108
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Immunotoxicity of engineered nanomaterials and their role in asthma

ORCID Icon, ORCID Icon & ORCID Icon
Pages 491-505 | Received 22 May 2023, Accepted 03 Oct 2023, Published online: 07 Nov 2023

References

  • Ahmad, FJ, Mittal G, Jain GK, Malhotra G, Khar RK, Bhatnagar A. 2009. Nano-salbutamol dry powder inhalation: a new approach for treating broncho-constrictive conditions. Eur J Pharm Biopharm. 71(2):282–291. doi: 10.1016/j.ejpb.2008.09.018.
  • Ahn M-H, Kang C-M, Park C-S, Park S-J, Rhim T, Yoon P-O, Chang HS, Kim S-H, Kyono H, Kim KC. 2005. Titanium dioxide particle-induced goblet cell hyperplasia: association with mast cells and IL-13. Respir Res. 6(1):34. doi: 10.1186/1465-9921-6-34.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. 2013. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 8(1):102. doi: 10.1186/1556-276X-8-102.
  • Alberca-Custodio RW, Faustino LD, Gomes E, Nunes FPB, De Siqueira MK, Labrada A, Almeida RR, Câmara NOS, da Fonseca DM, Russo M. 2020. Allergen-specific immunotherapy with liposome containing CpG-ODN in murine model of asthma relies on MyD88 signaling in dendritic cells. Front Immunol. 11:692. doi: 10.3389/fimmu.2020.00692.
  • Alsaleh NB, Mendoza RP, Brown JM. 2019. Exposure to silver nanoparticles primes mast cells for enhanced activation through the high-affinity IgE receptor. Toxicol Appl Pharmacol. 382:114746. doi: 10.1016/j.taap.2019.114746.
  • Al-waealy LA, Al-Dujaili ADNG. 2018. Histological and physiological study of the effect of silver nanoparticles and omega-3 on asthma of male mice induced by ovalbumin. IJPQA. 9(3):356–362. doi: 10.25258/ijpqa.v9i3.13672.
  • Al-waealy LA, Ghani AN. 2019. Study of histological effect of silver nanoparticles on asthma of male mice induced ova albumin. Bristol: IOP Publishing.
  • Anderson H, de Leon AP, Bland J, Bower J, Emberlin J, Strachan D. 1998. Air pollution, pollens, and daily admissions for asthma in London 1987–92. Thorax. 53(10):842–848. doi: 10.1136/thx.53.10.842.
  • Andraos C, Yu IJ, Gulumian M. 2020. Interference: a much-neglected aspect in high-throughput screening of nanoparticles. Int J Toxicol. 39(5):397–421. doi: 10.1177/1091581820938335.
  • Arora M, Patel K, Choudhary P, Jain P, Malhotra M, Trivedi P. 2012. Liposome: a novel aerosol carrier of doxophylline in treatment of chronic asthma & chronic obstructive pulmonary disease. J Mol Gen Med. 3:351–361.
  • Arrieta M-C, Arévalo A, Stiemsma L, Dimitriu P, Chico ME, Loor S, Vaca M, Boutin RCT, Morien E, Jin M, et al. 2018. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol. 142(2):424–434. doi: 10.1016/j.jaci.2017.08.041.
  • Athanazio R. 2012. Airway disease: similarities and differences between asthma, COPD and bronchiectasis. Clinics (Sao Paulo). 67(11):1335–1343. doi: 10.6061/clinics/2012(11)19.
  • Bachler G, Losert S, Umehara Y, von Goetz N, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B, Hungerbuehler K. 2015. Translocation of gold nanoparticles across the lung epithelial tissue barrier: combining in vitro and in silico methods to substitute in vivo experiments. Part Fibre Toxicol. 12(1):18. doi: 10.1186/s12989-015-0090-8.
  • Barnes PJ. 2004. The size of the problem of managing asthma. Respir Med. 98 Suppl B: S4–S8. doi: 10.1016/j.rmed.2004.07.009.
