1,631
Views
84
CrossRef citations to date
0
Altmetric
Research Article

Structure and Mechanism of Metallocarboxypeptidases

Pages 319-345 | Published online: 03 Nov 2008

REFERENCES

  • A. Aagaard, P. Listwan, N. Cowieson, T. Huber, T. Ravasi, C. Wells, J. U. Flanagan, D. A. Hume, B. Kobe, and J. L. Martin. (2005). An inflammatory role for the mammalian carboxypeptidase inhibitor latexin: relationship to cystatins and the tumor suppressor TIG1. Structure 13:309–317.
  • N. Abramowitz, I. Schechter, and A. Berger. (1967). On the size of the active site in proteases. II. Carboxypeptidase-A. Biochem Biophys Res Commun 29:862–867.
  • J. W. Arndt, B. Hao, V. Ramakrishnan, T. Cheng, S. I. Chan, and M. K. Chan. (2002). Crystal structure of a novel carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. Structure 10:215–224.
  • J. L. Arolas, J. Lorenzo, A. Rovira, J. Castella, F. X. Aviles, and C. P. Sommerhoff. (2005a). A carboxypeptidase inhibitor from the tick Rhipicephalus bursa: isolation, cDNA cloning, recombinant expression, and characterization. J Biol Chem 280:3441–3448.
  • J. L. Arolas, G. M. Popowicz, J. Lorenzo, C. P. Sommerhoff, R. Huber, F. X. Avilés, and T. A. Holak. (2005b). The three-dimensional structures of tick carboxypeptidase inhibitor in complex with A/B carboxypeptidases reveal a novel double-headed binding mode. J Mol Biol 350:489–498.
  • J. L. Arolas, J. Vendrell, F. X. Avilés, and L. D. Fricker. (2007). Metallocarboxypeptidases: emerging drug targets in biomedicine. Curr Pharm Des 13:349–366.
  • D. S. Auld. Acyl group transfer–metalloproteinasesEnzyme MechanismsM. I. Page, and A. Williams. Royal Society of Chemistry, London, (1987) 241–258.
  • D. S. Auld. (1997). Zinc catalysis in metalloproteases. Struct Bond 89:29–50.
  • D. S. Auld. 68. Catalytic mechanisms for metallopeptidasesHandbook of Proteolytic EnzymesA. J. Barrett, N. D. Rawlings, and J. F. WoessnerJr.. Elsevier Academic Press, London, (2004a) Vol. 1268–289.
  • D. S. Auld. 240. Carboxypeptidase AHandbook of Proteolytic EnzymesA. J. Barrett, N. D. Rawlings, and J. F. WoessnerJr.. Elsevier Academic Press, London, (2004b) Vol. 1812–821.
  • L. Bajzar, R. Manuel, and M. E. Nesheim. (1995). Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 270:14477–14484.
  • A. J. Barrett, N. D. Rawlings, and J. F. Woessner. Handbook of Proteolytic Enzymes.. Elsevier, Amsterdam, (2004) .
  • U. Baumann, M. Bauer, S. Letoffe, P. Delepelaire, and C. Wandersman. (1995). Crystal structure of a complex between Serratia marcescens metallo-protease and an inhibitor from Erwinia chrysanthemi. J Mol Biol 248:653–661.
  • A. Bayés, D. Fernández, M. Solà, A. Marrero, S. García-Piqué, F. X. Avilés, J. Vendrell, and F. X. Gomis-Rüth. (2007). Caught after the Act: A human A-type metallocarboxypeptidase in a product complex with a cleaved hexapeptide. Biochemistry 46:6921–6930.
  • S. S. Biechler, and R. W.J. Taft. (1957). The effect of structure on kinetics and mechanism of the alkaline hydrolysis of anilides. J Am Chem Soc 79:4927–4935.
  • W. Bode, F. X. Gomis-Rüth, and W. Stöcker. (1993). Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 331:134–140.
  • C.-I. Brändén. (1980). Relation between structure and function of α /β proteins. Q Rev Biophys 13:317–338.
  • C. K. Brown, K. Madauss, W. Lian, M. R. Beck, W. D. Tolbert, and D. W. Rodgers. (2001). Structure of neurolysin reveals a deep channel that limits substrate access. Proc Natl Acad Sci USA 98:3127–3132.
  • P. Bryan, M. W. Pantoliano, S. G. Quill, H. Y. Hsiao, and T. Poulos. (1986). Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc Natl Acad Sci USA 83:3743–3745.
  • J. T. Bukrinsky, M. J. Bjerrum, and A. Kadziola. (1998). Native carboxypeptidase A in a new crystal environment reveals a different conformation of the important tyrosine 248. Biochemistry 37:16555–16564.
