2,109
Views
304
CrossRef citations to date
0
Altmetric
Research Article

Metabolism of Inorganic N Compounds by Ammonia-Oxidizing Bacteria

&
Pages 471-495 | Published online: 29 Sep 2008

REFERENCES

  • Abeliovich A., Vonshak A. Anaerobic metabolism of Nitrosomonas europaea. Arch Microbiol 1992; 158: 267–270
  • Alzerreca J. J., Norton J. M., Klotz M. G. The amo operon in marine, ammonia-oxidizing gamma-proteobacteria. FEMS Microbiol Lett 1999; 180: 21–29
  • Anderson J. H. The metabolism of hydroxylamine to nitrite by Nitrosomonas. Biochem J 1964; 91: 8–17
  • Anderson I. C., Levine J. S. Relative rates of nitric oxide, and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Appl, and Environ Microbiol 1986; 51: 938–945
  • Anderson I. C., Poth M., Homstead J., Burdige D. A comparison of NO, and N2O production by the auto trophic nitrifier Nitrosomonas europaea, and the heterotrophic nitrifier Alcaligenes faecalis. Appl Environ Microbiol 1993; 59: 3525–3533
  • Anjum M. F., Stevanin T. M., Read R. C., Moir J. W. B. Nitric oxide metabolism in Neisseria meningitidis. J Bacteriol 2002; 184: 2987–2993
  • Arai H., Kodama T., Igarashi Y. Effect of nitrogen oxides on expression of the nir, and nor genes for denitrification in Pseudomonas aeruginosa. FEMS Microbiol Lett 1999; 170: 19–24
  • Arciero D. M., Balny C., Hooper A. B. Hydroxylamine oxidoreductase from Nitrosomonas europaea is a multimer of an octa-heme subunit. J Bacteriol 1993a; 268: 14645–14654
  • Arciero D. M., Hooper A. B., Cai M., Timkovich R. Evidence for the structure of the active site heme P460 in hydroxylamine oxidoreductase of Nitrosomonas. Biochem 1993b; 32: 9370–9378
  • Arp D. J., Sayavedra-Soto L. A., Hommes N. G. Molecular biology, and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol 2002; 178: 250–255
  • Arp D. J., Yeager C. M., Hyman M. R. Molecular, and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 2001; 12: 81–103
  • Bamford V. A., Angove H. C., Seward H. E., Thomson A. J., Cole J. A., Butt J. N., Hemmings A. M., Richardson D. J. Structure, and spectroscopy of the periplasmic cytochrome c nitrite reductase from Escherichia coli. Biochemistry 2002; 41: 2921–2931
  • Basu P., Katterle B., Andersson K. K., Dalton H. The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein. Biochem J 2003; 369: 417–427
  • Beaumont H. J., Hommes N. G., Sayavedra-Soto L. A., Arp D. J., Arciero D. M., Hooper A. B., Westerhoff H. V., van Spanning R. J. Nitrite reductase of Nitrosomonas europaea is not essential for production of gaseous nitrogen oxides, and confers tolerance to nitrite. J Bacteriol 2002a; 184: 2557–2560
  • Beaumont H. J. E., de Vries S., Westerhoff H. V., van Spanning R. J. M. Nitric oxide reductase. Nitrosomonas europaea 102nd General Meeting of the American Society for Microbiology. 2002b
  • Bedard C., Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH+4, and CO oxidation by methanotrophs, and nitrifiers. Microbiol Rev 1989; 53: 68–84
  • Bergmann D. J., Arciero D. M., Hooper A. B. Organization of the hao gene cluster of Nitrosomonas europaea: genes for two tetraheme c cytochromes. J Bacteriol 1994; 176: 3148–3153
  • Bergmann D. J., Hooper B. Sequence of the gene, amoB, for the 43-kDa polypeptide of ammonia monooxygenase of Nitrosomonas europaea. Biochem Biophys Res Comm 1994; 204: 759–762
  • Bergmann D. J., Hooper A. B. Cytrochrome P460 of Nitrosomonas europaea: formation of the heme-lysine cross-link in a heterologous host, and mutagenic conversion to a non-cross-linked cytochrome c'. Eur J Biochem 2003; 270: 1935–1941
  • Bergmann D J., Zahn J. A., DiSpirito A. A. Primary structure of cytochrome c' of Methylococcus capsulatus Bath: evidence of a phylogenetic link between P460, and c'-type cytochromes. Arch Microbiol 2000; 173: 29–34