  • Barreto E, Serra MF, Dos Santos RV, Dos Santos CEA, Hickmann J, Cotias AC, Pão CRR, Trindade SG, Schimidt V, Giacomelli C, et al. 2015. Local administration of gold nanoparticles prevents pivotal pathological changes in murine models of atopic asthma. J Biomed Nanotechnol. 11(6):1038–1050. doi: 10.1166/jbn.2015.2024.
  • Basomba A, Tabar AI, de Rojas DHF, García BE, Alamar R, Olaguíbel JM, del Prado JM, Martín S, Rico P. 2002. Allergen vaccination with a liposome-encapsulated extract of Dermatophagoides pteronyssinus: a randomized, double-blind, placebo-controlled trial in asthmatic patients. J Allergy Clin Immunol. 109(6):943–948. doi: 10.1067/mai.2002.124465.
  • Beamer CA, Girtsman TA, Seaver BP, Finsaas KJ, Migliaccio CT, Perry VK, Rottman JB, Smith DE, Holian A. 2013. IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via the mobilization of innate helper cells in the lung. Nanotoxicology. 7(6):1070–1081. doi: 10.3109/17435390.2012.702230.
  • Bendas ER, Tadros MI. 2007. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech. 8(4):E107. doi: 10.1208/pt0804107.
  • Bohr A, Tsapis N, Foged C, Andreana I, Yang M, Fattal E. 2020. Treatment of acute lung inflammation by pulmonary delivery of anti-TNF-α siRNA with PAMAM dendrimers in a murine model. Eur J Pharm Biopharm. 156:114–120. doi: 10.1016/j.ejpb.2020.08.009.
  • Brown RL, Sequeira RP, Clarke TB. 2017. The microbiota protects against respiratory infection via GM-CSF signaling. Nat Commun. 8(1):1512. doi: 10.1038/s41467-017-01803-x.
  • Calabrese EJ. 2008. Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem. 27(7):1451–1474. doi: 10.1897/07-541.1.
  • Calabrese EJ. 2015. Hormesis: principles and applications. Homeopathy. 104(2):69–82. doi: 10.1016/j.homp.2015.02.007.
  • Caldas LA, Marmo FC, Da Costa P, Jacobson LV. 2020. Hormesis in tartrazine allergic responses of atopic patients: an overview of clinical trials and a raw data revision. Environ Dis. 5(3):59. doi: 10.4103/ed.ed_5_20.
  • Callard RE, Harper JI. 2007. The skin barrier, atopic dermatitis and allergy: a role for Langerhans cells? Trends Immunol. 28(7):294–298. doi: 10.1016/j.it.2007.05.003.
  • Chahardoli A, Sharifan H, Karimi N, Kakavand SN. 2022. Uptake, translocation, phytotoxicity, and hormetic effects of titanium dioxide nanoparticles (TiO2NPs) in Nigella arvensis L. Sci Total Environ. 806(Pt 3):151222. doi: 10.1016/j.scitotenv.2021.151222.
  • Chan Y, Ng SW, Chellappan DK, Madheswaran T, Zeeshan F, Kumar P, Pillay V, Gupta G, Wadhwa R, Mehta M, et al. 2021. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. Int J Polym Mater Polym Biomater. 70(11):754–763. doi: 10.1080/00914037.2020.1765350.
  • Chen X, Huang W, Wong BC, Yin L, Wong YF, Xu M, Yang Z. 2012. Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int J Nanomed. 7:1139–1148. doi: 10.2147/IJN.S28011.
  • Choi J-H, Min W-K, Gopal J, Lee Y-M, Muthu M, Chun S, Oh J-W. 2018. Silver nanoparticle-induced hormesis of astroglioma cells: a Mu-2-related death-inducing protein-orchestrated modus operandi. Int J Biol Macromol. 117:1147–1156. doi: 10.1016/j.ijbiomac.2018.05.234.
  • Chuang H-C, Hsiao T-C, Wu C-K, Chang H-H, Lee C-H, Chang C-C, Cheng T-J, Taiwan CardioPulmonary Research G. 2013. Allergenicity and toxicology of inhaled silver nanoparticles in allergen-provocation mice models. Int J Nanomed. 8:4495–4506. doi: 10.2147/IJN.S52239.
  • Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH. 2001. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine. 19(15-16):1940–1950. doi: 10.1016/s0264-410x(00)00433-3.
