7,083
Views
130
CrossRef citations to date
0
Altmetric
Review Article

Epigenetic changes during aging and their reprogramming potential

&
Pages 61-83 | Received 11 Nov 2018, Accepted 11 Jan 2019, Published online: 01 Mar 2019

References

  • Abad M, Mosteiro L, Pantoja C, Cañamero M, Rayon T, Ors I, Graña O, Megías D, Domínguez O, Martínez D, et al. 2013. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 502:340–345.
  • Alfego D, Rodeck U, Kriete A. 2018. Global mapping of transcription factor motifs in human aging. PLoS One. 13:e0190457.
  • Alvarez-Garcia O, Matsuzaki T, Olmer M, Masuda K, Lotz MK. 2017. Age-related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration. J Orthop Res. 35:2682–2691.
  • Anckar J, Sistonen L. 2011. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem. 80:1089–1115.
  • Armour SM, Bennett EJ, Braun CR, Zhang X-Y, McMahon SB, Gygi SP, Harper JW, Sinclair DA. 2013. A high-confidence interaction map identifies SIRT1 as a mediator of acetylation of USP22 and the SAGA coactivator complex. Mol Cell Biol. 33:1487–1502.
  • Austriaco NR, Guarente LP. 1997. Changes of telomere length cause reciprocal changes in the lifespan of mother cells in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 94:9768–9772.
  • Avrahami D, Li C, Zhang J, Schug J, Avrahami R, Rao S, Stadler MB, Burger L, Schübeler D, Glaser B, Kaestner KH. 2016. Aging-dependent demethylation of regulatory elements correlates with chromatin state and improved β-cell function. Cell Metab. 22:619–632.
  • Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res. 21:381–395.
  • Baumgart M, Groth M, Priebe S, Testa G, Dix A, Ripa R, Spallotta F, Gaetano C, Ori M, Tozzini T, et al. 2014. RNA-seq of the aging brain in the short-lived fish N. furzeri – conserved pathways and novel genes associated with neurogenesis. Aging Cell. 13:965–974.
  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, et al. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 444:337–342.
  • Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ. 2013. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell. 12:413–425.
  • Benayoun B, Pollina EA, Brunet A. 2015. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 16:593–610.
  • Berdyshev G, Korotaev G, Boiarskikh G, Vaniushin B. 1967. Nucleotide composition of DNA and RNA from somatic tissues of humpback and its changes during spawning. Biokhimiia. 32:988–993.
  • Bjornsson H, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekström TJ, Harris TB, et al. 2008. Intra-individual change over time in DNA methylation with familial clustering. JAMA. 299:2877–2883.
  • Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M. 2016. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med. 88:290–301.
  • Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F. 2011. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood. 117:182–190.
  • Boehm M, Slack F. 2005. A developmental timing microRNA and its target regulate life span in C. elegans. Science. 310:1954–1958.
  • Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, Sparrow D, Vokonas P, Baccarelli A. 2009. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 130:234–239.
  • Booth L, Brunet A. 2016. The aging epigenome. Mol Cell. 62:728–744.
  • Bormann F, Rodríguez-Paredes M, Hagemann S, Manchanda H, Kristof B, Gutekunst J, Raddatz G, Haas R, Terstegen L, Wenck H, et al. 2016. Reduced DNA methylation patterning and transcriptional connectivity define human skin aging. Aging Cell. 15:563–571.
  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA. 2007. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 317:807–811.
  • Brandt A, Krohne G, Grosshans J. 2008. The farnesylated nuclear proteins KUGELKERN and LAMIN B promote aging-like phenotypes in Drosophila flies. Aging Cell. 7:541–551.
  • Brunquell J, Morris S, Lu Y, Cheng F, Westerheide SD. 2016. The genome-wide role of HSF-1 in the regulation of gene expression in Caenorhabditis elegans. BMC Genomics. 17:559.
  • Budovskaya YV, Wu K, Southworth LK, Jiang M, Tedesco P, Johnson TE, Kim SK. 2008. An elt-3/elt-5/elt-6 GATA transcription circuit guides aging in C. elegans. Cell. 134:291–303.
  • Buganim Y, Faddah DA, Jaenisch R. 2013. Mechanisms and models of somatic cell reprogramming. Nat Rev Genet. 14:427–439.
  • Calo E, Wysocka J. 2013. Modification of enhancer chromatin: what, how and why? Mol Cell. 49:825–837.
  • Cecco M, De Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA. 2013. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging. 5:867–883.
  • Cech TR, Steitz JA. 2014. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 157:77–94.
  • Chen H, Fan M, Pfeffer LM, Laribee RN. 2012. The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. Nucleic Acids Res. 40:6534–6546.
  • Chen H, Ruiz PD, McKimpson WM, Novikov L, Kitsis RN, Gamble MJ. 2015. MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol Cell. 59:719–731.