  • A. M. Cappalonga, R. S. Alexander, and D. W. Christianson. (1992). Structural comparison of sulfodiimine and sulfonamide inhibitors in their complexes with zinc enzymes. J Biol Chem 267:19192–19197.
  • C. Carranza, A.-G. Inisan, E. Mouthuy-Knoops, C. Cambillau, and A. Roussel. Turbo-FrodoAFMB Activity Report 1996–1999. , , (1999) 89–90. CNRS-UPR 9039, Marseille.
  • J. Cha, and D. S. Auld. (1997). Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis. Biochemistry 36:16019–16024.
  • T. C. Cheng, V. Ramakrishnan, and S. I. Chan. (1999). Purification and characterization of a cobalt-activated carboxypeptidase from the hyperthermophilic archaeon Pyrococcus furiosus. Protein Sci 8:2474–2486.
  • C. Chothia, and A. M. Lesk. (1986). The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826.
  • D. W. Christianson. (1991). Structural biology of zinc. Adv Protein Chem 42:281–355.
  • D. W. Christianson, and J. D. Cox. (1999). Catalysis by metal-activated hydroxide in zinc and manganese metalloenzymes. Annu Rev Biochem 68:33–57.
  • D. W. Christianson, and W. N. Lipscomb. (1989). Carboxypeptidase A. Acc Chem Res 22:62–69.
  • G. M. Clore, A. M. Gronenborn, M. Nilges, and C. A. Ryan. (1987). Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. Biochemistry 26:8012–8023.
  • D. E. Coleman, A. M. Berghuis, E. Lee, M. E. Linder, A. G. Gilman, and S. R. Sprang. (1994). Structures of active conformations of Gia1 and the mechanism of GTP hydrolysis. Science 265:1405–1412.
  • M. Coll, A. Guasch, F. X. Aviles, and R. Huber. (1991). Three-dimensional structure of porcine procarboxypeptidase B: a structural basis of its inactivity. EMBO J 10:1–9.
  • M. Comellas-Bigler, R. Lang, W. Bode, and K. Maskos. (2005). Crystal structure of the E. coli dipeptidyl carboxypeptidase Dcp: further indication of a ligand-dependent hinge movement mechanism. J Mol Biol 349:99–112.
  • M. J. Cornell, T. A. Williams, N. S. Lamango, D. Coates, P. Corvol, F. Soubrier, J. Hoheisel, H. Lehrach, and R. E. Isaac. (1995). Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster. J Biol Chem 270:13613–13619.
  • H. R. Corradi, S. L. Schwager, A. T. Nchinda, E. D. Sturrock, and K. R. Acharya. (2006). Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design. J Mol Biol 357:964–974.
  • M. I. Davis, M. J. Bennett, L. M. Thomas, and P. J. Bjorkman. (2005). Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc Natl Acad Sci USA 102:5981–5986.
  • R. H. de Wolfe, and R. C. Newcomb. (1971). Hydrolysis of formanilides in alkaline solutions. J Org Chem 36:3870–3878.
  • A. Devault, C. Nault, M. Zollinger, M. C. Fournie-Zaluski, B. P. Roques, P. Crine, and G. Boileau. (1988). Expression of neutral endopeptidase (enkephalinase) in heterologous COS-1 cells. Characterization of the recombinant enzyme and evidence for a glutamic acid residue at the active site. J Biol Chem 263:4033–4040.
  • M. Díez-Díaz, V. Conejero, I. Rodrigo, G. Pearce, and C. A. Ryan. (2004). Isolation and characterization of wound-inducible carboxypeptidase inhibitor from tomato leaves. Phytochemistry 65:1919–1924.
  • F. S. Domingues, P. Lackner, A. Andreeva, and M. J. Sippl. (2000). Structure-based evaluation of sequence comparison and fold recognition alignment accuracy. J Mol Biol 297:1003–1013.
  • D. L. Eaton, B. E. Malloy, S. P. Tsai, W. Henzel, and D. Drayna. (1991). Isolation, molecular cloning, and partial characterization of a novel carboxypeptidase B from human plasma. J Biol Chem 266:21833–21838.
  • M. R. Ehlers, E. A. Fox, D. J. Strydom, and J. F. Riordan. (1989). Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci USA 86:7741–7745.
  • S. O. Eriksson, and C. Holst. (1966). Hydrolysis of anilides. II. Hydrolysis of trifluoro- and trichloroacetanilide by hydroxyl ions and by some other catalysts. Acta Chem Scan 20:1892–1906.
  • R. M. Esnouf. (1997). An extensively modified version of Molscript that includes greatly enhanced coloring capabilities. J Mol Graph 15:133–138.
  • S. V. Evans. (1993). SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J Mol Graphics 11:134–138.
  • Z. Faming, B. Kobe, C. B. Stewart, W. J. Rutter, and E. J. Goldsmith. (1991). Structural evolution of an enzyme specificity. The structure of rat carboxypeptidase A2 at 1.9-A resolution. J Biol Chem 266:24606–24612.