  • De Haar C, Hassing I, Bol M, Bleumink R, Pieters R. 2005. Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model. Toxicol Sci. 87(2):409–418. doi: 10.1093/toxsci/kfi255.
  • De Haar C, Hassing I, Bol M, Bleumink R, Pieters R. 2006. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co‐administered antigen in mice. Clin Exp Allergy. 36(11):1469–1479. doi: 10.1111/j.1365-2222.2006.02586.x.
  • Deng R, Ma P, Li B, Wu Y, Yang X. 2022. Development of allergic asthma and changes of intestinal microbiota in mice under high humidity and/or carbon black nanoparticles. Ecotoxicol Environ Saf. 241:113786. doi: 10.1016/j.ecoenv.2022.113786.
  • Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C. 2014. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett. 9(1):2406. doi: 10.1186/1556-276X-9-684.
  • Dobrovolskaia MA, Germolec DR, Weaver JL. 2009. Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol. 4(7):411–414. doi: 10.1038/nnano.2009.175.
  • Dobrovolskaia MA, McNeil SE. 2010. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2(8):469–478.
  • Dobrovolskaia MA, Shurin MR, Kagan VE, Shvedova AA. 2017. Ins and outs in environmental and occupational safety studies of asthma and engineered nanomaterials. ACS Nano. 11(8):7565–7571. doi: 10.1021/acsnano.7b04916.
  • Duncan R, Izzo L. 2005. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 57(15):2215–2237. doi: 10.1016/j.addr.2005.09.019.
  • EAACI. 2021. Global Atlas of Asthma, 2nd ed. Florence: European Academy of Allergy and Clinical Immunology; p. 105–107.
  • Elhissi AMA, Martin G, Najlah M, Zhou Z, D’Emanuele A. 2010. Enhanced solubility of beclometasone dipropionate using G4 PAMAM dendrimers. J Pharm Pharmacol 62:1267.
  • Elsabahy M, Wooley KL. 2013. Cytokines as biomarkers of nanoparticle immunotoxicity. Chem Soc Rev. 42(12):5552–5576. doi: 10.1039/c3cs60064e.
  • Enaud R, Hooks KB, Barre A, Barnetche T, Hubert C, Massot M, Bazin T, Clouzeau H, Bui S, Fayon M, et al. 2019. Intestinal inflammation in children with cystic fibrosis is associated with Crohn’s-like microbiota disturbances. J Clin Med. 8(5):645. doi: 10.3390/jcm8050645.
  • Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, Delhaes L. 2020. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 10:9. doi: 10.3389/fcimb.2020.00009.
  • Fadlyana E, Soemarko DS, Endaryanto A, Haryanto B, Darma A, Dewi DK, Chandra DN, Hartono B, Buftheim S, Wasito E, et al. 2022. The impact of air pollution on gut microbiota and children’s health: an expert consensus. Children. 9(6):765. doi: 10.3390/children9060765.
  • Gallelli L, Busceti MT, Vatrella A, Maselli R, Pelaia G. 2013. Update on anticytokine treatment for asthma. Biomed Res Int. 2013:104315–104310. doi: 10.1155/2013/104315.
  • Gibbons A, Padilla-Carlin D, Kelly C, Hickey AJ, Taggart C, McElvaney NG, Cryan S-A. 2011. The effect of liposome encapsulation on the pharmacokinetics of recombinant secretory leukocyte protease inhibitor (rSLPI) therapy after local delivery to a Guinea pig asthma model. Pharm Res. 28(9):2233–2245. doi: 10.1007/s11095-011-0454-1.
  • Gillies ER, Frechet JM. 2005. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 10(1):35–43. doi: 10.1016/S1359-6446(04)03276-3.
  • Gonzalez-Rothi RJ, Schreier H. 1995. Pulmonary delivery of liposome-encapsulated drugs in asthma therapy. Clin Immunother. 4(5):331–337. doi: 10.1007/BF03259296.
  • Guo Z, Chen G, Zeng G, Huang Z, Chen A, Hu L, Wang J, Jiang L. 2016. Cysteine-induced hormesis effect of silver nanoparticles. Toxicol Res (Camb). 5(5):1268–1272. doi: 10.1039/c6tx00222f.