  • Bergmann D. J., Zahn J. A., Hooper A. B., DiSpirito A. A. Cytochrome P460 genes from the methanotroph Methylococcus capsulatus bath. J Bacteriol 1998; 180: 6440–6445
  • Bock E. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors, and nitrite as electron acceptor. Arch Microbiol 1995; 163: 16–20
  • Bock E., Koops H.-P., Harms H. Cell biology of nitrifying bacteria. Nitrification., J. I. Prosser. IRL Press Ltd., Oxford 1986; 17–38
  • Bock E., Koops H. P., Harms H., Ahlers B. The biochemistry of nitrifying organisms. Variations in Autotrophic Life., J. M. Shively, L. L. Barton. Academic Press Limited, San Diego, CA 1991; 171–200
  • Bruns M. A., Fries M. R., Tiedje J. M., Paul E. A. Functional gene hybridization patterns of terrestrial ammonia-oxidizing bacteria. Microb Ecol 1998; 36: 293–302
  • Büsch A., Friedrich B., Cramm R. Characterization of the norB gene, encoding nitric oxide reductase, in the nondenitrifying cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 2002; 68: 668–672
  • Cabail M. Z., Pacheco A. A. Selective one-electron reduction of Nitrosomonas europaea hydroxylamine oxidoreductase with nitric oxide. Inorg Chem 2003; 42: 270–272
  • Casciotti K., Ward B. B. Nitric oxide reductase gene (norB) allows for detection of different types of denitrifying bacteria. 102nd General Meeting of the American Society for Microbiology. 2002
  • Casciotti K. L., Ward B. B. Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria. Appl Environ Microbiol 2001; 67: 2213–2221
  • Chain P., Lamerdin J., Larimer F., Regala W., Lao V., Land M., Hauser L., Hooper A., Klotz M., Norton J., Sayavedra-Soto L., Arciero D., Hommes N., Whittaker M., Arp D. Complete genome sequence of the ammonia-oxidizing bacterium, and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 2003; 185: 2759–2773
  • Chang S. W., Hyman M. R., Williamson K. J. Cooxidation of naphthalene, and other polycyclic aromatic hydrocarbons by the nitrifying bacterium. Nitrosomonas europaea. Biodegradation 2002; 13: 373–381
  • Collins M. J., Arciero D. M., Hooper A. B. Optical spectroscopic resolution of the hemes of hydroxylamine oxidoreductase. J Biol Chem 1993; 268: 14655–14662
  • Colliver B. B., Stephenson T. Production of nitrogen oxide, and dinitrogen oxide by autotrophic nitrifiers. Biotech Adv 2000; 18: 219–232
  • Cramm R., Pohlmann A., Friedrich B. Purification, and characterization of the single-component nitric oxide reductase from Ralstonia eutropha H16. FEBS Lett 1999; 460: 6–10
  • Cross R., Aish J., Paston S J., Poole R. K., Moir J. W. B. Cytochrome c' from Rhodobacter capsulatus confers increased resistance to nitric oxide. J Bacteriol 2000; 182: 1442–1447
  • Cross R., Lloyd D., Poole R. K., Moir J. W. B. Enzymatic removal of nitric oxide catalyzed by cytochrome c' in Rhodobacter capsulatus. J Bacteriol 2001; 183: 3050–3054
  • Dalton H. Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain Bath. Arch Microbiol 1977; 114: 273–279
  • DiSpirito A. A., Lipscomb J. D., Hooper A. B. Cytochrome aa3 from Nitrosomonas europaea. J Biol Chem 1986; 268: 17048–17056
  • DiSpirito A. A., Taaffee L. R., Lipscomb J. D., Hooper A. B. A ‘blue’ copper oxidase from Nitrosomonas europaea. Biochim Biophys Acta 1985; 827: 320–326
  • Dore J. E., Popp B. N., Karl D. M., Sansone F. J. A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. Nature 1998; 396: 63–66
  • Drozd J. W. Energy coupling, and respiration in Nitrosomonas europaea. Arch Microbiol 1976; 110: 257–262
  • Dundee L., Hopkins D. W. Different sensitivities to oxygen of nitrous oxide production by Nitrosomonas europaea, and Nitrosolobus multiformis. Soil Biol Biochem 2001; 33: 1563–1565
  • Einsle O., Messerschmidt A., Stach P., Bourenkov G. P., Bartunik H. D., Huber R., Kroneck P. M. Structure of cytochrome c nitrite reductase. Nature 1999; 400: 476–480