  • d a Fraústo, J. J.R. Silva, and R. J.P. Williams. The Biological Chemistry of the Elements: the inorganic chemistry of life. Oxford University Press, New York, (2001) .
  • N. Fushimi, C. E. Ee, T. Nakajima, and E. Ichishima. (1999). Aspzincin, a family of metalloendopeptidases with a new zinc-binding motif. Identification of new zinc-binding sites (His(128), His(132), and Asp(164)) and three catalytically crucial residues (Glu(129), Asp(143), and Tyr(106)) of deuterolysin from Aspergillus oryzae by site-directed mutagenesis. J Biol Chem 274:24195–24201.
  • R. García-Castellanos, R. Bonet-Figueredo, I. Pallarès, S. Ventura, F. X. Aviles, J. Vendrell, and F. X. Gomis-Rüth. (2005). Detailed molecular comparison between the inhibition mode of A/B-type carboxypeptidases in the zymogen state and by the endogenous inhibitor latexin. Cell Mol Life Sci 62:1996–2014.
  • I. García-Sáez, D. Reverter, J. Vendrell, F. X. Avilés, and M. Coll. (1997). The three-dimensional structure of human procarboxypeptidase A2. Deciphering the basis of the inhibition, activation and intrinsic activity of the zymogen. EMBO J 16:6906–6913.
  • S. J. Gardell, C. S. Craik, D. Hilvert, M. S. Urdea, and W. J. Rutter. (1985). Site-directed mutagenesis shows that tyrosine 248 of carboxypeptidase A does not play a crucial role in catalysis. Nature 317:551–555.
  • C. J. Gerdts, V. Tereshko, M. K. Yadav, I. Dementieva, F. Collart, A. Joachimiak, R. C. Stevens, P. Kuhn, A. Kossiakoff, and R. F. Ismagilov. (2006). Time-controlled microfluidic seeding in nL-volume droplets to separate nucleation and growth stages of protein crystallization. Angew Chem Int Ed Engl 45:8156–8160.
  • M. Gerstein, and W. Krebs. (1998). A database of macromolecular motions. Nucl Acids Res 26:4280–4290.
  • M. Gerstein, A. M. Lesk, and C. Chothia. (1994). Structural mechanisms for domain movements in proteins. Biochemistry 33:6739–6749.
  • F. X. Gomis-Rüth. (2003). Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotech 24:157–202.
  • F. X. Gomis-Rüth, W. Stöcker, R. Huber, R. Zwilling, and W. Bode. (1993). Refined 1.8 Å X-ray crystal structure of astacin, a zinc-endopeptidase from the crayfish Astacus astacus L. Structure determination, refinement, molecular structure and comparison with thermolysin. J Mol Biol 229:945–968.
  • F. X. Gomis-Rüth, L. F. Kress, J. Kellermann, I. Mayr, X. Lee, R. Huber, and W. Bode. (1994a). Refined 2.0Å X-ray crystal structure of the zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin. J Mol Biol 239:513–544.
  • F. X. Gomis-Rüth, H. Nar, F. Grams, I. Yallouros, U. Küsthardt, R. Zwilling, W. Bode, and W. Stöcker. (1994b). Crystal structures, spectroscopic features and catalytic properties of cobalt(II)-, copper(II)-, nickel(II)-, and mercury(II)-derivatives of the zinc-endopeptidase astacin. A correlation of structure and proteolytic activity. J Biol Chem 269:17111–17117.
  • F. X. Gomis-Rüth, M. Gómez, W. Bode, R. Huber, and F. X. Avilés. (1995). The three-dimensional structure of the native ternary complex of bovine pancreatic procarboxypeptidase A with proproteinase E and chymotrypsinogen C. EMBO J 14:4387–4394.
  • F. X. Gomis-Rüth, M. Gomez-Ortiz, J. Vendrell, S. Ventura, W. Bode, R. Huber, and F. X. Aviles. (1997a). Crystal structure of an oligomer of proteolytic zymogens: detailed conformational analysis of the bovine ternary complex and implications for their activation. J Mol Biol 269:861–880.
  • F. X. Gomis-Rüth, K. Maskos, M. Betz, A. Bergner, R. Huber, K. Suzuki, N. Yoshida, H. Nagase, K. Brew, G. P. Bourenkov, H. Bartunik, and W. Bode. (1997b). Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389:77–81.
  • F. X. Gomis-Rüth, V. Companys, Y. Qian, L. D. Fricker, J. Vendrell, F. X. Avilés, and M. Coll. (1999). Crystal structure of avian carboxypeptidase D domain II: a prototype for the regulatory metallocarboxypeptidase subfamily. EMBO J 18:5817–5826.
