4,319
Views
61
CrossRef citations to date
0
Altmetric
Review Article

Building up and breaking down: mechanisms controlling recombination during replication

ORCID Icon & ORCID Icon
Pages 381-394 | Received 07 Feb 2017, Accepted 06 Mar 2017, Published online: 22 Mar 2017

References

  • Arakawa H, Moldovan GL, Saribasak H, et al. (2006). A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol 4:e366.
  • Armstrong AA, Mohideen F, Lima CD. (2012). Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483:59–63.
  • Ashton TM, Mankouri HW, Heidenblut A, et al. (2011). Pathways for Holliday junction processing during homologous recombination in Saccharomyces cerevisiae. Mol Cell Biol 31:1921–33.
  • Berti M, Ray Chaudhuri A, Thangavel S, et al. (2013). Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 20:347–54.
  • Berti M, Vindigni A. (2016). Replication stress: getting back on track. Nat Struct Mol Biol 23:103–9.
  • Betous R, Mason AC, Rambo RP, et al. (2012). SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev 26:151–62.
  • Bianchi J, Rudd SG, Jozwiakowski SK, et al. (2013). PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol Cell 52:566–73.
  • Blastyak A, Pinter L, Unk I, et al. (2007). Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28:167–75.
  • Branzei D, Foiani M. (2007). RecQ helicases queuing with Srs2 to disrupt Rad51 filaments and suppress recombination. Genes Dev 21:3019–26.
  • Branzei D, Foiani M. (2007). Template switching: from replication fork repair to genome rearrangements. Cell 131:1228–30.
  • Branzei D, Psakhye I. (2016). DNA damage tolerance. Curr Opin Cell Biol 40:137–44.
  • Branzei D, Szakal B. (2016a). DNA damage tolerance by recombination: molecular pathways and DNA structures. DNA Repair 44:68–75.
  • Branzei D, Szakal B. (2016b). Priming for tolerance and cohesion at replication forks. Nucleus 7:8–12.
  • Branzei D, Vanoli F, Foiani M. (2008). SUMOylation regulates Rad18-mediated template switch. Nature 456:915–20.
  • Branzei D. (2011). Ubiquitin family modifications and template switching. FEBS Lett 585:2810–17.
  • Bugreev DV, Mazin AV. (2004). Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc Natl Acad Sci USA 101:9988–93.
  • Bugreev DV, Mazina OM, Mazin AV. (2006). Rad54 protein promotes branch migration of Holliday junctions. Nature 442:590–3.
  • Bugreev DV, Rossi MJ, Mazin AV. (2011). Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res 39:2153–64.
  • Bugreev DV, Yu X, Egelman EH, Mazin AV. (2007). Novel pro- and anti-recombination activities of the Bloom's syndrome helicase. Genes Dev 21:3085–94.
  • Burkovics P, Dome L, Juhasz S, et al. (2016). The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis. Nucleic Acids Res 44:3176–89.
  • Carr AM, Lambert S. (2013). Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J Mol Biol 425:4733–44.
  • Chaudhury I, Stroik DR, Sobeck A. (2014). FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks. Mol Cell Biol 34:3939–54.
  • Cheong N, Wang X, Wang Y, Iliakis G. (1994). Loss of S-phase-dependent radioresistance in irs-1 cells exposed to X-rays. Mutat Res 314:77–85.
  • Ciccia A, Nimonkar AV, Hu Y, et al. (2012). Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol Cell 47:396–409.
  • Costanzo V, Robertson K, Bibikova M, et al. (2001). Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell 8:137–47.
  • Couch FB, Bansbach CE, Driscoll R, et al. (2013). ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev 27:1610–23.
  • Cremona CA, Sarangi P, Yang Y, et al. (2012). Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell 45:422–32.
  • Daigaku Y, Davies AA, Ulrich HD. (2010). Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465:951–5.
  • Dou H, Huang C, Singh M, et al. (2010). Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Mol Cell 39:333–45.
  • Duro E, Lundin C, Ask K, et al. (2010). Identification of the MMS22L–TONSL complex that promotes homologous recombination. Mol Cell 40:632–44.
  • Froget B, Blaisonneau J, Lambert S, Baldacci G. (2008). Cleavage of stalled forks by fission yeast Mus81/Eme1 in absence of DNA replication checkpoint. Mol Biol Cell 19:445–56.