  • Einsle O., Stach P., Messerschmidt A., Simon J., Kroger A., Huber R., Kroneck P. M. Cytochrome c nitrite reductase from Wolinella succinogenes. Structure at 1.6 A resolution, inhibitor binding, and heme-packing motifs. J Biol Chem 2000; 275: 39608–39616
  • Ensign S. A., Hyman M. R., Arp D. J. In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. J Bacteriol 1993; 175: 1971–1980
  • Erickson R. H., Hooper A. B. Preliminary characterization of a varient CO-binding heme protein from Nitrosomonas. Biochim Biophys Acta 1972; 275: 231–244
  • Falcone A. B., Shug A. L., Nicholas D. J. D. Some properties of a hydroxylamine oxidase from Nitrosomonas europaea. Biochim Biophys ACTA 1963; 77: 199–208
  • Ferguson S. J. Nitrogen cycle enzymology. Curr Opin Chem Biol 1998; 2: 182–193
  • Gilmour R., Goodhew C. F., Pettigrew G. W. Cytochrome c' from Paracoccus denitrificans. Biochim Biophys Acta 1991; 1059: 233–238
  • Gödde M., Conrad R. Immediate, and adaptational temperature effects on nitric oxide production, and nitrous oxide release from nitrification, and denitrification in two soils. Biol Fertil Soils 1999; 30: 33–40
  • Goreau T., Kaplan W., Wofsy S., McElroy M., Valois F., Watson S. Production of NO2-, and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl Environ Microbiol 1980; 40: 526–532
  • Hamamura N., Arp D. J. Isolation, and characterization of alkane-utilizing Nocardioides sp. strain CF8. FEMS Microbiol Lett 2000; 186: 21–26
  • Hamamura N., Storfa R. T., Semprini L., Arp D. J. Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol 1999; 65: 4586–4593
  • Hendrich M. P., Petasis D., Arciero D. M., Hooper A. B. Correlations of structure, and electronic properties from EPR spectroscopy of hydroxylamine oxidoreductase. J Am Chem Soc 2001; 123: 2997–3005
  • Hendrich M. P., Upadhyay A. K., Riga J., Arciero D. M., Hooper A. B. Spectroscopic characterization of the NO adduct of hydroxylamine oxidoreductase. Biochem 2002; 41: 4603–4611
  • Hendriks J., Oubrie A., Castresana J., Urbani A., Gemeinhardt S., Saraste M. Nitric oxide reductases in bacteria. Biochim Biophys Acta 2000; 1459: 266–273
  • Hofman T., Lees H. The biochemistry of the nitrifying organisms. 4. The respiration, and intermediary metabolism of Nitrosomonas. Biochem J 1953; 54: 579–583
  • Hollocher T. C., Kumar S., Nicholas D. J. D. Respiration dependent proton translocation in Nitrosomonas europaea, and its apparent absence in Nitrobacter agilis during inorganic oxidations. J Bacteriol 1982; 149: 1013–1020
  • Hollocher T. C., Tate M. E., Nicholas D. J. D. Oxidation of ammonia by Nitrosomonas europaea. Definitive 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. J Biol Chem 1981; 256: 10834–10836
  • Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. Evidence that particulate methane monooxygenasre, and ammonia monooxygenase may be related. FEMS Microbiol Lett 1995; 132: 203–208
  • Hommes N. G., Sayavedra-Soto L. A., Arp D. J. Sequence of hcy, a gene encoding cytochrome c-554 in Nitrosomonas europaea. Gene 1994; 146: 87–89
  • Hommes N. G., Sayavedra-Soto L. A., Arp D. J. Mutagenesis, and expression of amo, which codes for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 1998; 180: 3353–3359
  • Hommes N. G., Sayavedra-Soto L. A., Arp D. J. Transcript analysis of multiple copies of amo (encoding ammonia monooxygenase), and hao (encoding hydroxylamine oxidoreductase) in Nitrosomonas europaea. J Bacteriol 2001; 183: 1096–1100
  • Hommes N. G., Sayavedra-Soto L. A., Arp D. J. Chemolithoorganotrophic growth of Nitrosomonas europaea on fructose. J Bacteriol. 2003; 185: 6809–6814
  • Hooper A. B. A nitrite-reducing enzyme from Nitrosomonas europaea. Preliminary characterization with hydroxylamine as electron donor. Biochim Biophys Acta 1968; 162: 49–65
  • Hooper A. B. Biochemistry of the nitrifying lithoautotrophic bacteria. Autotrophic bacteria., H. G. Schlegel, B. Bowien. Science Tech Publishers, Madison, WI 1989; 239–281