  • H. Gong, J. Zhou, M. Liao, T. Hatta, T. Harnnoi, R. Umemiya, N. Inoue, X. Xuan, and K. Fujisaki. (2007). Characterization of a carboxypeptidase inhibitor from the tick Haemaphysalis longicornis. J Insect Physiol 53:1079–1087.
  • F. Grams, V. Dive, A. Yiotakis, I. Yiallouros, S. Vassiliou, R. Zwilling, W. Bode, and W. Stöcker. (1996). Structure of astacin with a transition-state analogue inhibitor. Nature Struc Biol 3:671–675.
  • J. T. Groves, and J. R. Olson. (1985). Models of zinc-containing proteases – Rapid amide hydrolysis by an unusually acidic Zn2 +-OH2 complex. Inorg Chem 24:2715–2717.
  • A. Guasch, M. Coll, F. X. Avilés, and R. Huber. (1992). Three-dimensional structure of porcine pancreatic procarboxypeptidase A. A comparison of the A and B zymogens and their determinants for inhibition and activation. J Mol Biol 224:141–157.
  • S. Guindon, and O. Gascuel. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704.
  • J. L. Guy, D. W. Lambert, A. J. Turner, and K. E. Porter. (2008). Functional angiotensin converting enzyme-2 (ACE2) is expressed in human cardiac myofibroblasts. Exp Physiol 93 (421):551–554.
  • D. G. Hangauer, A. F. Monzingo, and B. W. Matthews. (1984). An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry 23:5730–5741.
  • J. A. Hartsuck, and W. N. Lipscomb. Carboxypeptidase AThe Enzymes. Hydrolysis: peptide bondsP. D. Boyer. Academic Press, New York, (1971) Vol. III1–56.
  • Y. Hashida, and K. Inouye. (2007). Kinetic analysis of the activation-and-inhibition dual effects of cobalt ion on thermolysin activity. J Biochem 141:843–853.
  • D. Hendriks, S. Scharpé, M. van Sande, and M. P. Lommaert. (1989). Characterisation of a carboxypeptidase in human serum distinct from carboxypeptidase N. J Clin Chem Clin Biochem 27:277–285.
  • K. Hillmayer, A. Macovei, D. Pauwels, G. Compernolle, P. J. Declerck, and A. Gils. (2006). Characterization of rat thrombin-activatable fibrinolysis inhibitor (TAFI) a comparative study assessing the biological equivalence of rat, murine and human TAFI. J Thromb Haemost 4:2470–2477.
  • D. Hilvert, S. J. Gardell, W. J. Rutter, and E. T. Kaiser. (1986). Evidence against a crucial role for the phenolic hydroxyl of Tyr-248 in peptide and ester hydrolyses catalyzed by carboxypeptidase A: Comparative studies of the pH dependencies of the native and Phe-248 mutant forms. J Am Chem Soc 108:5298–5304.
  • D. R. Holland, D. E. Tronrud, H. W. Pley, K. M. Flaherty, W. Stark, J. N. Jansonius, D. B. McKay, and B. W. Matthews. (1992). Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis. Biochemistry 31:11310–11316.
  • N. M. Hooper. (1994). Families of zinc metalloproteases. FEBS Lett 354:1–6.
  • N. M. Hooper. Proteases: a primerEssays in Biochemistry—Proteases in biology and medicineN. M. Hooper. Portland Press, London, (2002) 1–8.
  • H. Huang, C. P. Reed, J. S. Zhang, V. Shridhar, L. Wang, and D. I. Smith. (1999). Carboxypeptidase A3 (CPA3): a novel gene highly induced by histone deacetylase inhibitors during differentiation of prostate epithelial cancer cells. Cancer Res 59:2981–2988.
  • D. Hurst, C. M. Rylett, R. E. Isaac, and A. D. Shirras. (2003). The Drosophila angiotensin-converting enzyme homologue AnCE is required for spermiogenesis. Dev Biol 254:238–247.
  • W. Jiang, and J. S. Bond. (1992). Families of metalloendopeptidases and their relationships. FEBS Lett 312:110–114.
  • C. V. Jongeneel, J. Bouvier, and A. Bairoch. (1989). A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett 242:211–214.
  • A. P. Kaplan, and P. A. Bartlett. (1991). Synthesis and evaluation of an inhibitor of carboxypeptidase A with a Ki value in the femtomolar range. Biochemistry 30:8165–8170.
  • T. Kayashima, K. Yamasaki, T. Yamada, H. Sakai, N. Miwa, T. Ohta, K. Yoshiura, N. Matsumoto, Y. Nakane, H. Kanetake, F. Ishino, N. Niikawa, and T. Kishino. (2003). The novel imprinted carboxypeptidase A4 gene (CPA4) in the 7q32 imprinting domain. Hum Genet 112:220–226.
