1,085
Views
96
CrossRef citations to date
0
Altmetric
Research Article

Nucleases of the Metallo-β-lactamase Family and Their Role in DNA and RNA Metabolism

Pages 67-93 | Published online: 11 Oct 2008

REFERENCES

  • Abou E. S., Ares M., Jr. Depletion of yeast RNase III blocks correct U2 3′ end formation and results in polyadenylated but functional U2 snRNA. EMBO J 1998; 17: 3738–3746
  • Ach R. A., Weiner A. M. The highly conserved U small nuclear RNA 3′-end formation signal is quite tolerant to mutation. Mol Cell Biol 1987; 7: 2070–2079
  • Ahnesorg P., Smith P., Jackson S. P. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 2006; 124: 301–313
  • Akhter S., Richie C. T., Deng J. M., Brey E., Zhang X., Patrick C., Jr., Behringer R. R., Legerski R. J. Deficiency in SNM1 abolishes an early mitotic checkpoint induced by spindle stress. Mol Cell Biol 2004; 24: 10448–10455
  • Akhter S., Richie C. T., Zhang N., Behringer R. R., Zhu C., Legerski R. J. Snm1-deficient mice exhibit accelerated tumorigenesis and susceptibility to infection. Mol Cell Biol 2005; 25: 10071–10078
  • Aravind L. An evolutionary classification of the metallo-beta-lactamase fold proteins. In Silico Biol 1999; 1: 69–91
  • Azzouz T. N., Gruber A., Schumperli D. U7 snRNP-specific Lsm11 protein: dual binding contacts with the 100 kDa zinc finger processing factor (ZFP100) and a ZFP100-independent function in histone RNA 3′ end processing. Nucleic Acids Res 2005; 33: 2106–2117
  • Baillat D., Hakimi M. A., Naar A. M., Shilatifard A., Cooch N., Shiekhattar R. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 2005; 123: 265–276
  • Bartel D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297
  • Bassing C. H., Swat W., Alt F. W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 2002; 109: S45–S55
  • Bertone P., Stolc V., Royce T. E., Rozowsky J. S., Urban A. E., Zhu X., Rinn J. L., Tongprasit W., Samanta M., Weissman S., Gerstein M., Snyder M. Global identification of human transcribed sequences with genome tiling arrays. Science 2004; 306: 2242–2246
  • Bienroth S., Wahle E., Suter-Crazzolara C., Keller W. Purification of the cleavage and polyadenylation factor involved in the 3′-processing of messenger RNA precursors. J Biol Chem 1991; 266: 19768–19776
  • Britton R. A., Wen T., Schaefer L., Pellegrini O., Uicker W. C., Mathy N., Tobin C., Daou R., Szyk J., Condon C. Maturation of the 5′ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol Microbiol 2007; 63: 127–138
  • Brown K. M., Gilmartin G. M. A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im. Mol Cell 2003; 12: 1467–1476
  • Buck D., Malivert L., De Chasseval R., Barraud A., Fondaneche M. C., Sanal O., Plebani A., Stephan J. L., Hufnagel M., Le Deist F., Fischer A., Durandy A., De Villartay J. P., Revy P. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 2006; 124: 287–299
  • Callebaut I., Moshous D., Mornon J. P., De Villartay J. P. Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res 2002; 30: 3592–3601
  • Carfi A., Pares S., Duee E., Galleni M., Duez C., Frere J. M., Dideberg O. The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J 1995; 14: 4914–4921
  • Chanfreau G., Abou E., Ares M., Jr., Guthrie C. Alternative 3′-end processing of U5 snRNA by RNase III. Genes Deve 1997; 11: 2741–2751
  • Chanfreau G., Legrain P., Jacquier A. Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. J Mol Biol 1998; 284: 975–988
  • Christofori G., Keller W. Poly(A) polymerase purified from HeLa cell nuclear extract is required for both cleavage and polyadenylation of pre-mRNA in vitro. Mol Cell Biol 1989; 9: 193–203
  • Colgan D. F., Manley J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev 1997; 11: 2755–2766
  • Condon C., Putzer H. The phylogenetic distribution of bacterial ribonucleases. Nucleic Acids Res 2002; 30: 5339–5346
  • Condon C., Putzer H., Grunberg-Manago M. Processing of the leader mRNA plays a major role in the induction of thrS expression following threonine starvation in Bacillus subtilis. Proc Natl Acad Sci U S A 1996; 93: 6992–6997