  • Fugger K, Mistrik M, Neelsen KJ, et al. (2015). FBH1 catalyzes regression of stalled replication forks. Cell Rep. [Epub ahead of print]. doi: 10.1016/j.celrep.2015.02.028
  • Fumasoni M, Zwicky K, Vanoli F, et al. (2015). Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/primase/Ctf4 complex. Mol Cell 57:812–23.
  • Galanty Y, Belotserkovskaya R, Coates J, Jackson SP. (2012). RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev 26:1179–95.
  • Gali H, Juhasz S, Morocz M, et al. (2012). Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res 40:6049–59.
  • Gallo-Fernandez M, Saugar I, Ortiz-Bazan MA, et al. (2012). Cell cycle-dependent regulation of the nuclease activity of Mus81-Eme1/Mms4. Nucleic Acids Res 40:8325–35.
  • Garcia-Gomez S, Reyes A, Martinez-Jimenez MI, et al. (2013). PrimPol, an archaic primase/polymerase operating in human cells. Mol Cell 52:541–53.
  • Garcia-Rodriguez N, Wong RP, Ulrich HD. (2016). Functions of ubiquitin and SUMO in DNA replication and replication stress. Front Genet 7:87.
  • Gari K, Decaillet C, Delannoy M, et al. (2008). Remodeling of DNA replication structures by the branch point translocase FANCM. Proc Natl Acad Sci USA 105:16107–12.
  • Giannattasio M, Branzei D. (2017). S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol Life Sci. [Epub ahead of print]. doi: 10.1007/s00018-017-2474-4
  • Giannattasio M, Zwicky K, Follonier C, et al. (2014). Visualization of recombination-mediated damage bypass by template switching. Nat Struct Mol Biol 21:884–92.
  • Gonzalez-Huici V, Szakal B, Urulangodi M, et al. (2014). DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity. EMBO J 33:327–40.
  • Gritenaite D, Princz LN, Szakal B, et al. (2014). A cell cycle-regulated Slx4–Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication. Genes Dev 28:1604–19.
  • Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V. (2010). Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 17:1305–11.
  • Heller RC, Marians KJ. (2006). Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–62.
  • Hoege C, Pfander B, Moldovan GL, et al. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–41.
  • Hu Y, Raynard S, Sehorn MG, et al. (2007). RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21:3073–84.
  • Hustedt N, Durocher D. (2016). The control of DNA repair by the cell cycle. Nat Cell Biol 19:1–9.
  • Jensen RB, Carreira A, Kowalczykowski SC. (2010). Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467:678–83.
  • Johnson RE, Klassen R, Prakash L, Prakash S. (2015). A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands. Mol Cell 59:163–75.
  • Kai M, Boddy MN, Russell P, Wang TS. (2005). Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress. Genes Dev 19:919–32.
  • Kanagaraj R, Saydam N, Garcia PL, et al. (2006). Human RECQ5beta helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res 34:5217–31.
  • Karras GI, Fumasoni M, Sienski G, et al. (2013). Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol Cell 49:536–46.
  • Karras GI, Jentsch S. (2010). The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141:255–67.
  • Kile AC, Chavez DA, Bacal J, et al. (2015). HLTF's ancient HIRAN domain binds 3′ DNA ends to drive replication fork reversal. Mol Cell 58:1090–100.
  • Kobayashi K, Guilliam TA, Tsuda M, et al. (2016). Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 15:1997–2008.
  • Kolesar P, Sarangi P, Altmannova V, et al. (2012). Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 40:7831–43.
  • Kolinjivadi AM, Sannino V, de Antoni A, et al. (2017). Moonlighting at replication forks – a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett. [Epub ahead of print]. doi: 10.1002/1873-3468.12556
  • Krejci L, Van Komen S, Li Y, et al. (2003). DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–9.
  • Kubota T, Nishimura K, Kanemaki MT, Donaldson AD. (2013). The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. Mol Cell 50:273–80.
  • Lambert S, Carr AM. (2013). Replication stress and genome rearrangements: lessons from yeast models. Curr Opin Genet Dev 23:132–9.
  • Lang GI, Murray AW. (2011). Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol 3:799–811.
  • Leach CA, Michael WM. (2005). Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J Cell Biol 171:947–54.
  • Lehmann AR, Kirk-Bell S, Arlett CF, et al. (1977). Repair of ultraviolet light damage in a variety of human fibroblast cell strains. Cancer Res 37:904–10.