  • C. Keil, K. Maskos, M. Than, J. T. Hoopes, R. Huber, F. Tan, P. A. Deddish, E. G. Erdos, R. A. Skidgel, and W. Bode. (2007). Crystal structure of the human carboxypeptidase N (kininase I) catalytic domain. J Mol Biol 366:504–516.
  • W. R. Kester, and B. W. Matthews. (1977). Crystallographic study of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. Biochemistry 16:2506–2516.
  • H. Kim, and W. N. Lipscomb. (1990). Crystal structure of the complex of carboxypeptidase A with a strongly bound phosphonate in a new crystalline form: comparison with structures of other complexes. Biochemistry 29:5546–5555.
  • H. Kim, and W. N. Lipscomb. (1991). Comparison of the structures of three carboxypeptidase A—phosphonate complexes determined by X-ray crystallography. Biochemistry 30:8171–8180.
  • H. M. Kim, D. R. Shin, O. J. Yoo, H. Lee, and J. O. Lee. (2003). Crystal structure of Drosophila angiotensin I-converting enzyme bound to captopril and lisinopril. FEBS Lett 538:65–70.
  • K. Kuroki, F. Eng, T. Ishikawa, C. Turck, F. Harada, and D. Ganem. (1995). gp180, a host cell glycoprotein that binds duck hepatitis B virus particles, is encoded by a member of the carboxypeptidase gene family. J Biol Chem 270:15022–15028.
  • R. M. Laethem, T. A. Blumenkopf, M. Cory, L. Elwell, C. P. Moxham, P. H. Ray, L. M. Walton, and G. K. Smith. (1996). Expression and characterization of human pancreatic preprocarboxypeptidase A1 and preprocarboxypeptidase A2. Archives of Biochemistry & Biophysics 332:8–18.
  • S. A. Latt, D. S. Auld, and B. L. Vallee. (1972). Distance measurements at the active site of carboxypeptidase A during catalysis. Biochemistry 11:3015–3022.
  • S. H. Lee, E. Minagawa, H. Taguchi, H. Matsuzawa, T. Ohta, S. Kaminogawa, and K. Yamauchi. (1992). Purification and characterization of a thermostable carboxypeptidase (carboxypeptidase Taq) from Thermus aquaticus YT-1. Biosci Biotechnol Biochem 56:1839–1844.
  • S. H. Lee, H. Taguchi, E. Yoshimura, E. Minagawa, S. Kaminogawa, T. Ohta, and H. Matsuzawa. (1994). Carboxypeptidase Taq, a thermostable zinc enzyme, from Thermus aquaticus YT-1: molecular cloning, sequencing, and expression of the encoding gene in Escherichia coli. Biosci Biotechnol Biochem 58:1490–1495.
  • Y. Levin, R. A. Skidgel, and E. G. Erdos. (1982). Isolation and characterization of the subunits of human plasma carboxypeptidase N (kininase i). Proc Natl Acad Sci USA 79:4618–4622.
  • F. Li, W. Li, M. Farzan, and S. C. Harrison. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–1868.
  • W. N. Lipscomb, J. A. Hartsuck, G. N. ReekeJr., F. A. Quiocho, P. H. Bethge, M. L. Ludwig, T. A. Steitz, H. Muirhead, and J. C. Coppola. (1968). The structure of carboxypeptidase A. VII. The 2.0-Å resolution studies of the enzyme and of its complex with glycyltyrosine, and mechanistic deductions. Brookhaven Symp Biol 21:24–90.
  • C. López-Otín, and C. M. Overall. (2002). Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:509–519.
  • D. Lupyan, A. Leo-Macias, and A. R. Ortiz. (2005). A new progressive-iterative algorithm for multiple structure alignment. Bioinformatics 21:3255–3263.
  • S. S. Mao, D. Colussi, C. M. Bailey, M. Bosserman, C. Burlein, S. J. Gardell, and S. S. Carroll. (2003). Electrochemiluminescence assay for basic carboxypeptidases: inhibition of basic carboxypeptidases and activation of thrombin-activatable fibrinolysis inhibitor. Anal Biochem 319:159–170.
  • J. March. Advanced Organic Chemistry—Reactions, mechanisms and structure.. John Wiley & Sons, New York, (1985) .
  • B. W. Matthews. (1988). Structural basis of the action of thermolysin and related zinc peptidases. Acc Chem Res 21:333–340.
  • B. W. Matthews, J. N. Jansonius, P. M. Colman, B. P. Schoenborn, and D. Dupourque. (1972). Three-dimensional structure of thermolysin. Nature 238:37–41.
  • K. M. MerzJr.. (1990). Insights into the function of the zinc hydroxide-Thr199-Glu106 hydrogen bonding network in carbonic anhydrases. J Mol Biol 214:799–802.