  • Condon C., Putzer H., Luo D., Grunberg-Manago M. Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli. J Mol Biol 1997; 268: 235–242
  • Cotten M., Oberhauser B., Brunar H., Holzner A., Issakides G., Noe C. R., Schaffner G., Wagner E., Birnstiel M. L. 2′-O-methyl, 2′-O-ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event. Nucleic Acids Res 1991; 19: 2629–2635
  • Cuello P., Boyd D. C., Dye M. J., Proudfoot N. J., Murphy S. Transcription of the human U2 snRNA genes continues beyond the 3′ box in vivo. EMBO J 1999; 18: 2867–2877
  • Cullen B. R. Transcription and processing of human microRNA precursors. Mol Cell 2004; 16: 861–865
  • Daiyasu H., Osaka K., Ishino Y., Toh H. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 2001; 503: 1–6
  • de la Sierra-Gallay I. L., Mathy N., Pellegrini O., Condon C. Structure of the ubiquitous 3′ processing enzyme RNase Z bound to transfer RNA. Nat Struct Mol Biol 2006; 13: 376–377
  • de la Sierra-Gallay I. L., Pellegrini O., Condon C. Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature 2005; 433: 657–661
  • De Villartay J. P., Fischer A., Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol 2003; 3: 962–972
  • De Vries H., Rüegsegger U., Hübner W., Friedlein A., Langen H., Keller W. Human pre-mRNA cleavage factor IIm contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J 2000; 19: 5895–5904
  • Demuth I., Digweed M., Concannon P. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation. Oncogene 2004; 23: 8611–8618
  • Deutscher M. P. Ribonucleases, tRNA nucleotidyltransferase, and the 3′ processing of tRNA. Prog Nucleic Acid Res Mol Biol 1990; 39: 209–240
  • Deutscher M. P., Li Z. Exoribonucleases and their multiple roles in RNA metabolism. Prog Nucleic Acid Res Mol Biol 2001; 66: 67–105
  • Dominski Z., Erkmann J. A., Yang X., Sanchez R., Marzluff W. F. A novel zinc finger protein is associated with U7 snRNP and interacts with the stem-loop binding protein in the histone pre-mRNP to stimulate 3′-end processing. Genes Dev 2002; 16: 58–71
  • Dominski Z., Marzluff W. F. Formation of the 3′ end of histone mRNA. Gene 1999; 239: 1–14
  • Dominski Z., Yang X. C., Marzluff W. F. The Polyadenylation Factor CPSF-73 Is Involved in Histone-Pre-mRNA Processing. Cell 2005a; 123: 37–48
  • Dominski Z., Yang X. C., Purdy M., Wagner E. J., Marzluff W. F. A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Mol Cell Biol 2005b; 25: 1489–1500
  • Dominski Z., Zheng L. X., Sanchez R., Marzluff W. F. Stem-loop binding protein facilitates 3′-end formation by stabilizing U7 snRNP binding to histone pre-mRNA. Mol Cell Biol 1999; 19: 3561–3570
  • Dronkert M. L., de Wit J., Boeve M., Vasconcelos M. L., Van Steeg H., Tan T. L., Hoeijmakers J. H., Kanaar R. Disruption of mouse SNM1 causes increased sensitivity to the DNA interstrand cross-linking agent mitomycin C. Mol Cell Biol 2000; 20: 4553–4561
  • Dronkert M. L., Kanaar R. Repair of DNA interstrand cross-links. Mutat Res 2001; 486: 217–247
  • Dubrovsky E. B., Dubrovskaya V. A., Levinger L., Schiffer S., Marchfelder A. Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3′ ends in vivo. Nucleic Acids Res 2004; 32: 255–262
  • Dumont M., Frank D., Moisan A. M., Tranchant M., Soucy P., Breton R., Labrie F., Tavtigian S. V., Simard J. Structure of primate and rodent orthologs of the prostate cancer susceptibility gene ELAC2. Biochim Biophys Acta 2004; 1679: 230–247
  • Even S., Pellegrini O., Zig L., Labas V., Vinh J., Brechemmier-Baey D., Putzer H. Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E. Nucleic Acids Res 2005; 33: 2141–2152
  • Ezraty B., Dahlgren B., Deutscher M. P. The RNase Z homologue encoded by Escherichia coli elaC gene is RNase BN. J Biol Chem 2005; 280: 16542–16545
  • Feng J., Funk W. D., Wang S. S., Weinrich S. L., Avilion A. A., Chiu C. P., Adams R. R., Chang E., Allsopp R. C., Yu J. The RNA component of human telomerase. Science 1995; 269: 1236–1241
  • Freibaum B. D., Counter C. M. hSnm1B is a novel telomere-associated protein. J Biol Chem 2006; 281: 15033–15036