  • Hooper A. B., Terry K. R. Specific inhibitors of ammonia oxidation in Nitrosomonas. J Bacteriol 1973; 115: 480–485
  • Hooper A. B., Terry K. R. Photoinactivation of ammonia oxidation in Nitrosomonas. J Bacteriol 1974; 119: 899–906
  • Hooper A. B., Terry K. R. Hydroxylamine oxidoreductase from Nitrosomonas: Inactivation by hydrogen peroxide. Biochemistry 1977; 16: 455–459
  • Hooper A. B., Terry K. R. Hydroxylamine oxidoreductase of Nitrosomonas, production of nitric oxide from hydroxylamine. Biochim Biophys Acta 1979; 571: 12–20
  • Hooper A. B., Vannelli T., Bergmann D. J., Arciero D. M. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek 1997; 71: 59–67
  • Hyman M. R., Arp D. J. Effects of ammonia on the de novo synthesis of polypeptides in cells of Nitrosomonas europaea denied ammonia as an energy source. J Bacteriol 1995; 177: 4974–4979
  • Hyman M. R., Murton I. B., Arp D. J. Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl Environ Microbiol 1988; 54: 3187–3190
  • Hyman M. R., Page C. L., Arp D. J. Oxidation of methyl fluoride, and dimethyl ether by ammonia monooxygenase in Nitrosomonas europaea. App Enviromen Microbiol 1994; 60: 3033–3035
  • Hyman M. R., Sansome-Smith A. W., Shears J. H., Wood P. M. A kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas europaea and evidence for the further oxidation of phenol to hydroquinone. Arch Microbiol 1985; 143: 302–306
  • Hyman M. R., Wood P. M. Methane oxidation by Nitrosomonas europaea. Biochem J 1983; 212: 31–37
  • Hyman M. R., Wood P. M. Bromocarbon oxidations by Nitrosomonas europaea. Microbial growth on C1compounds: Proceedings of the 4th International Symposium., R. L. Crawford, R. S. Hanson. American Society for Microbiology, Washington, DC 1984a; 49–52
  • Hyman M. R., Wood P. M. Ethylene oxidation by Nitrosomonas europaea. Arch Microbiol 1984b; 137: 155–158
  • Hyman M. R., Wood P. M. Suicidal inactivation, and labeling of ammonia monooxygenase by acetylene. Biochem J 1985; 227: 719–725
  • Hynes R. K., Knowles R. Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiol Lett 1978; 4: 319–321
  • Hynes R. K., Knowles R. Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH, and oxygen. Can J Microbiol 1984; 30: 1397–1404
  • Igarashi N., Moriyama H., Fujiwara T., Fukumori Y., Tanaka N. The 2.8 Å structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium Nitrosomonas europaea. Nature Structural Biology 1997; 4: 276–284
  • Itokawa H., Hanaki K., Matsuo T. Nitrous oxide emission during nitrification, and denitrification in a full-scale night soil treatment plant. Wat Sci Tech 1996; 34: 277–284
  • Iverson T. M., Arciero D. M., Hooper A. B., Rees D. C. High-resolution structures of the oxidized, and reduced states of cytochrome c554 from Nitrosomonas europaea. J Biol Inorg Chem 2001; 6: 390–397
  • Jetten M. S., de Bruijn P., Kuenen J. G. Hydroxylamine metabolism in Pseudomonas PB16: involvement of a novel hydroxylamine oxidoreductase. Antonie Van Leeuwenhoek 1997; 71: 69–74
  • Jetten M. S., Wagner M., Fuerst J., van Loosdrecht M., Kuenen G., Strous M. Microbiology, and application of the anaerobic ammonium oxidation (‘anammox’) process. Curr Opin Biotechnol 2001; 12: 283–288
  • Jetten M. S. M., Logemann S., Muyzer G., Robertson L. A., Vries S. D., Loosdrecht M. C. M. V., Kuenen J. G. Novel principles in the microbial conversion of nitrogen compounds. Anton van Leeuwen 1997; 71: 75–93
  • Jetten M. S. M., Strous M., van de Pas-Schoonen K. T., Schalk J., van Dongen U. G. J. M., van de Graaf A. A., Logemann S., Muyzer G., van Loosdrecht M. C. M., Kuenen J. G. The anaerobic oxidation of ammonium. FEMS Microbiology Reviews 1999; 22: 421–437
  • Juliette L. Y., Hyman M. R., Arp D. J. Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds—thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl Environ Microbiol 1993a; 59: 3718–3727