  • J. R. Mesters, C. Barinka, W. Li, T. Tsukamoto, P. Majer, B. S. Slusher, J. Konvalinka, and R. Hilgenfeld. (2006). Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J 25:1375–1384.
  • P. R. Mittl, and M. G. Grütter. (2006). Opportunities for structure-based design of protease-directed drugs. Curr Opin Struct Biol 16:769–775.
  • A. F. Monzingo, and B. W. Matthews. (1984). Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition-state analogues for zinc peptidases. Biochemistry 23:5724–5729.
  • H. Nagase. (2001). Metalloproteases. Curr Protoc Protein Sci Suppl 24:21.24.21–21.24.13.
  • K. Nagata, S. Tsutsui, W. C. Lee, K. Ito, M. Kamo, Y. Inoue, and M. Tanokura. (2004). Crystallization and preliminary X-ray analysis of carboxypeptidase 1 from Thermus thermophilus. Acta Crystallogr sect D 60:1445–1446.
  • R. Natesh, S. L.U. Schwager, E. D. Sturrock, and K. R. Acharya. (2003). Crystal structure of the human angiotensin-converting enzyme-lysinopril complex. Nature in press
  • H. Neurath. Carboxypeptidases A and BEnzymesP. D. Boyer, H. A. Lardy, and K. Myrback. Academic Press, New York, (1960) Vol. 411–36.
  • H. Neurath, and K. A. Walsh. (1976). Role of proteolytic enzymes in biological regulation. Proc Natl Acad Sci USA 73:3825–3832.
  • A. Nicholls, R. Bharadwaj, and B. Honig. (1993). GRASP: graphical representation and analysis of surface properties. Biophys J 64 (2):A166–A166. part 2
  • G. Niemirowicz, and J. J. Cazzulo. Changing the substrate specificities of M32 peptidases of T. cruzi by site-directed mutagenesisXLIII. Annual Congress of the Argentinian Society for Research in Biochemical and Molecular Biology (SAIB), November17–20(2007) , (2007) Mar del Plata (Argentina)
  • G. Niemirowicz, D. Fernandiz, M. Sola, and et al (2008). The molecular analysis of trypanosoma cruzi metallocarboxypeptidase 1 provides insight into fold and substrate specificity. Mol. Microbiol in press
  • G. Niemirowicz, F. Parussini, F. Agüero, and J. J. Cazzulo. (2007). Two metallocarboxypeptidases from the protozoan Trypanosoma cruzi belong to the M32 family, found so far only in prokaryotes. Biochem J 401:399–410.
  • E. Normant, C. Gros, and J. C. Schwartz. (1995a). Carboxypeptidase A isoforms produced by distinct genes or alternative splicing in brain and other extrapancreatic tissues. J Biol Chem 270:20543–20549.
  • E. Normant, M. P. Martres, J. C. Schwartz, and C. Gros. (1995b). Purification, cDNA cloning, functional expression, and characterization of a 26-kDa endogenous mammalian carboxypeptidase inhibitor. Proc Natl Acad Sci USA 92:12225–12229.
  • D. L. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken, M. Harel, S. J. Remington, I. Silman, J. Schrag, J. L. Sussman, K. H.G. Verschueren, and A. Goldman. (1992). The α /β hydrolase fold. Prot Engng 5:197–211.
  • A. R. Ortiz, C. E. Strauss, and O. Olmea. (2002). MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Prot Sci 11:2606–2621.
  • I. Pallarès, R. Bonet, R. García-Castellanos, S. Ventura, F. X. Avilés, J. Vendrell, and F. X. Gomis-Rüth. (2005). Structure of human carboxypeptidase A4 with its endogenous protein inhibitor, latexin. Proc Natl Acad Sci USA 102:3978–3983.
  • J. D. Park, D. H. Kim, S. J. Kim, J. R. Woo, and S. E. Ryu. (2002). Sulfamide-based inhibitors for carboxypeptidase A. Novel type transition state analogue inhibitors for zinc proteases. J Med Chem 45:5295–5302.
  • R. G. Pearson. (1963). Hard and soft acids and bases. J Am Chem Soc 85:3533–3539.
  • P. J.B. Pereira, S. Segura-Martín, B. Oliva, C. Ferrer-Orta, F. X. Avilés, M. Coll, F. X. Gomis-Rüth, and J. Vendrell. (2002). Human procarboxypeptidase B: three-dimensional structure and implications for thrombin-activatable fibrinolysis inhibitor (TAFI). J Mol Biol 321:537–547.
  • G. Perriere, and M. Gouy. (1996). WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:36436–36439.
  • M. A. Phillips, R. Fletterick, and W. J. Rutter. (1990). Arginine 127 stabilizes the transition state in carboxypeptidase. J Biol Chem 265:20692–20698.