  • Frith M. C., Pheasant M., Mattick J. S. The amazing complexity of the human transcriptome. Eur J Hum Genet 2005; 13: 894–897
  • Fu D., Collins K. Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol Cell 2003; 11: 1361–1372
  • Galli G., Hofstetter H., Stunnenberg H. G., Birnstiel M. L. Biochemical complementation with RNA in the Xenopus oocyte: a small RNA is required for the generation of 3′ histone mRNA termini. Cell 1983; 34: 823–828
  • Garau G., Lemaire D., Vernet T., Dideberg O., Di Guilmi A. M. Crystal structure of phosphorylcholine esterase domain of the virulence factor choline-binding protein e from streptococcus pneumoniae: new structural features among the metallo-beta-lactamase superfamily. J Biol Chem 2005; 280: 28591–28600
  • Gick O., Kramer A., Keller W., Birnstiel M. L. Generation of histone mRNA 3′ ends by endonucleolytic cleavage of the pre-mRNA in a snRNP-dependent in vitro reaction. EMBO J 1986; 5: 1319–1326
  • Gick O., Kramer A., Vasserot A., Birnstiel M. L. Heat-labile regulatory factor is required for 3′ processing of histone precursor mRNAs. Proc Natl Acad Sci USA 1987; 84: 8937–8940
  • Gilmartin G. M. Eukaryotic mRNA 3′ processing: a common means to different ends. Genes Dev 2005; 19: 2517–2521
  • Green R., Noller H. F. Ribosomes and translation. Annu Rev Biochem 1997; 66: 679–716
  • Grimm C., Stefanovic B., Schümperli D. The low abundance of U7 snRNA is partly determined by its Sm binding site. EMBO J 1993; 12: 1229–1238
  • Grundy F. J., Henkin T. M. The T box and S box transcription termination control systems. Front Biosci 2003; 8: d20–d31
  • Heinz U., Adolph H. W. Metallo-beta-lactamases: two binding sites for one catalytic metal ion?. Cell Mol Life Sci 2004; 61: 2827–2839
  • Henkin T. M., Yanofsky C. Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 2002; 24: 700–707
  • Henry R. W., Ford E., Mital R., Mittal V., Hernandez N. Crossing the line between RNA polymerases: transcription of human snRNA genes by RNA polymerases II and III. Cold Spring Harbor Symp Quant Biol 1998; 63: 111–120
  • Hernandez N. Formation of the 3′ end of U1 snRNA is directed by a conserved sequence located downstream of the coding region. EMBO J 1985; 4: 1827–1837
  • Hernandez N. Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 2001; 276: 26733–26736
  • Hernandez N., Weiner A. M. Formation of the 3′ end of U1 snRNA requires compatible snRNA promoter elements. Cell 1986; 47: 249–258
  • Hirose Y., Manley J. L. Creatine phosphate, not ATP, is required for 3′ end cleavage of mammalian pre-mRNA in vitro. J Biol Chem 1997; 272: 29636–29642
  • Hirose Y., Manley J. L. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 1998; 395: 93–96
  • Ishiai M., Kimura M., Namikoshi K., Yamazoe M., Yamamoto K., Arakawa H., Agematsu K., Matsushita N., Takeda S., Buerstedde J. M., Takata M. DNA cross-link repair protein SNM1A interacts with PIAS1 in nuclear focus formation. Mol Cell Biol 2004; 24: 10733–10741
  • Ishii R., Minagawa A., Takaku H., Takagi M., Nashimoto M., Yokoyama S. Crystal structure of the tRNA 3′ processing endoribonuclease tRNase Z from Thermotoga maritima. J Biol Chem 2005; 280: 14138–14144
  • Ishikawa H., Nakagawa N., Kuramitsu S., Masui R. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-beta-lactamase superfamily. J Biochem (Tokyo) 2006; 140: 535–542
  • Jacobs E. Y., Ogiwara I., Weiner A. M. Role of the C-terminal domain of RNA polymerase II in U2 snRNA transcription and 3′ processing. Mol Cell Biol 2004; 24: 846–855
  • Jaeger S., Barends S., Giege R., Eriani G., Martin F. Expression of metazoan replication-dependent histone genes. Biochimie 2005; 87: 827–834
  • Jenny A., Hauri H.-P., Keller W. Characterization of cleavage and polyadenylation specificity factor and cloning of its 100-kilodalton subunit. Mol Cell Biol 1994; 14: 8183–8190
  • Jenny A., Minvielle-Sebastia L., Preker P. J., Keller W. Sequence similarity between the 73-kilodalton protein of mammalian CPSF and a subunit of yeast polyadenylation factor I. Science 1996; 274: 1514–1517