  • Chen H, Zheng X, Xiao D, Zheng Y. 2016. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell. 15:542–552.
  • Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y. 2012. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol Cell Proteomics. 11:1048–1062.
  • Cheung P, Vallania F, Warsinske HC, Donato M, Schaffert S, Chang SE, Dvorak M, Dekker CL, Davis MM, Utz PJ, et al. 2018. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell. 173:1385–1397.e14.
  • Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, et al. 2009. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CPG island context. PLoS Genet. 5:e1000602.
  • Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu Rev Biochem. 78:273–304.
  • Clevers H. 2006. Wnt/beta-catenin signaling in development and disease. Cell. 127:469–480.
  • Cole JJ, Robertson NA, Rather MI, Thomson JP, McBryan T, Sproul D, Wang T, Brock C, Clark W, Ideker T, et al. 2017. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol. 18:1–16.
  • Costa F. 2010. Non-coding RNAs: meet thy masters. Bioessays. 32:599–608.
  • Damelin M, Simon I, Moy TI, Wilson B, Komili S, Tempst P, Roth FP, Young RA, Cairns BR, Silver PA. 2002. The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. Mol Cell. 9:563–573.
  • Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL. 2009. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature. 459:802–807.
  • Dang W, Sutphin GL, Dorsey JA, Otte GL, Cao K, Perry M, Wanat JJ, Saviolaki D, Murakami CJ, Robison B, et al. 2015. Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response. Cell Metab. 19:952–966.
  • de Lázaro I, Cossu G, Kostarelos K. 2017. Transient transcription factor (OSKM) expression is key towards clinical translation of in vivo cell reprogramming. EMBO Mol Med. 9:733–736.
  • Deininger P. 2011. Alu elements: Know the SINEs. Genome Biol. 12:236.
  • Dennis S, Sheth U, Feldman JL, English KA, Priess JR. 2012. C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLoS Pathog. 8:e1002591.
  • Dobbin MM, Madabhushi R, Pan L, Chen Y, Kim D, Gao J, Ahanonu B, Pao PC, Qiu Y, Zhao Y, et al. 2013. SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci. 16:1008–1015.
  • Duarte LF, Young ARJ, Wang Z, Wu H, Panda T, Kou Y, Kapoor A, Hasson D, Mills NR, Ma A. 2015. Histone H3.3 and its proteolytically processed form drive a cellular senescence program. Nat Commun. 5:5210.
  • Eijkelenboom A, Burgering BMT. 2013. FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol. 14:83–97.
  • Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona D, Ring J, Schroeder S, Magnes C, Antonacci L, et al. 2009. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 11:1305–1314.
  • El-Sharnouby S, Fischer B, Magbanua JP, Umans B, Flower R, Choo SW, Russell S, White R. 2017. Regions of very low H3K27me3 partition the Drosophila genome into topological domains. PLoS One. 12:1–23.
  • Esteller M. 2011. Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874.
  • Fernández A, Bayón G. 2014. H3K4me1 marks DNA regions hypomethylated during aging in stem and differentiated cells. Genome Res. 27–40.
  • Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK. 2010. Elevated histone expression promotes lifespan extension. Mol Cell. 39:724–735.
  • Field AE, Adams PD. 2017. Targeting chromatin aging - The epigenetic impact of longevity-associated interventions. Exp Gerontol. 94:29–33.
  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Cigudosa JC, Urioste M, Benitez J, Boix-chornet M, et al. 2005. Epigenetic differences arise during the lifetime of monozygotic twins. PNAS. 102:10604–10609.
  • Froberg JE, Yang L, Lee JT. 2013. Guided by RNAs: X-inactivation as a model for lncRNA function. J Mol Biol. 425:3698–3706.
  • Fu V, Dobosy J, Desotelle J, Almassi N, Ewald J, Srinivasan R, Berres M, Svaren J, Weindruch R, Jarrard D. 2008. Aging and cancer-related loss of insulin-like growth factor 2 imprinting in the mouse and human prostate. Cancer Res. 68:6797–6802.
  • Gaspar-maia A, Qadeer ZA, Hasson D, Ratnakumar K, Leu NA, Leroy G, Liu S, Costanzi C, Valle-garcia D, Schaniel C, et al. 2013. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat Commun. 4:1565.
  • Ghiraldini FG, Crispim ACV, Mello MLS. 2013. Effects of hyperglycemia and aging on nuclear sirtuins and DNA damage of mouse hepatocytes. Mol Biol Cell. 24:2467–2476.
  • Gong H, Qian H, Ertl R, Astle CM, Wang GG, Harrison DE, Xu X. 2015. Histone modifications change with age, dietary restriction and rapamycin treatment in mouse brain. Oncotarget. 6:15882–15890.