  • Liberi G, Maffioletti G, Lucca C, et al. (2005). Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19:339–50.
  • Lomonosov M, Anand S, Sangrithi M, et al. (2003). Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. Genes Dev 17:3017–22.
  • Lopes M, Cotta-Ramusino C, Pellicioli A, et al. (2001). The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–61.
  • Lopes M, Foiani M, Sogo JM. (2006). Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27.
  • Machwe A, Xiao L, Groden J, Orren DK. (2006). The Werner and Bloom syndrome proteins catalyze regression of a model replication fork. Biochemistry 45:13939–46.
  • Mankouri HW, Ngo HP, Hickson ID. (2007). Shu proteins promote the formation of homologous recombination intermediates that are processed by Sgs1-Rmi1-Top3. Mol Biol Cell 18:4062–73.
  • Mankouri HW, Ngo HP, Hickson ID. (2009). Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol Biol Cell 20:1683–94.
  • Matos J, Blanco MG, Maslen S, et al. (2011). Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147:158–72.
  • Moldovan GL, Dejsuphong D, Petalcorin MI, et al. (2012). Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol Cell 45:75–86.
  • Moldovan GL, Pfander B, Jentsch S. (2006). PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23:723–32.
  • Mouron S, Rodriguez-Acebes S, Martinez-Jimenez MI, et al. (2013). Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat Struct Mol Biol 20:1383–9.
  • Moynahan ME, Jasin M. (2010). Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11:196–207.
  • Neelsen KJ, Lopes M. (2015). Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 16:207–20.
  • Neelsen KJ, Zanini IM, Herrador R, Lopes M. (2013). Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J Cell Biol 200:699–708.
  • O'Donnell L, Panier S, Wildenhain J, et al. (2010). The MMS22L–TONSL complex mediates recovery from replication stress and homologous recombination. Mol Cell 40:619–31.
  • Ouyang KJ, Woo LL, Zhu J, et al. (2009). SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLoS Biol 7:e1000252.
  • Papouli E, Chen S, Davies AA, et al. (2005). Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19:123–33.
  • Parker JL, Ulrich HD. (2012). A SUMO-interacting motif activates budding yeast ubiquitin ligase Rad18 towards SUMO-modified PCNA. Nucleic Acids Res 40:11380–8.
  • Parnas O, Zipin-Roitman A, Pfander B, et al. (2010). Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J 29:2611–22.
  • Peters JM, Nishiyama T. (2012). Sister chromatid cohesion. Cold Spring Harbor Perspect Biol 4:a011130.
  • Pfander B, Moldovan GL, Sacher M, et al. (2005). SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–33.
  • Piwko W, Mlejnkova LJ, Mutreja K, et al. (2016). The MMS22L–TONSL heterodimer directly promotes RAD51-dependent recombination upon replication stress. EMBO J 35:2584–601.
  • Piwko W, Olma MH, Held M, et al. (2010). RNAi-based screening identifies the Mms22L–Nfkbil2 complex as a novel regulator of DNA replication in human cells. EMBO J 29:4210–22.
  • Princz LN, Wild P, Bittmann J, et al. (2017). Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis. EMBO J 36:664–78.
  • Psakhye I, Jentsch S. (2012). Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151:807–20.
  • Ragland RL, Patel S, Rivard RS, et al. (2013). RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes Dev 27:2259–73.
  • Ray Chaudhuri A, Hashimoto Y, Herrador R, et al. (2012). Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19:417–23.
  • Robert T, Dervins D, Fabre F, Gangloff S. (2006). Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover. EMBO J 25:2837–46.
  • Rossi SE, Ajazi A, Carotenuto W, et al. (2015). Rad53-mediated regulation of Rrm3 and Pif1 DNA helicases contributes to prevention of aberrant fork transitions under replication stress. Cell Rep 13:80–92.
  • Rothkamm K, Kruger I, Thompson LH, Lobrich M. (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23:5706–15.
  • Saintigny Y, Delacote F, Vares G, et al. (2001). Characterization of homologous recombination induced by replication inhibition in mammalian cells. EMBO J 20:3861–70.
  • Sale JE. (2016). Starting over: primpol reprimes after chain termination. Cell Cycle 15:2099–100.
  • Saponaro M, Callahan D, Zheng X, et al. (2010). Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet 6:e1000858.