  • Katinka M. D., Duprat S., Cornillot E., Metenier G., Thomarat F., Prensier G., Barbe V., Peyretaillade E., Brottier P., Wincker P., Delbac F., El Alaoui H., Peyret P., Saurin W., Gouy M., Weissenbach J., Vivares C. P. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 2001; 414: 450–453
  • Kaufmann I., Martin G., Friedlein A., Langen H., Keller W. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 2004; 23: 616–626
  • Keeling P. J. Parasites go the full monty. Nature 2001; 414: 401–402
  • Keeling P. J., Fast N. M. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 2002; 56: 93–116
  • Keon B. H., Schafer S., Kuhn C., Grund C., Franke W. W. Symplekin, a novel type of tight junction plaque protein. J Cell Biol 1996; 134: 1003–1018
  • Kolev N. G., Steitz J. A. Symplekin and multiple other polyadenylation factors participate in 3′–end maturation of histone mRNAs. Genes & Development 2005; 19: 2583–2592
  • Korver W., Guevara C., Chen Y., Neuteboom S., Bookstein R., Tavtigian S., Lees E. The product of the candidate prostate cancer susceptibility gene ELAC2 interacts with the gamma-tubulin complex. Int J Cancer 2003; 104: 283–288
  • Kostelecky B., Pohl E., Vogel A., Schilling O., Meyer-Klaucke W. The crystal structure of the zinc phosphodiesterase from Escherichia coli provides insight into function and cooperativity of tRNase Z-family proteins. J Bacteriol 2006; 188: 1607–1614
  • Kuhn U., Wahle E. Structure and function of poly(A) binding proteins. Biochim Biophys Acta 2004; 1678: 67–84
  • Le Deist F., Poinsignon C., Moshous D., Fischer A., De Villartay J. P. Artemis sheds new light on V(D)J recombination. Immunol Rev 2004; 200: 142–155
  • Lenain C., Bauwens S., Amiard S., Brunori M., Giraud-Panis M. J., Gilson E. The Apollo 5′ exonuclease functions together with TRF2 to protect telomeres from DNA repair. Curr Biol 2006; 16: 1303–1310
  • Levinger L., Bourne R., Kolla S., Cylin E., Russell K., Wang X., Mohan A. Matrices of paired substitutions show the effects of tRNA D/T loop sequence on Drosophila RNase P and 3′-tRNase processing. J Biol Chem 1998; 273: 1015–1025
  • Li X., Hejna J., Moses R. E. The yeast Snm1 protein is a DNA 5′-exonuclease. DNA Repair (Amst) 2005; 4: 163–170
  • Li X., Moses R. E. The beta-lactamase motif in Snm1 is required for repair of DNA double-strand breaks caused by interstrand crosslinks in S. cerevisiae. DNA Repair (Amst) 2003; 2: 121–129
  • Li Z., Deutscher M. P. RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 2002; 8: 97–109
  • Lieber M. R., Ma Y., Pannicke U., Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003; 4: 712–720
  • Lieber M. R., Ma Y., Pannicke U., Schwarz K. The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair (Amst) 2004; 3: 817–826
  • Luo W., Johnson A. W., Bentley D. L. The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev 2006; 20: 954–965
  • Ma Y., Pannicke U., Lu H., Niewolik D., Schwarz K., Lieber M. R. The DNA-dependent Protein Kinase Catalytic Subunit Phosphorylation Sites in Human Artemis. J Biol Chem 2005a; 280: 33839–33846
  • Ma Y., Pannicke U., Schwarz K., Lieber M. R. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002; 108: 781–794
  • Ma Y., Schwarz K., Lieber M. R. The Artemis:DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst) 2005b; 4: 845–851
  • MacDonald C. C., Wilusz J., Shenk T. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 1994; 14: 6647–6654
  • Mandel C. R., Kaneko S., Zhang H., Gebauer D., Vethantham V., Manley J. L., Tong L. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 2006; 444: 953–956
  • Mangus D. A., Evans M. C., Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 2003; 4: 223
  • Marck C., Grosjean H. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 2002; 8: 1189–1232
  • Marszalkowski M., Teune J. H., Steger G., Hartmann R. K., Willkomm D. K. Thermostable RNase P RNAs lacking P18 identified in the Aquificales. RNA 2006; 12: 1915–1921
  • Martin F., Schaller A., Eglite S., Schümperli D., Müller B. The gene for histone RNA hairpin binding protein is located on human chromosome 4 and encodes a novel type of RNA binding protein. EMBO J 1997; 16: 769–778