  • L. Polgár. Basic kinetic mechanisms of proteolytic enzymesProteolytic enzymes–Tools and targetsE. E. Sterchi, and W. Stöcker. Springer Verlag, Berlin/Heidelberg, (1999) 148–166.
  • X. S. Puente, and C. López-Otín. (1997). The PLEES-proteins–A family of structurally related enzymes widely distributed from bacteria to humans. Biochem J 332:947–949.
  • N. D. Rawlings, F. R. Morton, C. Y. Kok, J. Kong, and A. J. Barrett. (2008). MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325. (Database issue)
  • K. Ray, C. S. Hines, J. Coll-Rodríguez, and D. W. Rodgers. (2004). Crystal structure of human thimet oligopeptidase provides insight into substrate recognition, regulation, and localization. J Biol Chem 279:20480–20489.
  • G. N. Reeke, J. A. Hartsuck, M. L. Ludwig, F. A. Quiocho, T. A. Steitz, and W. N. Lipscomb. (1967). The Structure of carboxypeptidase A. VI. Some results at 2.0-Å resolution, and the complex with glycyl-tyrosine at 2.8-Å resolution. Proc Natl Acad Sci USA 58:2220–2226.
  • D. C. Rees, and W. N. Lipscomb. (1980). Structure of the potato inhibitor complex of carboxypeptidase A at 2.5-A resolution. Proceedings of the National Academy of Sciences of the United States of America 77:4633–4637.
  • D. C. Rees, M. Lewis, and W. N. Lipscomb. (1983). Refined crystal structure of carboxypeptidase A at 1.54 Å resolution. J Mol Biol 168:367–387.
  • D. Reverter, J. Vendrell, F. Canals, J. Horstmann, F. X. Avilés, H. Fritz, and C. P. Sommerhoff. (1998). A carboxypeptidase inhibitor from the medical leech Hirudo medicinalis. Isolation, sequence analysis, cDNA cloning, recombinant expression, and characterization. J Biol Chem 273:32927–32933.
  • D. Reverter, C. Fernandez-Catalan, R. Baumgartner, R. Pfander, R. Huber, W. Bode, J. Vendrell, T. A. Holak, and F. X. Aviles. (2000). Structure of a novel leech carboxypeptidase inhibitor determined free in solution and in complex with human carboxypeptidase A2. Nat Struct Biol 7:322–328.
  • D. Reverter, K. Maskos, F. Tan, R. A. Skidgel, and W. Bode. (2004). Crystal structure of human carboxypeptidase M, a membrane-bound enzyme that regulates peptide hormone activity. J Mol Biol 338:257–269.
  • S. E. Reznik, and L. D. Fricker. (2001). Carboxypeptidases from A to Z: implications in embryonic development and Wnt binding. Cell Mol Life Sci 58:1790–1804.
  • J. S. Richardson. (1981). The anatomy and taxonomy of protein structure. Adv Prot Chem 34:167–339.
  • J. S. Richardson. (1985). Schematic drawings of protein structures. Meth Enzymol 115:359–380.
  • B. Rost. (1999). Twilight zone of protein sequence alignments. Protein Eng 12:85–94.
  • S. Rowsell, R. A. Pauptit, A. D. Tucker, R. G. Melton, D. M. Blow, and P. Brick. (1997). Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy. Structure 5:337–347.
  • L. Sanglas, Z. Valnickova, J. L. Arolas, I. Pallarés, T. Guevara, M. Solà, T. Kristensen, J. J. Enghild, F. X. Avilés, and F. X. Gomis-Rüth. (2008). Structure of activated thrombin-activatable fibrinolysis inhibitor, a molecular link between coagulation and fibrinolysis. Mol Cell 31:598–606.
  • T. Saric, J. Beninga, C. I. Graef, T. N. Akopian, K. L. Rock, and A. L. Goldberg. (2001). Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J Biol Chem 276:36474–36481.
  • M. F. Schmid, and J. R. Herriott. (1976). Structure of carboxypeptidase B at 2.8 Å resolution. J Mol Biol 103:175–190.
  • R. A. Skidgel. (1988). Basic carboxypeptidases: regulators of peptide hormone activity. Trends Pharmacol Sci 9:299–304.
  • R. A. Skidgel. Structure and function of mammalian zinc carboxypeptidasesZinc Metalloproteases in Health and DiseaseN. M. Hooper. Taylor and Francis, London, (1996) 241–283.
  • R. A. Skidgel, R. M. Davis, and F. Tan. (1989). Human carboxypeptidase M. Purification and characterization of a membrane-bound carboxypeptidase that cleaves peptide hormones. J Biol Chem 264:2236–2241.
  • L. Song, and L. D. Fricker. (1997). Cloning and expression of human carboxypeptidase Z, a novel metallocarboxypeptidase. Journal of Biological Chemistry 272:10543–10550.