  • Juliette L. Y., Hyman M. R., Arp D. J. Mechanism-based inactivation of ammonia monooxygenase in Nitrosomonas europaea by allylsulfide. Appl Environ Microbiol 1993b; 59: 3728–3735
  • Juliette L. Y., Hyman M. R., Arp D. J. Roles of bovine serum albumin, and copper in the assay, and stability of ammonia monooxygenase activity in vitro. J Bacteriol 1995; 177: 4908–4913
  • Kaneko T., Nakamura Y., Sato S., Minamisawa K., Uchiumi T., Sasamoto S., Watanabe A., Idesawa K., Iriguchi M., Kawashima K., Kohara M., Matsumoto M., Shimpo S., Tsuruoka H., Wada T., Yamada M., Tabata S. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 2002; 9: 189–97
  • Keener W. K. Interactions of ammonia monooxygenase. Nitrosomonas europaea, with hydrocarbons, and substituted hydrocarbons. Oregon State University. 1995
  • Keener W. K., Arp D. J. Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons, and halogenated hydrocarbons in an optimized whole-cell assay. App Environ Microbiol 1993; 59: 2501–2510
  • Keener W. K., Arp D. J. Transformations of aromatic compounds by Nitrosomonas europaea. Appl Environ Microbiol 1994; 60: 1914–1920
  • Keener W. K., Russell S. A., Arp D. J. Kinetic characterization of the inactivation of ammonia monooxygenase in Nitrosomonas europaea by alkyne, aniline, and cyclopropane derivatives. Biochim Biophys Acta 1998; 1388: 373–385
  • Kester R. A., De Boer W., Laanbroek H. J. Production of NO, and N2O by pure cultures of nitrifying, and denitrifying bacteria during changes in aeration. Appl Environ Microbiol 1997; 63: 3872–3877
  • Klotz M. G., Norton J. M. Sequence of an ammonia monooxygenase subunit A-encoding gene from Nitrosospira sp. NpAV. Gene 1995; 163: 159–160
  • Klotz M. G., Norton J. M. Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiol Lett 1998; 168: 303–311
  • Kowalchuk G. A., Stephen J. R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 2001; 55: 485–529
  • Krämer M., Baumgärtner M., Bender M., Conrad R. Consumption of NO by methanotrophic bacteria in pure culture, and in soil. FEMS Microbiol Ecol 1990; 73: 345–350
  • Kumar S., Nicholas D. J. D. A protonmotive force-dependent adenosine-5' triphosphate synthesis in spheroplasts of Nitrosomonas europaea. FEMS Microbiol Lett 1982; 14: 21–25
  • Lieberman R. L., Shrestha D. B., Doan P. E., Hoffman B. M., Stemmler T. L., Rosenzweig A. C. Purified particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a dimer with both mononuclear copper, and a copper-containing cluster. Proc Natl Acad Sci USA 2003; 100: 3820–3825
  • Lipschultz F., Zafiriou O. C., Wofsy S. C., McElroy M. B., Valois F. W., Watson S. W. Production of NO, and N2O by soil nitrifying bacteria. Nature 1981; 294: 641–643
  • Mandernack K. W., Kinney C. A., Coleman D., Huang Y.-S., Freeman K. H., Bogner J. The biogeochemical controls of N2O production, and emission in landfill cover soils: the role of methanotrophs in the nitrogen cycle. Environ Microbiol 2000; 2: 298–309
  • McTavish H., Fuchs J. A., Hooper A. B. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 1993; 175: 2436–2444
  • McTavish H., LaQuier F., Arciero D., Logan M., Mundfrom G., Fuchs J. A., Hooper A. B. Multiple copies of genes coding for electron transport proteins in the bacterium Nitrosomonas europaea. J Bacteriol 1993; 175: 2445–2447
  • Mellies J., Jose J., Meyer T. F. The Neisseria gonorrhoeae gene aniA encodes an inducible nitrite reductase. Mol Gen Genet 1997; 256: 525–532
  • Meyer T. E., Kamen M. D. New perspectives on c-type cytochromes. Adv Protein Chem 1982; 35: 105–212
  • Miller D. J., Nicholas D. J. D. Characterization of a soluble cytochrome oxidase/nitrite reductase from Nitrosomonas europaea. J Gen Microbiol 1985; 131: 2851–2854
  • Miller D. J., Wood P. M. The soluble cytochrome oxidase of Nitrosomonas europaea. J Gen Microbiol 1983; 129: 1645–1650