  • Marzluff W. F. Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr Opin Cell Biol 2005; 17: 274–280
  • Marzluff W. F., Gongidi P., Woods K. R., Jin J. P., Maltais L. The human and mouse replication-dependent histone genes. Genomics 2002; 80: 487–498
  • Mattick J. S. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. Bioessays 2003; 25: 930–939
  • McCracken S., Fong N., Yankulov K., Ballantyne S., Pan G. H., Greenblatt J., Patterson S. D., Wickens M., Bentley D. L. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 1997; 385: 357–361
  • Medlin J., Scurry A., Taylor A., Zhang F., Peterlin B. M., Murphy S. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J 2005; 24: 4154–4165
  • Medlin J. E., Uguen P., Taylor A., Bentley D. L., Murphy S. The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3′ processing of U2 snRNA. EMBO J 2003; 22: 925–934
  • Minagawa A., Takaku H., Ishii R., Takagi M., Yokoyama S., Nashimoto M. Identification by Mn2+ rescue of two residues essential for the proton transfer of tRNase Z catalysis. Nucleic Acids Res 2006; 34: 3811–3818
  • Minagawa A., Takaku H., Takagi M., Nashimoto M. A novel endonucleolytic mechanism to generate the CCA 3′ termini of tRNA molecules in Thermotoga maritima. J Biol Chem 2004; 279: 15688–15697
  • Minvielle-Sebastia L., Keller W. mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr Opin Cell Biol 1999; 11: 352–357
  • Mohan A., Whyte S., Wang X., Nashimoto M., Levinger L. The 3′ end CCA of mature tRNA is an antideterminant for eukaryotic 3′-tRNase. RNA 1999; 5: 245–256
  • Moore C. L., Sharp P. A. Accurate cleavage and polyadenylation of exogenous RNA substrate. Cell 1985; 41: 845–855
  • Moore C. L., Skolnik-David H., Sharp P. A. Analysis of RNA cleavage at the adenovirus-2 L3 polyadenylation site. EMBO J 1986; 5: 1929–1938
  • Morlando M., Greco P., Dichtl B., Fatica A., Keller W., Bozzoni I. Functional analysis of yeast snoRNA and snRNA 3′-end formation mediated by uncoupling of cleavage and polyadenylation. Mol Cell Biol 2002; 22: 1379–1389
  • Moshous D., Callebaut I., De Chasseval R., Corneo B., Cavazzana-Calvo M., Le Deist F., Tezcan I., Sanal O., Bertrand Y., Philippe N., Fischer A., De Villartay J. P. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001; 105: 177–186
  • Mowry K. L., Steitz J. A. Identification of the human U7 snRNP as one of several factors involved in the 3′ end maturation of histone premessenger RNA's. Science 1987; 238: 1682–1687
  • Murthy K. G., Manley J. L. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J Biol Chem 1992; 267: 14804–14811
  • Murthy K. G.K., Manley J. L. The 160-kD subunit of human cleavage polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes and Development 1995; 9: 2672–2683
  • Nashimoto M. Distribution of both lengths and 5′ terminal nucleotides of mammalian pre-tRNA 3′ trailers reflects properties of 3′ processing endoribonuclease. Nucleic Acids Res 1997; 25: 1148–1154
  • Nashimoto M., Tamura M., Kaspar R. L. Minimum requirements for substrates of mammalian tRNA 3′ processing endoribonuclease. Biochemistry 1999; 38: 12089–12096
  • Neuman de Vegvar H. E., Lund E., Dahlberg J. E. 3′ end formation of U1 snRNA precursors is coupled to transcription from snRNA promoters. Cell 1986; 47: 259–266
  • Niewolik D., Pannicke U., Lu H., Ma Y., Wang L. C., Kulesza P., Zandi E., Lieber M. R., Schwarz K. DNA-PKcs dependence of artemis endonucleolytic activity: Differences between hairpins and 5′ or 3′ overhangs. J Biol Chem 2006; 281: 33900–33909
  • Ohler U., Yekta S., Lim L. P., Bartel D. P., Burge C. B. Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA 2004; 10: 1309–1322
  • Pannicke U., Ma Y., Hopfner K. P., Niewolik D., Lieber M. R., Schwarz K. Functional and biochemical dissection of the structure-specific nuclease ARTEMIS. EMBO J 2004; 23: 1987–1997
  • Pellegrini O., Nezzar J., Marchfelder A., Putzer H., Condon C. Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis. EMBO J 2003; 22: 4534–4543