  • F. Soubrier, F. Alhenc-Gelas, C. Hubert, J. Allegrini, M. John, G. Tregear, and P. Corvol. (1988). Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 85:9386–9390.
  • E. B. Springman. Mast cell carboxypeptidaseHandbook of Proteolytic Enzymes,A. J. Barrett, N. D. Rawlings, and J. F. WoessnerJr.. Elsevier, London, (2004) Vol. 1828–830.
  • W. Stöcker, F. Grams, U. Baumann, P. Reinemer, F. X. Gomis-Rüth, D. B. McKay, and W. Bode. (1995). The metzincins – Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Prot Sci 4:823–840.
  • P. Stothard. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104.
  • E. D. Sturrock, R. Natesh, J. M. van Rooyen, and K. R. Acharya. (2004). Structure of angiotensin I-converting enzyme. Cell Mol Life Sci 61:2677–2686.
  • F. Tan, M. Rehli, S. W. Krause, and R. A. Skidgel. (1997). Sequence of human carboxypeptidase D reveals it to be a member of the regulatory carboxypeptidase family with three tandem active site domains. Biochem J 327:81–87.
  • A. Teplyakov, K. Polyakov, G. Obmolova, B. Strokopytov, I. Kuranova, A. Osterman, N. Grishin, S. Smulevitch, O. Zagnitko, O. Galperina, M. Matz, and V. Stepanov. (1992). Crystal structure of carboxypeptidase T from Thermoactinomyces vulgaris. Eur J Biochem 208:281–288.
  • D. L. Theobald, and D. S. Wuttke. (2006). THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures. Bioinformatics 22:2171–2172.
  • S. Toma, S. Campagnoli, E. De Gregoriis, R. Gianna, I. Margarit, M. Zamai, and G. Grandi. (1989). Effect of Glu-143 and His-231 substitutions on the catalytic activity and secretion of Bacillus subtilis neutral protease. Protein Eng 2:359–364.
  • P. Towler, B. Staker, S. G. Prasad, S. Menon, J. Tang, T. Parsons, D. Ryan, M. Fisher, D. Williams, N. A. Dales, M. A. Patane, and M. W. Pantoliano. (2004). ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 279:17996–18007.
  • A. J. Turner, J. A. Hiscox, and N. M. Hooper. (2004). ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci 25:291–294.
  • Z. Valnickova, I. B. Thogersen, J. Potempa, and J. J. Enghild. (2007). Thrombin-activable fibrinolysis inhibitor (TAFI) zymogen is an active carboxypeptidase. J Biol Chem 282:3066–3076.
  • J. Vendrell, E. Querol, and F. X. Avilés. (2000). Metallocarboxypeptidases and their protein inhibitors. Structure, function and biomedical properties. Biochim Biophys Acta 1477:284–298.
  • E. Waldschmidt-Leitz, and A. Purr. (1929). Über Proteinase und Carboxy-Polypeptidase aus Pankreas. (XVII. Mitteilung zur Spezifizität tierischer Proteasen.). Ber Dt Chem Ges 62:2217–2226.
  • J. L. Willemse, and D. F. Hendriks. (2007). A role for procarboxypepidase U (TAFI) in thrombosis. Front Biosci 12:1973–1987.
  • R. Willstätter, E. Waldschmidt-Leitz, A. Harden, D. Keilin, J. B.S. Haldane, J. H. Quastel, N. U. Meldrum, and F. J.W. Roughton. (1932). Discussion on recent advances in the study of enzymes and their action. Proc Royal Soc London (Series B) 111:280–297.
  • Z. L. Woodman, S. L. Schwager, P. Redelinghuys, A. J. Chubb, E. L. van der Merwe, M. R. Ehlers, and E. D. Sturrock. (2006). Homologous substitution of ACE C-domain regions with N-domain sequences: effect on processing, shedding, and catalytic properties. Biol Chem 387:1043–1051.
  • X. Xin, O. Varlamov, R. Day, W. Dong, M. M. Bridgett, E. H. Leiter, and L. D. Fricker. (1997). Cloning and sequence analysis of cDNA encoding rat carboxypeptidase D. DNA Cell Biol 16:897–905.
  • R. Yamin, E. G. Malgeri, J. A. Sloane, W. T. McGraw, and C. R. Abraham. (1999). Metalloendopeptidase EC 3.4.24.15 is necessary for Alzheimer's amyloid-β peptide degradation. J Biol Chem 274:18777–18784.
  • F. Zappacosta, A. Pessi, E. Bianchi, S. Venturini, M. Sollazzo, A. Tramontano, G. Marino, and P. Pucci. (1996). Probing the tertiary structure of proteins by limited proteolysis and mass spectrometry: the case of Minibody. Prot Sci 5:802–813.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.