  • Miller L. G., Coutlakis M. D., Oremland R. S., Ward B. B. Selective inhibition of ammonium oxidation, and Nitrification-Linked N2O formation by methyl fluoride, and dimethyl ether. Appl Environ Microbiol 1993; 59: 2457–2464
  • Moir J. W., Crossman L. C., Spiro S., Richardson D. J. The purification of ammonia monooxygenase from Paracoccus denitrificans. FEBS Lett 1996; 387: 71–44
  • Moir J. W., Wehrfritz J. M., Spiro S., Richardson D. J. The biochemical characterization of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17. Biochem J 1996; 319(Pt 3)823–827
  • Moir J. W. B. Cytochrome c' from Paracoccus denitrificans: spectroscopic studies consistent with a role for the protein in nitric oxide metabolism. Biochim Biophys Acta 1999; 1430: 65–72
  • Monkara F., Bingham S. J., Kadir H. A., McEwan A. G., Thomson A. J., Thurgood A. G. P., Moore G. R. Spectroscopic studies of Rhodobacter capsulatus cytochrome c' in the isolated state, and in intact cells. Biochim Biophys Acta 1993; 1100: 184–188
  • Murrell J. C., Holmes A. J. Molecular biology of particulate methane monooxygenase. Microbial growth of C1 Compounds., M. E. Lidstrom, F. R. Tabita. Kluwer Academic Publishers, Dordrecht/Boston/London 1996; 133–140
  • Naqvi S. W. A., Yoshinari T., Jayakumar D. A., Altabet M. A., Narvekar P. V., Devol A. H., Brandes J. A., Codispoti L. A. Budgetary, and biogeochemical implications of N2O isotope signatures in the Arabian Sea. Nature 1998; 394: 462–464
  • Nguyen H.-H. T., Elliott S. J., Yip J. H.-K., Chan S. I. The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme: Isolation, and characterization. J Biol Chem 1998; 273: 7957–7966
  • Norton J. M., Alzerreca J. J., Suwa Y., Klotz M. G. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol 2002; 177: 139–49
  • Norton J. M., Low J. M., Klotz M. G. The gene encoding ammonia monooxygenase subunit A exists in three nearly identical copies in Nitrosospira sp. NpAV. FEMS Microbiology Letters 1996; 139: 181–188
  • Pérez T., Trumbore S. E., Tyler S. C., Matson P. A., Ortiz-Monasterio I., Rahn T., Griffith D. W. T. Identifying the agricultural imprint on the global N2O budget using stable isotopes. J Geophys Res 2001; 106: 9869–9878
  • Poth M. Dinitrogen production from nitrite by a Nitrosomonas isolate. Appl Environ Microbiol 1986; 52: 957–959
  • Poth M., Focht D. 15N kinetic analysis of N2O production by Nitrosomonas europaea:an examination of nitrifier denitrification. Appl Environ Microbiol 1985; 49: 1134–1141
  • Poughon L., Dussap C.-G., Gros J.-B. Energy model, and metabolic flux analysis for autotrophic nitrifiers. Biotechnol Bioeng 2001; 72: 416–433
  • Rasche M. E., Hicks R. E., Hyman M. R., Arp D. J. Oxidation of monohalogenated ethanes, and n-chlorinated alkanes by whole cells of Nitrosomonas europaea. J Bacteriol 1990; 172: 5368–5373
  • Remde A., Conrad R. Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite. Arch Microbiol 1990; 154: 187–191
  • Ren T., Roy R., Knowles R. Production, and consumption of nitric oxide by three methanotrophic bacteria. Appl Environ Microbiol 2000; 66: 3891–3897
  • Richardson D. J. Bacterial respiration: a flexible process for a changing environment. Microbiol 2000; 146: 551–571
  • Ritchie G. A., Nicholas D. J. The partial characterization of purified nitrite reductase, and hydroxylamine oxidase from Nitrosomonas europaea. Biochem J 1974; 138: 471–480
  • Ritchie G. A. F., Nicholas D. J. D. Identification of the source of nitrous oxide produced by oxidative, and reductive processes in Nitrosomonas europaea. Biochem J 1972; 126: 1181–1191
  • Sayavedra-Soto L. A., Hommes N. G., Alzerreca J. J., Arp D. J., Norton J. M., Klotz M. G. Transcription of the amoC, amoA, and amoB genes in Nitrosomonas europaea, and Nitrosospira sp. NpAV. FEMS Microbiol Lett 1998; 167: 81–88
  • Sayavedra-Soto L. A., Hommes N. G., Arp D. J. Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea. J Bacteriol 1994; 176: 504–510