  • Perumal K., Reddy R. The 3′ end formation in small RNAs. Gene Expr 2002; 10: 59–78
  • Perwez T., Kushner S. R. RNase Z in Escherichia coli plays a significant role in mRNA decay. Mol Microbiol 2006; 60: 723–737
  • Pillai R. S., Grimmler M., Meister G., Will C. L., Luhrmann R., Fischer U., Schumperli D. Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing. Genes Dev 2003; 17: 2321–2333
  • Pillai R. S., Will C. L., Lührmann R., Schümperli D., Müller B. Purified U7 snRNPs lack the Sm proteins D1 and D2 but contain Lsm10, a new 14 kDa Sm D1-like protein. EMBO J 2001; 20: 5470–5479
  • Poinsignon C., Moshous D., Callebaut I., De Chasseval R., Villey I., De Villartay J. P. The Metallo-β-Lactamaseβ-CASP Domain of Artemis Constitutes the Catalytic Core for V(D)J Recombination. J Exp Med 2004; 199: 315–321
  • Putzer H., Condon C., Brechemier-Baey D., Brito R., Grunberg-Manago M. Transfer RNA-mediated antitermination in vitro. Nucleic Acids Res 2002; 30: 3026–3033
  • Richie C. T., Peterson C., Lu T., Hittelman W. N., Carpenter P. B., Legerski R. J. hSnm1 colocalizes and physically associates with 53BP1 before and after DNA damage. Mol Cell Biol 2002; 22: 8635–8647
  • Rooney S., Sekiguchi J., Zhu C., Cheng H. L., Manis J., Whitlow S., DeVido J., Foy D., Chaudhuri J., Lombard D., Alt F. W. Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol Cell 2002; 10: 1379–1390
  • Rosonina E., Kaneko S., Manley J. L. Terminating the transcript: breaking up is hard to do. Genes Dev 2006; 20: 1050–1056
  • Ruegsegger U., Beyer K., Keller W. Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors. J Biol Chem 1996; 271: 6107–6113
  • Ruegsegger U., Blank D., Keller W. Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Molecular Cell 1998; 1: 243–253
  • Ryan K., Calvo O., Manley J. L. Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA 2004; 10: 565–573
  • Sanchez R., Marzluff W. F. The oligo(A) tail on histone mRNA plays an active role in translational silencing of histone mRNA during Xenopus oogenesis. Mol Cell Biol 2004; 24: 2513–2525
  • Scharl E. C., Steitz J. A. The site of 3′ end formation of histone messenger RNA is a fixed distance from the downstream element recognized by the U7 snRNP. EMBO J 1994; 13: 2432–2440
  • Schierling K., Rosch S., Rupprecht R., Schiffer S., Marchfelder A. tRNA 3′ end maturation in archaea has eukaryotic features: the RNase Z from Haloferax volcanii. J Mol Biol 2002; 316: 895–902
  • Schiffer S., Helm M., Theobald-Dietrich A., Giege R., Marchfelder A. The plant tRNA 3′ processing enzyme has a broad substrate spectrum. Biochemistry 2001; 40: 8264–8272
  • Schiffer S., Rosch S., Marchfelder A. Assigning a function to a conserved group of proteins: the tRNA 3′-processing enzymes. EMBO J 2002; 21: 2769–2777
  • Schilling O., Ruggeberg S., Vogel A., Rittner N., Weichert S., Schmidt S., Doig S., Franz T., Benes V., Andrews S. C., Baum M., Meyer-Klaucke W. Characterization of an Escherichia coli elaC deletion mutant. Biochem Biophys Res Commun 2004; 320: 1365–1373
  • Schilling O., Spath B., Kostelecky B., Marchfelder A., Meyer-Klaucke W., Vogel A. Exosite modules guide substrate recognition in the ZiPD/ElaC protein family. J Biol Chem 2005; 280: 17857–17862
  • Schilling O., Wenzel N., Naylor M., Vogel A., Crowder M., Makaroff C., Meyer-Klaucke W. Flexible metal binding of the metallo-beta-lactamase domain: glyoxalase II incorporates iron, manganese, and zinc in vivo. Biochemistry 2003; 42: 11777–11786
  • Schumperli D., Pillai R. S. The special Sm core structure of the U7 snRNP: far-reaching significance of a small nuclear ribonucleoprotein. Cell Mol Life Sci 2004; 61: 2560–2570
  • Schwarz K., Ma Y., Pannicke U., Lieber M. R. Human severe combined immune deficiency and DNA repair. Bioessays 2003; 25: 1061–1070
  • Sekiguchi J. M., Ferguson D. O. DNA double-strand break repair: a relentless hunt uncovers new prey. Cell 2006; 124: 260–262
  • Sheets M. D., Stephenson P., Wickens M. P. Products of in vitro cleavage and polyadenylation of simian virus 40 late pre-mRNAs. Mol Cell Biol 1987; 7: 1518–1529