  • Han B, Guo J, Abrahaley T, Qin L, Wang L, Zheng Y, Li B, Liu D, Yao H, Yang J, et al. 2011. Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization. PLoS One. 6(2):e17236. doi: 10.1371/journal.pone.0017236.
  • Han H, Park YH, Park HJ, Lee K, Um K, Park J-W, Lee J-H. 2016. Toxic and adjuvant effects of silica nanoparticles on ovalbumin-induced allergic airway inflammation in mice. Respir Res. 17(1):60. doi: 10.1186/s12931-016-0376-x.
  • Holgate ST. 2013. Stratified approaches to the treatment of asthma. Br J Clin Pharmacol. 76(2):277–291. doi: 10.1111/bcp.12036.
  • Honmane S, Hajare A, More H, Osmani RAM, Salunkhe S. 2019. Lung delivery of nanoliposomal salbutamol sulfate dry powder inhalation for facilitated asthma therapy. J Liposome Res. 29(4):332–342. doi: 10.1080/08982104.2018.1531022.
  • Hsieh W-Y, Chou C-C, Ho C-C, Yu S-L, Chen H-Y, Chou H-YE, Chen JJ, Chen H-W, Yang P-C. 2012. Single-walled carbon nanotubes induce airway hyperreactivity and parenchymal injury in mice. Am J Respir Cell Mol Biol. 46(2):257–267. doi: 10.1165/rcmb.2011-0010OC.
  • Hussain S, Vanoirbeek JA, Hoet PH. 2012. Interactions of nanomaterials with the immune system. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 4(2):169–183. doi: 10.1002/wnan.166.
  • Hussain S, Vanoirbeek JAJ, Luyts K, De Vooght V, Verbeken E, Thomassen LCJ, Martens JA, Dinsdale D, Boland S, Marano F, et al. 2011. Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J. 37(2):299–309. doi: 10.1183/09031936.00168509.
  • Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A. 108(13):5354–5359. doi: 10.1073/pnas.1019378108.
  • Ihrie MD, Bonner JC. 2018. The toxicology of engineered nanomaterials in asthma. Curr Environ Health Rep. 5(1):100–109. doi: 10.1007/s40572-018-0181-4.
  • Inapagolla R, Guru BR, Kurtoglu Y, Gao X, Lieh-Lai M, Bassett D, Kannan R. 2010. In vivo efficacy of dendrimer–methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm. 399(1-2):140–147. doi: 10.1016/j.ijpharm.2010.07.030.
  • Inoue K-I, Koike E, Yanagisawa R, Hirano S, Nishikawa M, Takano H. 2009. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol. 237(3):306–316. doi: 10.1016/j.taap.2009.04.003.
  • Inoue K-I, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, Yoshikawa T. 2005. Effects of nano particles on antigen-related airway inflammation in mice. Respir Res. 6(1):106. doi: 10.1186/1465-9921-6-106.
  • Inoue K-I, Yanagisawa R, Koike E, Nishikawa M, Takano H. 2010. Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: possible role of oxidative stress. Free Radic Biol Med. 48(7):924–934. doi: 10.1016/j.freeradbiomed.2010.01.013.
  • Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, et al. 2006. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci. 91(1):173–183. doi: 10.1093/toxsci/kfj127.
  • ISO. 2010. ISO/TS 80004 (en)-Nanotechnologies—Vocabulary—Part 1: core terms. Geneva: ISO.
  • ISO. 2015. ISO/TS 80004-2:2015(en) Nanotechnologies—Vocabulary—Part 2: nano-objects. Geneva: ISO.
  • Jain K, Kesharwani P, Gupta U, Jain N. 2010. Dendrimer toxicity: let’s meet the challenge. Int J Pharm. 394(1-2):122–142. doi: 10.1016/j.ijpharm.2010.04.027.
  • Jang S, Park JW, Cha HR, Jung SY, Lee JE, Jung SS, Kim JO, Kim SY, Lee CS, Park HS. 2012. Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation. Int J Nanomed. 7:1329–1343. doi: 10.2147/IJN.S27159.
  • Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D'Emanuele A. 2003. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 252(1-2):263–266. doi: 10.1016/s0378-5173(02)00623-3.
  • Johnson CC, Ownby DR. 2017. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl Res. 179:60–70. doi: 10.1016/j.trsl.2016.06.010.
  • Kaminskas LM, Boyd BJ, Porter CJ. 2011. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine (Lond). 6(6):1063–1084. doi: 10.2217/nnm.11.67.
  • Kaşıkcı MB, Bağdatlıoğlu N. 2016. Bioavailability of quercetin. Curr Res Nutr Food Sci. 4(Special-Issue-October):146–151. doi: 10.12944/CRNFSJ.4.Special-Issue-October.20.
  • Kenyon NJ, Bratt JM, Lee J, Luo J, Franzi LM, Zeki AA, Lam KS. 2013. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS One. 8(10):e77730. doi: 10.1371/journal.pone.0077730.
  • Kim HY, DeKruyff RH, Umetsu DT. 2010. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol. 11(7):577–584. doi: 10.1038/ni.1892.
  • Kim B-G, Park M-K, Lee P-H, Lee S-H, Hong J, Aung MMM, Moe KT, Han NY, Jang A-S. 2020. Effects of nanoparticles on neuroinflammation in a mouse model of asthma. Respir Physiol Neurobiol. 271:103292. doi: 10.1016/j.resp.2019.103292.
  • Kim DI, Song M-K, Lee K. 2019. Comparison of asthma phenotypes in OVA-induced mice challenged via inhaled and intranasal routes. BMC Pulm Med. 19(1):241. doi: 10.1186/s12890-019-1001-9.
  • Kıykım A, Öğülür İ, Yazıcı D, Çokuğraş H, Akdiş M, Akdiş CA. 2023. Epithelial barrier hypothesis and its comparison with the hygiene hypothesis. Turk Arch Pediatr. 58(2):122–128.
  • Koike E, Takano H, Inoue K-I, Yanagisawa R, Sakurai M, Aoyagi H, Shinohara R, Kobayashi T. 2008. Pulmonary exposure to carbon black nanoparticles increases the number of antigen-presenting cells in murine lung. Int J Immunopathol Pharmacol. 21(1):35–42. doi: 10.1177/039463200802100105.
  • Konduri KS, Nandedkar S, Düzgünes N, Suzara V, Artwohl J, Bunte R, Gangadharam PRJ. 2003. Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol. 111(2):321–327. doi: 10.1067/mai.2003.104.
  • Kong X, Hellermann GR, Zhang W, Jena P, Kumar M, Behera A, Behera S, Lockey R, Mohapatra SS. 2008. Chitosan interferon-γ nanogene therapy for lung disease: modulation of T-cell and dendritic cell immune responses. Allergy Asthma Clin Immunol. 4(3):95–105. doi: 10.1186/1710-1492-4-3-95.
  • Kumar M, Kong X, Behera AK, Hellermann GR, Lockey RF, Mohapatra SS. 2003. Chitosan IFN-γ-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet Vaccines Ther. 1(1):3. doi: 10.1186/1479-0556-1-3.
  • Kumar S, Verma AK, Das M, Dwivedi PD. 2012. Molecular mechanisms of IgE mediated food allergy. Int Immunopharmacol. 13(4):432–439. doi: 10.1016/j.intimp.2012.05.018.
  • Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C. 2010. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun. 393(4):649–655. doi: 10.1016/j.bbrc.2010.02.046.
  • Lee CC, MacKay JA, Fréchet JM, Szoka FC. 2005. Designing dendrimers for biological applications. Nat Biotechnol. 23(12):1517–1526. doi: 10.1038/nbt1171.
  • Li Q, Zhan S, Liu Q, Su H, Dai X, Wang H, Beng H, Tan W. 2018. Preparation of a sustained-release nebulized aerosol of R-terbutaline hydrochloride liposome and evaluation of its anti-asthmatic effects via pulmonary delivery in Guinea pigs. AAPS PharmSciTech. 19(1):232–241. doi: 10.1208/s12249-017-0816-z.
  • Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C. 2018. Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine. 14(1):1–12. doi: 10.1016/j.nano.2017.08.011.