  • Sayavedra-Soto L. A., Hommes N. G., Russell S. A., Arp D. J. Induction of ammonia monooxygenase, and hydroxylamine oxidoreductase mRNAs by ammonium in Nitrosomonas europaea. Mol Microbiol 1996; 20: 541–548
  • Schalk J., de Vries S., Kuenen J. G., Jetten M. S. M. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochem. 2000; 39: 5405–5412
  • Schmidt I., Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 1997; 167: 106–111
  • Schmidt I., Bock E. Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha. Antonie Van Leeuwenhoek 1998; 73: 271–278
  • Schmidt I., Bock E., Jetten S. M. Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene. Microbiol 2001; 147: 2247–2253
  • Schmidt I., Sliekers O., Schmid M., Cirpus I., Strous M., Bock E., Kuenen J. G., Jetten M. S. M. Aerobic, and anaerobic ammonia oxidizing bacteria—competitors or natural partners?. FEMS Microbiol Ecol 2002; 39: 175–181
  • Schmidt I., Zart D., Bock E. Effects of gaseous NO2 on cells of Nitrosomonas eutropha previously incapable of using ammonia as an energy source. Antonie Van Leeuwenhoek 2001; 79: 39–47
  • Schmidt T. M., DiSpirito A. A. Spectral characterization of c-type cytochromes purified from Beggiatoa alba. Arch Microbiol 1990; 154: 453–458
  • Semrau J. D., Chistoserdov A., Lebron J., Costello A., Davagnino J., Kenna E., Holmes A. J., Finch R., Murrell J. C., Lidstrom M. E. Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 1995; 177: 3071–3079
  • Shears J. H., Wood P. M. Tri-, and tetramethylhydroquinone as electron donors for ammonia monooxygenase in whole cells of Nitrosomonas europaea. FEMS Microbiol Lett 1986; 33: 281–284
  • Shrestha N. K., Hadano S., Kamachi T., Okura I. Dinitrogen production from ammonia by Nitrosomonas europaea. Appl Catal 2002; 237: 33–39
  • Silverman R. B. Introduction. Mechanism-based Enzyme Inactivation: Chemistry, and Enzymology. CRC Press, Boca Raton, FL 1988; 1: 3–30
  • Stein L. Y. Methanotrophic denitrification: genes, and physiology. 101st General Meeting of the American Society for Microbiology. 2001
  • Stein, L.Y. 2003. Phenotypic analysis of genes linked to nitrous oxide production by Nitrosomonas europaea in preparation
  • Stein L. Y., Arp D. J. Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl Environ Microbiol 1998; 64: 4098–4102
  • Stein L. Y., Sayavedra-Soto L. A., Hommes N. G., Arp D. J. Differential regulation of amoA, and amoB gene copies. Nitrosomonas europaea FEMS Microbiol Lett 2000; 192: 163–168
  • Stein L. Y., Yung Y. L. Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide. Annu Rev Earth Planet Sci 2003; 31: 329–356
  • Stüven R., Vollmer M., Bock E. The impact of organic matter on nitric oxide formation by Nitrosomonas europaea. Arch Microbiol 1992; 158: 439–443
  • Sümer E., Weiske A., Benckiser G., Ottow J. C. G. Influence of environmental conditions on the amount of N2O released from activated sludge in a domestic waste water treatment plant. Experientia 1995; 51: 419–422
  • Sutka R. L., Ostrom N. E., Ostrom P. H., Gandhi H., Breznak J. A. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea, and Methylococcus capsulatus Bath. Rap Comm Mass Spectrom 2003; 17: 738–745
  • Suzuki I., Dular U., Kwok S. C. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells, and extracts. J Bacteriol 1974; 120: 556–558
  • Suzuki I., Kwok S.-C. Cell-free ammonia oxidation by Nitrosomonas europaea extracts: Effects of polyamines, Mg2+ and albumin. Biochem Biophys Res Commun 1970; 39: 950–955
  • Suzuki I., Kwok S.-C., Dular U. Competitive inhibition of ammonia oxidation in Nitrosomonas europaea by methane, carbon monoxide or methanol. FEBS Lett 1976; 72: 117–120
  • Suzuki I., Kwok S.-C., Dular U., Tsang D. C. Y. Cell-free ammonia-oxidizing system of Nitrosomonas europaea: general conditions, and properties. Can J Biochem 1981; 59: 477–483