  • Shibata H. S., Minagawa A., Takaku H., Takagi M., Nashimoto M. Unstructured RNA is a substrate for tRNase Z. Biochemistry 2006; 45: 5486–5492
  • Silva G., LeGall J., Xavier A. V., Teixeira M., Rodrigues-Pousada C. Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes. J Bacteriol 2001; 183: 4413–4420
  • Smith M. M., Levitan D. J. The Caenorhabditis elegans homolog of the putative prostate cancer susceptibility gene ELAC2, hoe-1, plays a role in germline proliferation. Dev Biol 2004; 266: 151–160
  • Smogorzewska A., De Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem 2004; 73: 177–208
  • Soller M. Pre-messenger RNA processing and its regulation: a genomic perspective. Cell Mol Life Sci 2006; 63: 796–819
  • Soubeyrand S., Pope L., De Chasseval R., Gosselin D., Dong F., De Villartay J. P., Hache R. J. Artemis phosphorylated by DNA-dependent protein kinase associates preferentially with discrete regions of chromatin. J Mol Biol 2006; 358: 1200–1211
  • Spath B., Kirchner S., Vogel A., Schubert S., Meinlschmidt P., Aymanns S., Nezzar J., Marchfelder A. Analysis of the functional modules of the tRNA 3′ endonuclease (tRNase Z). J Biol Chem 2005; 280: 35440–35447
  • Steinmetz E. J., Conrad N. K., Brow D. A., Corden J. L. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 2001; 413: 327–331
  • Streit A., Koning T. W., Soldati D., Melin L., Schümperli D. Variable effects of the conserved RNA hairpin element upon 3′ end processing of histone pre-mRNA in vitro. Nucleic Acids Res 1993; 21: 1569–1575
  • Szilard R. K., Durocher D. Telomere protection: an act of God. Curr Biol 2006; 16: R544–R546
  • Takagaki Y., Manley J. L. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 2000; 20: 1515–1525
  • Takagaki Y., Ryner L. C., Manley J. L. Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell 1988; 52: 731–742
  • Takaku H., Minagawa A., Takagi M., Nashimoto M. A candidate prostate cancer susceptibility gene encodes tRNA 3′ processing endoribonuclease. Nucleic Acids Res 2003; 31: 2272–2278
  • Takaku H., Minagawa A., Takagi M., Nashimoto M. The N-terminal half-domain of the long form of tRNase Z is required for the RNase 65 activity. Nucleic Acids Res 2004; 32: 4429–4438
  • Tavtigian S. V., Simard J., Teng D. H., Abtin V., Baumgard M., Beck A., Camp N. J., Carillo A. R., Chen Y., Dayananth P., Desrochers M., Dumont M., Farnham J. M., Frank D., Frye C., Ghaffari S., Gupte J. S., Hu R., Iliev D., Janecki T., Kort E. N., Laity K. E., Leavitt A., Leblanc G., McArthur-Morrison J., Pederson A., Penn B., Peterson K. T., Reid J. E., Richards S., Schroeder M., Smith R., Snyder S. C., Swedlund B., Swensen J., Thomas A., Tranchant M., Woodland A. M., Labrie F., Skolnick M. H., Neuhausen S., Rommens J., Cannon-Albright L. A. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001; 27: 172–180
  • Terns M. P., Jacob S. T. Role of poly(A) polymerase in the cleavage and polyadenylation of mRNA precursor. Mol Cell Biol 1989; 9: 1435–1444
  • Uguen P., Murphy S. The 3′ ends of human pre-snRNAs are produced by RNA polymerase II CTD-dependent RNA processing. EMBO J 2003; 22: 4544–4554
  • Uguen P., Murphy S. 3′-box-dependent processing of human pre-U1 snRNA requires a combination of RNA and protein co-factors. Nucleic Acids Res 2004; 32: 2987–2994
  • van Overbeek M., De Lange T. Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. Curr Biol 2006; 16: 1295–1302
  • Vasiljeva L., Buratowski S. Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell 2006; 21: 239–248
  • Venkataraman K., Brown K. M., Gilmartin G. M. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 2005; 19: 1315–1327
  • Vivares C. P., Gouy M., Thomarat F., Metenier G. Functional and evolutionary analysis of a eukaryotic parasitic genome. Curr Opin Microbiol 2002; 5: 499–505
  • Vivares C. P., Metenier G. The microsporidian Encephalitozoon. Bioessays 2001; 23: 194–202
  • Vogel A., Schilling O., Meyer-Klaucke W. Identification of metal binding residues for the binuclear zinc phosphodiesterase reveals identical coordination as glyoxalase II. Biochemistry 2004; 43: 10379–10386