  • Lopez AI, Reins RY, McDermott AM, Trautner BW, Cai C. 2009. Antibacterial activity and cytotoxicity of PEGylated poly (amidoamine) dendrimers. Mol Biosyst. 5(10):1148–1156. doi: 10.1039/b904746h.
  • Lv C, Li H, Cui H, Bi Q, Wang M. 2021. Solid lipid nanoparticle delivery of rhynchophylline enhanced the efficiency of allergic asthma treatment via the upregulation of suppressor of cytokine signaling 1 by repressing the p38 signaling pathway. Bioengineered. 12(1):8635–8649. doi: 10.1080/21655979.2021.1988364.
  • Marzaioli V, Aguilar-Pimentel JA, Weichenmeier I, Luxenhofer G, Wiemann M, Landsiedel R, Wohlleben W, Eiden S, Mempel M, Behrendt H, et al. 2014. Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties. Int J Nanomed. 9:2815–2832. doi: 10.2147/IJN.S57396.
  • Matsuo Y, Ishihara T, Ishizaki J, Miyamoto K-I, Higaki M, Yamashita N. 2009. Effect of betamethasone phosphate loaded polymeric nanoparticles on a murine asthma model. Cell Immunol. 260(1):33–38. doi: 10.1016/j.cellimm.2009.07.004.
  • Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. 2017. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol. 14(1):45. doi: 10.1186/s12989-017-0228-y.
  • Nasr M, Najlah M, D'Emanuele A, Elhissi A. 2014. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int J Pharm. 461(1-2):242–250. doi: 10.1016/j.ijpharm.2013.11.023.
  • Nemmar A, Hoet PM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts M, Vanbilloen H, Mortelmans L, Nemery B. 2002. Passage of inhaled particles into the blood circulation in humans. Circulation. 105(4):411–414. doi: 10.1161/hc0402.104118.
  • Ng ZY, Wong J-Y, Panneerselvam J, Madheswaran T, Kumar P, Pillay V, Hsu A, Hansbro N, Bebawy M, Wark P, et al. 2018. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B. 172:51–59. doi: 10.1016/j.colsurfb.2018.08.027.
  • Norton SB. 2012. Fullerene carbon-70 derivatives dampen anaphylaxis and allergic asthma pathogenesis in mice. Richmond: Virginia Commonwealth University.
  • Omlor AJ, Le DD, Schlicker J, Hannig M, Ewen R, Heck S, Herr C, Kraegeloh A, Hein C, Kautenburger R, et al. 2017. Local effects on airway inflammation and systemic uptake of 5 nm PEGylated and citrated gold nanoparticles in asthmatic mice. Small. 13(10):1603070. doi: 10.1002/smll.201603070.
  • Ottiger M, Nickler M, Steuer C, Bernasconi L, Huber A, Christ-Crain M, Henzen C, Hoess C, Thomann R, Zimmerli W, et al. 2018. Gut, microbiota-dependent trimethylamine-N-oxide is associated with long-term all-cause mortality in patients with exacerbated chronic obstructive pulmonary disease. Nutrition. 45:135–141. doi: 10.1016/j.nut.2017.07.001.
  • Oussoren C, Zuidema J, Crommelin D, Storm G. 1997. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: II. Influence of liposomal size, lipid composition and lipid dose. Biochim Biophys Acta. 1328(2):261–272. doi: 10.1016/s0005-2736(97)00122-3.
  • Oyarzun-Ampuero F, Brea J, Loza M, Torres D, Alonso M. 2009. Chitosan–hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm. 381(2):122–129. doi: 10.1016/j.ijpharm.2009.04.009.
  • Park HS, Kim KH, Jang S, Park JW, Cha HR, Lee JE, Kim JO, Kim SY, Lee CS, Kim JP, et al. 2010. Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomed. 5:505–515. doi: 10.2147/ijn.s11664.
  • Park J-W, Lee I-C, Shin N-R, Jeon C-M, Kwon O-K, Ko J-W, Kim J-C, Oh S-R, Shin I-S, Ahn K-S. 2016. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology. 10(4):445–452. doi: 10.3109/17435390.2015.1078851.
