corvaro M, Andrus A, Burke J, Daston G, Delaney B, Domoradzki J, Forlini C, Green ML, Hofmann T, et al. 2022. Recommendations on dose level selection for repeat dose toxicity studies. Arch Toxicol. 96(7):1921–1934. doi: 10.1007/s00204-022-03293-3.
  • Shibutani M, Woo GH, Fujimoto H, Saegusa Y, Takahashi M, Inoue K, Hirose M, Nishikawa A. 2009. Assessment of developmental effects of hypothyroidism in rats from in utero and lactation exposure to anti-thyroid agents. Reprod Toxicol. 28(3):297–307. doi: 10.1016/j.reprotox.2009.04.011.
  • Smith PF, Grossman SJ, Gerson RJ, Gordon LR, Deluca JG, Majka JA, Wang RW, Germershausen JI, MacDonald JS. 1991. Studies on the mechanism of simvastatin-induced thyroid hypertrophy and follicular cell adenoma in the rat. Toxicol Pathol. 19(3):197–205. doi: 10.1177/019262339101900301.
  • Strupp C, Quesnot N, Weber-Parmentier C, Richert L, Bomann WH, Singh P. 2020. Weight of evidence and human relevance evaluation of the Benfluralin mode of action in rats (Part II): thyroid carcinogenesis. Regul Toxicol Pharmacol. 117:104736. doi: 10.1016/j.yrtph.2020.104736.
  • Tan YM, Barton HA, Boobis A, Brunner R, Clewell H, Cope R, Dawson J, Domoradzki J, Egeghy P, Gulati P, et al. 2021. Opportunities and challenges related to saturation of toxicokinetic processes: implications for risk assessment. Regul Toxicol Pharmacol. 127:105070. doi: 10.1016/j.yrtph.2021.105070.
  • Tater A, Gupta A, Upadhyay G, Deshpande A, Date R, Tamboli IY. 2021. In vitro assays for characterization of distinct multiple catalytic activities of thyroid peroxidase using LC-MS/MS. Curr Res Toxicol. 2:19–29. doi: 10.1016/j.crtox.2021.01.001.
  • Terry C, Hays S, McCoy AT, McFadden LG, Aggarwal M, Rasoulpour RJ, Juberg DR. 2016. Implementing a framework for integrating toxicokinetics into human health risk assessment for agrochemicals. Regul Toxicol Pharmacol. 75:89–104. doi: 10.1016/j.yrtph.2015.10.003.
  • Tinwell H, Bars R. 2022. Isoflucypram: combining in vivo and NAMs data in a weight of evidence approach to demonstrate the human non-relevance of the mode of action leading to the subtle thyroid effects observed in the rat. Regul Toxicol Pharmacol. 131:105154. doi: 10.1016/j.yrtph.2022.105154.
  • [US EPA] US Environmental Protection Agency. 2005. Guidance for thyroid assays in pregnant animals, fetuses and postnatal animals, and adult animals. Washington (DC): US EPA, Office of Pesticide Programs, Health Effects Division; 12 pp. https://www.epa.gov/pesticide-registration/guidance-thyroid-assays-pregnant-animals-fetuses-and-postnatal-animals-and. [accessed 2023 May].
  • Valdés Hernández MdC, Wilson KL, Combet E, Wardlaw JM. 2013. Brain findings associated with iodine deficiency identified by magnetic resonance methods: a systematic review. Open J Rad. 03(04):180–195. doi: 10.4236/ojrad.2013.34030.
  • Villeneuve DL, Angrish MM, Fortin MC, Katsiadaki I, Leonard M, Margiotta-Casaluci L, Munn S, O'Brien JM, Pollesch NL, Smith LC, et al. 2018. Adverse outcome pathway networks II: network analytics. Environ Toxicol Chem. 37(6):1734–1748. doi: 10.1002/etc.4124.
  • Vinken M, Knapen D, Vergauwen L, Hengstler JG, Angrish M, Whelan M. 2017. Adverse outcome pathways: a concise introduction for toxicologists. Arch Toxicol. 91(11):3697–3707. doi: 10.1007/s00204-017-2020-z.
  • Wang J, Hallinger DR, Murr AS, Buckalew AR, Simmons SO, Laws SC, Stoker TE. 2018. High-throughput screening and quantitative chemical ranking for sodium-iodide symporter inhibitors in ToxCast phase i chemical library. Environ Sci Technol. 52(9):5417–5426. doi: 10.1021/acs.est.7b06145.
  • Weber AG, Birk B, Herrmann C, Huener H-A, Renko K, Coecke S, Schneider S, Funk-Weyer D, Landsiedel R. 2022. A new approach method to study thyroid hormone disruption: optimization and standardization of an assay to assess the inhibition of DIO1 enzyme in human liver microsomes. Applied In Vitro Toxicol. 8(3):67–82. doi: 10.1089/aivt.2022.0010.
  • Whalley PM, Bartels M, Bentley KS, Corvaro M, Funk D, Himmelstein MW, Neumann B, Strupp C, Zhang F, Mehta J. 2017. An in vitro approach for comparative interspecies metabolism of agrochemicals. Regul Toxicol Pharmacol. 88:322–327. doi: 10.1016/j.yrtph.2017.03.020.
  • Wiemann C, Melching-Kollmuss S, Hambruch N, Wiss L, Stauber F, Richert L. 2023. Boscalid shows increased thyroxin-glucuronidation in rat, but not in human hepatocytes In vitro. J Appl Toxicol. 43(6):828–844. doi: 10.1002/jat.4427.
  • [WHO/IPCS] World Health Organisation/International Programme on Chemical Safety. 2009. Principles and methods for the risk assessment of chemicals in food. Geneva (Switzerland): (Environmental Health Criteria), World Health Organisation.
  • Yamada T, Hasegawa R, Nishikawa S, Sakuratani Y, Yamada J, Yamashita T, Yoshinari K, Yamazoe Y, Kamata E, Ono A, et al. 2013. New parameter that supports speculation on the possible mechanism of hypothyroidism induced by chemical substances in repeated-dose toxicity studies. J Toxicol Sci. 38(2):291–299. doi: 10.2131/jts.38.291.
  • Zoeller RT, Tan SW, Tyl RW. 2007. General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit Rev Toxicol. 37(1–2):11–53. doi: 10.1080/10408440601123446.
  • Zuang V, Dura A, Ahs Lopez E, Barroso J, Batista Leite S, Berggren E, Bopp S, Campia I, Carpi D, Casati S, et al. 2022. Non-animal methods in science and regulation. EUR 30960 EN/JRC127780. Luxembourg: Publications Office of the EU.