  • Vogel A., Schilling O., Niecke M., Bettmer J., Meyer-Klaucke W. ElaC encodes a novel binuclear zinc phosphodiesterase. J Biol Chem 2002; 277: 29078–29085
  • Vogel A., Schilling O., Spath B., Marchfelder A. The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties. Biol Chem 2005; 386: 1253–1264
  • Wahle E. Poly(A) tail length control is caused by termination of processive synthesis. J Biol Chem 1995; 270: 2800–2808
  • Wahle E., Ruegsegger U. 3′-End processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 1999; 23: 277–295
  • Walker S. C., Engelke D. R. Ribonuclease P: the evolution of an ancient RNA enzyme. Crit Rev Biochem Mol Biol 2006; 41: 77–102
  • Walther T. N., Wittop K. T., Schümperli D., Muller B. A 5′–3′ exonuclease activity involved in forming the 3′ products of histone pre-mRNA processing in vitro. RNA 1998; 4: 1034–1046
  • Wang Z., Fast W., Valentine A. M., Benkovic S. J. Metallo-beta-lactamase: structure and mechanism. Curr Opin Chem Biol 1999; 3: 614–622
  • Wang Z.-F., Whitfield M. L., Ingledue T. I., Dominski Z., Marzluff W. F. The protein which binds the 3′ end of histone mRNA: a novel RNA-binding protein required for histone pre-mRNA processing. Genes Dev 1996; 10: 3028–3040
  • Watkins N. J., Lemm I., Ingelfinger D., Schneider C., Hossbach M., Urlaub H., Luhrmann R. Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex. Mol Cell 2004; 16: 789–798
  • Weiner A. M. tRNA maturation: RNA polymerization without a nucleic acid template. Curr Biol 2004; 14: R883–R885
  • Weiner A. M. E Pluribus Unum: 3′ end formation of polyadenylated mRNAs, histone mRNAs, and U snRNAs. Mol Cell 2005; 20: 168–170
  • Wen T., Oussenko I. A., Pellegrini O., Bechhofer D. H., Condon C. Ribonuclease PH plays a major role in the exonucleolytic maturation of CCA-containing tRNA precursors in Bacillus subtilis. Nucleic Acids Res 2005; 33: 3636–3643
  • Wickens M., Anderson P., Jackson R. J. Life and death in the cytoplasm: messages from the 3′ end. Curr Opin Genet Dev 1997; 7: 220–232
  • Wickens M., Gonzalez T. N. Molecular biology. Knives, accomplices, and RNA. Science 2004; 306: 1299–1300
  • Will C. L., Luhrmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 2001; 13: 290–301
  • Will C. L., Luhrmann R. Splicing of a rare class of introns by the U12-dependent spliceosome. Biol Chem 2005; 386: 713–724
  • Willkomm D. K., Feltens R., Hartmann R. K. tRNA maturation in Aquifex aeolicus. Biochimie 2002; 84: 713–722
  • Wu Q., Krainer A. R. AT-AC Pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes. Mol Cell Biol 1999; 19: 3225–3236
  • Xu R., Ye X., Li Q. Q. AtCPSF73-II gene encoding an Arabidopsis homolog of CPSF 73 kDa subunit is critical for early embryo development. Gene 2004; 324: 35–45
  • Yan H., Zareen N., Levinger L. Naturally occurring mutations in human mitochondrial pre-tRNASer(UCN) can affect the transfer ribonuclease Z cleavage site, processing kinetics, and substrate secondary structure. J Biol Chem 2006; 281: 3926–3935
  • Zareen N., Hopkinson A., Levinger L. Residues in two homology blocks on the amino side of the tRNase Z His domain contribute unexpectedly to pre-tRNA 3′ end processing. RNA 2006; 12: 1104–1115
  • Zareen N., Yan H., Hopkinson A., Levinger L. Residues in the conserved His domain of fruit fly tRNase Z that function in catalysis are not involved in substrate recognition or binding. J Mol Biol 2005; 350: 189–199
  • Zhang X., Succi J., Feng Z., Prithivirajsingh S., Story M. D., Legerski R. J. Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 2004; 24: 9207–9220
  • Zhao J., Hyman L., Moore C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999a; 63: 405–445
  • Zhao J., Kessler M., Helmling S., O'Connor J. P., Moore C. Pta1, a component of yeast CFII, is required for both cleavage and poly(A) addition of mRNA precursor. Mol Cell Biol 1999b; 19: 7733–7740
  • Zuo Y., Deutscher M. P. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 2001; 29: 1017–1026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.