  • Peters A, Dockery D, Heinrich J, Wichmann H. 1997. Short-term effects of particulate air pollution on respiratory morbidity in asthmatic children. Eur Respir J. 10(4):872–879. doi: 10.1183/09031936.97.10040872.
  • Platts-Mills TA. 2001. The role of immunoglobulin E in allergy and asthma. Am J Respir Crit Care Med. 164(8 Pt 2):S1–S5. doi: 10.1164/ajrccm.164.supplement_1.2103024.
  • Poh TY, Ali N, Mac Aogáin M, Kathawala MH, Setyawati MI, Ng KW, Chotirmall SH. 2018. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part Fibre Toxicol. 15(1):46. doi: 10.1186/s12989-018-0282-0.
  • Prokopakis E, Vardouniotis A, Kawauchi H, Scadding G, Georgalas C, Hellings P, Velegrakis G, Kalogjera L. 2013. The pathophysiology of the hygiene hypothesis. Int J Pediatr Otorhinolaryngol. 77(7):1065–1071. doi: 10.1016/j.ijporl.2013.04.036.
  • Redlich CA. 2010. Skin exposure and asthma: is there a connection? Proc Am Thorac Soc. 7(2):134–137. doi: 10.1513/pats.201002-025RM.
  • Rezaei-Sadabady R, Eidi A, Zarghami N, Barzegar A. 2016. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif Cells Nanomed Biotechnol. 44(1):128–134. doi: 10.3109/21691401.2014.926456.
  • Roach KA, Stefaniak AB, Roberts JR. 2019. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol. 16(1):87–124. doi: 10.1080/1547691X.2019.1605553.
  • Rook G, Brunet L. 2005. Microbes, immunoregulation, and the gut. Gut. 54(3):317–320. doi: 10.1136/gut.2004.053785.
  • Ryan JJ, Bateman HR, Stover A, Gomez G, Norton SK, Zhao W, Schwartz LB, Lenk R, Kepley CL. 2007. Fullerene nanomaterials inhibit the allergic response. J Immunol. 179(1):665–672. doi: 10.4049/jimmunol.179.1.665.
  • Ryan GM, Kaminskas LM, Kelly BD, Owen DJ, McIntosh MP, Porter CJ. 2013. Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol Pharm. 10(8):2986–2995. doi: 10.1021/mp400091n.
  • Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC. 2009. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol. 40(3):349–358. doi: 10.1165/rcmb.2008-0276OC.
  • Sahu SC, Zheng J, Graham L, Chen L, Ihrie J, Yourick JJ, Sprando RL. 2014. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol. 34(11):1155–1166. doi: 10.1002/jat.2994.
  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB, et al. 2004. The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4(10):1881–1887. doi: 10.1021/nl0489586.
  • Seiffert J, Buckley A, Leo B, Martin NG, Zhu J, Dai R, Hussain F, Guo C, Warren J, Hodgson A, et al. 2016. Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague–Dawley rats. Respir Res. 17(1):85. doi: 10.1186/s12931-016-0407-7.
  • Seiffert J, Hussain F, Wiegman C, Li F, Bey L, Baker W, Porter A, Ryan MP, Chang Y, Gow A, et al. 2015. Pulmonary toxicity of instilled silver nanoparticles: influence of size, coating and rat strain. PLoS One. 10(3):e0119726. doi: 10.1371/journal.pone.0119726.
  • Sharma S, Parmar A, Kori S, Sandhir R. 2016. PLGA-based nanoparticles: a new paradigm in biomedical applications. TrAC, Trends Anal Chem. 80:30–40. doi: 10.1016/j.trac.2015.06.014.
  • Shiehzadeh F, Tafaghodi M. 2016. Dry Powder form of Polymeric Nanoparticles for Pulmonary Drug Delivery. Curr Pharm Des. 22(17):2549–2560. doi: 10.2174/1381612822666160128150449.
  • Smith AJ, Kavuru P, Wojtas L, Zaworotko MJ, Shytle RD. 2011. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol Pharm. 8(5):1867–1876. doi: 10.1021/mp200209j.