  • Saredi G, Huang H, Hammond CM, et al. (2016). H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex. Nature 534:714–18.
  • Schiavone D, Jozwiakowski SK, Romanello M, et al. (2016). PrimPol is required for replicative tolerance of G quadruplexes in vertebrate cells. Mol Cell 61:161–9.
  • Schlacher K, Christ N, Siaud N, et al. (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–42.
  • Schlacher K, Wu H, Jasin M. (2012). A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22:106–16.
  • Sebesta M, Urulangodi M, Stefanovie B, et al. (2017). Esc2 promotes Mus81 complex-activity via its SUMO-like and DNA binding domains. Nucleic Acids Res 45:215–30.
  • Sharma S, Doherty KM, Brosh RM. Jr. (2006). Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 398:319–37.
  • Shim KS, Schmutte C, Tombline G, et al. (2004). hXRCC2 enhances ADP/ATP processing and strand exchange by hRAD51. J Biol Chem 279:30385–94.
  • Shima H, Suzuki H, Sun J, et al. (2013). Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage. J Cell Sci 126:5284–92.
  • Sogo JM, Lopes M, Foiani M. (2002). Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602.
  • Sollier J, Driscoll R, Castellucci F, et al. (2009). The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol Biol Cell 20:1671–82.
  • Stamatoyannopoulos JA, Adzhubei I, Thurman RE, et al. (2009). Human mutation rate associated with DNA replication timing. Nat Genet 41:393–5.
  • Su X, Bernal JA, Venkitaraman AR. (2008). Cell-cycle coordination between DNA replication and recombination revealed by a vertebrate N-end rule degron-Rad51. Nat Struct Mol Biol 15:1049–58.
  • Sung P, Klein H. (2006). Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7:739–50.
  • Szakal B, Branzei D. (2013). Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover. EMBO J 32:1155–67.
  • Takata M, Sasaki MS, Sonoda E, et al. (1998). Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 17:5497–508.
  • Thangavel S, Berti M, Levikova M, et al. (2015). DNA2 drives processing and restart of reversed replication forks in human cells. J Cell Biol 208:545–62.
  • Tikoo S, Madhavan V, Hussain M, et al. (2013). Ubiquitin-dependent recruitment of the Bloom syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO J 32:1778–92.
  • Tittel-Elmer M, Lengronne A, Davidson MB, et al. (2012). Cohesin association to replication sites depends on rad50 and promotes fork restart. Mol Cell 48:98–108.
  • Urulangodi M, Sebesta M, Menolfi D, et al. (2015). Local regulation of the Srs2 helicase by the SUMO-like domain protein Esc2 promotes recombination at sites of stalled replication. Genes Dev 29:2067–80.
  • Urulangodi M, Szakal B, Branzei D. (2016). SUMO-mediated global and local control of recombination. Cell Cycle 15:160–1.
  • Vanoli F, Fumasoni M, Szakal B, et al. (2010). Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch. PLoS Genet 6:e1001205.
  • Veaute X, Jeusset J, Soustelle C, et al. (2003). The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–12.
  • Wan L, Lou J, Xia Y, et al. (2013). hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep 14:1104–12.
  • Watts FZ. (2006). Sumoylation of PCNA: wrestling with recombination at stalled replication forks. DNA Repair (Amst) 5:399–403.
  • Xue X, Choi K, Bonner J, et al. (2014). Restriction of replication fork regression activities by a conserved SMC complex. Mol Cell 56:436–45.
  • Yang K, Moldovan GL, Vinciguerra P, et al. (2011). Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes Dev 25:1847–58.
  • Yeeles JT, Janska A, Early A, Diffley JF. (2017). How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol Cell 65:105–16.
  • Yeeles JT, Marians KJ. (2011). The Escherichia coli replisome is inherently DNA damage tolerant. Science 334:235–8.
  • Yeo JE, Lee EH, Hendrickson EA, Sobeck A. (2014). CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum Mol Genet 23:3695–705.
  • Ying S, Hamdy FC, Helleday T. (2012). Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res 72:2814–21.
  • Yuan J, Ghosal G, Chen J. (2012). The HARP-like domain-containing protein AH2/ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol Cell 47:410–21.
  • Zellweger R, Dalcher D, Mutreja K, et al. (2015). Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol 208:563–79.
  • Zhang H, Lawrence CW. (2005). The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc Natl Acad Sci USA 102:15954–9.