  • Suzuki S., Nakahara A., Yoshimura T., Iwasaki H., Shidara S., Matsubara T. Spectral properties of carbon monoxide or cyanide complexes of cytochrome c' from denitrifying bacteria. Inorg Chim Acta 1988; 153: 227–233
  • Tettelin H., Saunders N. J., Heidelberg J., Jeffries A. C., Nelson K. E., Eisen J. A., Ketchum K. A., Hood D. W., Peden J. F., Dodson R. J., Nelson W. C., Gwinn M. L., DeBoy R., Peterson J. D., Hickey E. K., Haft D. H., Salzberg S. L., White O., Fleischmann R. D., Dougherty B. A., Mason T., Ciecko A., Parksey D. S., Blair E., Cittone H., Clark E. B., Cotton M. D., Utterback T. R., Khouri H., Qin H., Vamathevan J., Gill J., Scarlato V., Masignani V., Pizza M., Grandi G., Sun L., Smith H. O., Fraser C. M., Moxon E. R., Rappuoli R., Venter J. C. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 2000; 287: 1809–1815
  • van Cleemput O., Baert L. Nitrite: a key compound in N loss processes under acid conditions. Plant Soil 1984; 76: 233–241
  • Vannelli T., Hooper A. B. Reductive dehalogenation of the trichloromethyl group of nitrapyrin by the Ammonia-Oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol 1993; 59: 3597–3601
  • Vannelli T., Hooper A. B. NIH shift in the hydroxylation of aromatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Evidence against an arene oxide intermediate. Biochemistry 1995; 34: 111743–111749
  • Vannelli T., Logan M., Arciero D. M., Hooper A. B. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol 1990; 56: 1169–1171
  • Vitousek P. M., Aber J. D., Howarth R. W., Likens G. E., Matson P. A., Schindler D. W., Schlesinger W. H., Tilman D. G. Human alterations of the global nitrogen cycle: Sources, and consequences. Ecolog Appl 1997; 7: 737–750
  • Webster C. R., Hopkins D. W. Contributions from different microbial processes to N2O emission from soil under differnt moisture regimes. Biol Fertil Soils 1996; 22: 331–335
  • White D. The Physiology, and Biochemistry of Prokaryotes. Oxford University Press, New York 2000
  • Whittaker M., Bergmann D., Arciero D., Hooper A. B. Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochim Biophys Acta 2000; 1459: 346–355
  • Wood P. M. Nitrification as a bacterial energy source. Nitrification., J. I. Prosser. Society for General Microbiology, IRL Press, Oxford 1986; 39–62
  • Wrage N., Velthof G. L., van Beusichem M. L., Oenema O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 2001; 33: 1723–1732
  • Yamanaka T., Shinra M. Cytochrome c-552, and cytochrome c-554 derived from Nitrosomonas europaea. Purification, properties, and their function in hydroxylamine oxidation. J Biochem 1974; 75: 1265–1273
  • Yan T., Wei X., Wu L., Liu X., Rhee S., Arp D., Tiedje J. M., Thompson D., Zhou J. Global gene expression profiles of Nitrosomonas europaea under starvation. 103rd General Meeting of the American Society for Microbiology. 2003
  • Ye R. W., Thomas S. M. Microbial nitrogen cycles: physiology, genomics, and applications. Curr Opin Microbiol 2001; 4: 307–312
  • Yoshinari T. Nitrite, and nitrous oxide production by Methylosinus trichosporium. Can J Microbiol 1984; 31: 139–144
  • Zahn J. A., Arciero D. M., Hooper A. B., DiSpirito A. A. Cytrochrome c' of Methylococcus capsulatus Bath. Eur J Biochem 1996a; 240: 684–691
  • Zahn J. A., Arciero D. M., Hooper A. M., DiSpirito A. A. Evidence for an iron center in the ammonia monooxygenase from Nitrosomonas europaea. FEBS Letters 1996b; 397: 35–38
  • Zahn J. A., DiSpirito A. Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 1996; 178: 1018–1029
  • Zart D., Schmidt I., Bock E. Significance of gaseous NO for ammonia oxidation by Nitrosomonas eutropha. Anton van Leeuwen 2000; 77: 49–55
  • Zumft W. G. Cell biology, and molecular basis of denitrification. Microbiol Mol Biol Rev 1997; 61: 533–616

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.