  • Sthijns MM, Thongkam W, Albrecht C, Hellack B, Bast A, Haenen GR, Schins RP. 2017. Silver nanoparticles induce hormesis in A549 human epithelial cells. Toxicol in Vitro. 40:223–233. doi: 10.1016/j.tiv.2017.01.010.
  • Sun LZ, Elsayed S, Bronstad AM, Van Do T, Irgens A, Aardal NP, Aasen TB. 2007. Airway inflammation and bronchial remodelling in toluene diisocyanate-exposed BALB/c mouse model. Scand J Immunol. 65(2):118–125. doi: 10.1111/j.1365-3083.2006.01882.x.
  • Tordesillas L, Berin MC, Sampson HA. 2017. Immunology of food allergy. Immunity. 47(1):32–50. doi: 10.1016/j.immuni.2017.07.004.
  • Utembe W, Tlotleng N, Kamng’ona A. 2022. A systematic review on the effects of nanomaterials on gut microbiota. Curr Res Microb Sci. 3:100118. doi: 10.1016/j.crmicr.2022.100118.
  • Wang L, Feng M, Li Q, Qiu C, Chen R. 2019. Advances in nanotechnology and asthma. Ann Transl Med. 7(8):180. doi: 10.21037/atm.2019.04.62.
  • Wang Y, Qin B, Xia G, Choi SH. 2021. FDA’s poly (lactic-co-glycolic acid) research program and regulatory outcomes. AAPS J. 23(4):92. doi: 10.1208/s12248-021-00611-y.
  • Whitehead GS, Walker JK, Berman KG, Foster WM, Schwartz DA. 2003. Allergen-induced airway disease is mouse strain dependent. Am J Physiol Lung Cell Mol Physiol. 285(1):L32–L42. doi: 10.1152/ajplung.00390.2002.
  • Wu Y, Shi W, Wang H, Yue J, Mao Y, Zhou W, Kong X, Guo Q, Zhang L, Xu P, et al. 2020. Anti-ST2 nanoparticle alleviates lung inflammation by targeting ILC2s-CD4(+)T response. Int J Nanomed. 15:9745–9758. doi: 10.2147/IJN.S268282.
  • Xue Y, Zhang T, Zhang B, Gong F, Huang Y, Tang M. 2016. Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media. J Appl Toxicol. 36(3):352–360. doi: 10.1002/jat.3199.
  • Yanagisawa R, Koike E, Win-Shwe TT, Takano H. 2022. Effects of oral exposure to low-dose bisphenol S on allergic asthma in mice. Int J Mol Sci. 23(18):10790.
  • Yi W, Chen R, Xie F, Xu C, Tian W. 2022. Anti-inflammatory and immunomodulatory properties of Mentha piperita green-formulated gold nanoparticles and its effect on ovalbumin-induced asthma and lung pathological changes in rats. J Exp Nanosci. 17(1):163–172. doi: 10.1080/17458080.2022.2033730.
  • Yong DO, Saker SR, Wadhwa R, Chellappan DK, Madheswaran T, Panneerselvam J, Tambuwala MM, Bakshi HA, Kumar P, Pillay V, et al. 2019. Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment of asthma. J Drug Deliv Sci Technol. 54:101297. doi: 10.1016/j.jddst.2019.101297.
  • Yoshida T, Yoshioka Y, Fujimura M, Yamashita K, Higashisaka K, Morishita Y, Kayamuro H, Nabeshi H, Nagano K, Abe Y, et al. 2011. Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice. Nanoscale Res Lett. 6(1):195. doi: 10.1186/1556-276X-6-195.
  • Zeng Y, Kurokawa Y, Win-Shwe T-T, Zeng Q, Hirano S, Zhang Z, Sone H. 2016. Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. J Toxicol Sci. 41(3):351–370. doi: 10.2131/jts.41.351.
  • Zosky G, Sly P. 2007. Animal models of asthma. Clin Exp Allergy. 37(7):973–988. doi: 10.1111/j.1365-2222.2007.02740.x.
  • Zuo X, Guo X, Gu Y, Zheng H, Zhou Z, Wang X, Jiang S, Wang G, Xu C, Wang F. 2022. Recent advances in nanomaterials for asthma treatment. Int J Mol Sci. 23(22):14427. doi: 10.3390/ijms232214427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.