  • Gorbunova V, Boeke JD, Helfand SL, Sedivy JM. 2014. Human genomics. Sleeping dogs of the genome. Science. 346:1187–1188.
  • Grammatikakis I, Panda AC, Abdelmohsen K, Gorospe M. 2014. Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY). 6:992–1009.
  • Greer E, Maures T, Hauswirth A, Green E, Leeman D, Maro GS, Han S, Banko MR, Gozani O, Brunet A. 2010. Members of the histone H3 lysine 4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature. 466:383–387.
  • Grewal SIS, Moazed D. 2003. Heterochromatin and epigenetic control of gene expression. Science. 301:798–803.
  • Gritsenko DA, Orlova OA, Linkova NS, Khavinson VK. 2017. Transcription factor p53 and skin aging. Adv Gerontol. 7:114–115.
  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P, Rinn JL, et al. 2010. Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464:1071–1076.
  • Hahn O, Grönke S, Stubbs TM, Ficz G, Hendrich O, Krueger F, Andrews S, Zhang Q, Wakelam MJ, Beyer A, et al. 2017. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol. 18:1–18.
  • Haigis MC, Sinclair DA. 2010. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 5:253–295.
  • Haithcock E, Dayani Y, Neufeld E, Zahand AJ, Feinstein N, Mattout A, Gruenbaum Y, Liu J. 2005. Age-related changes of nuclear architecture in Caenorhabditis elegans. Proc Natl Acad Sci USA. 102:16690–16695.
  • Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS. 2005. A systematic RNAi screen for longevity genes in C. elegans. Genes Dev. 19:1544–1555.
  • Hansen JC. 2002. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct. 31:361–392.
  • Hansson J, Rafiee MR, Reiland S, Polo JM, Gehring J, Okawa S, Huber W, Hochedlinger K, Krijgsveld J. 2012. Highly coordinated proteome dynamics during reprogramming of somatic cells to pluripotency. Cell Rep. 2:1579–1592.
  • Helin K, Dhanak D. 2013. Chromatin proteins and modifications as drug targets. Nature. 502:480–488.
  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. 2006. Cellular senescence in aging primates. Science. 311:1257.
  • Hooten NN, Abdelmohsen K, Gorospe M, Ejiogu N, Zonderman AB, Evans MK. 2010. microRNA expression patterns reveal differential expression of target genes with age. PLoS One. 5:e10724.
  • Horvath S. 2013. DNA methylation age of human tissues and cell types. Genome Biol. 14:R115.
  • Horvath S, Garagnani P, Bacalini MG, Pirazzini C, Salvioli S, Gentilini D, Di Blasio AM, Giuliani C, Tung S, Vinters HV, et al. 2015. Accelerated epigenetic aging in Down syndrome. Aging Cell. 14:491–495.
  • Horvath S, Levine AJ. 2015. HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis. 212:1563–1573.
  • Horvath S, Oshima J, Martin GM, Lu AT, Quach A, Felton S, Matsuyama M, Lowe D, Kabacik S, Wilson JG, et al. 2018. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging. 10:1758–1775.
  • Horvath S, Raj K. 2018. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 19:371–384.
  • Horvath S, Stein DJ, Nicole P, Heany SJ, Kobor MS, Lin DT, Myer L, Zar HJ, Evine AJ, Hoare J. 2018. Perinatally acquired HIV infection accelerates epigenetic aging in South African adolescents. Clin Sci. 32:1465–1474.
  • Howitz KT, Bitterman K, Cohen H, Lamming D, Lavu S, Wood J, Zipkin R, Chung P, Kisielewski A, Zhang L, et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 425:191–196.
  • Hsu A, Murphy CT, Kenyon C. 2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 300:5622.
  • Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, Chen CC, Li W, Tyler JK. 2014. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev. 28:396–408.
  • Ianni A, Hoelper S, Krueger M, Braun T, Bober E. 2017. Sirt7 stabilizes rDNA heterochromatin through recruitment of DNMT1 and Sirt1. Biochem Biophys Res Commun. 492:434–440.
  • Ibáñez-ventoso C, Yang M, Guo S, Robins H, Padgett RW, Driscoll M. 2006. Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell. 5:235–246.
  • Imai S-I, Kitano H. 1998. Heterochromatin islands and their dynamic reorganization: a hypothesis for three distinctive features of cellular aging. Exp Gerontol. 33:555–570.
  • Imai S, Armstrong CM, Kaeberlein M, Guarente L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 403:795–800.
  • Ivanov A, Pawlikowski J, Manoharan I, Tuyn J, Van Nelson DM, Rai TS, Shah PP, Hewitt G, Korolchuk VI, Passos JF, et al. 2013. Lysosome-mediated processing of chromatin in senescence. J Cell Biol. 202:129–143.
  • Jiang N, Du G, Tobias E, Wood JG, Whitaker R, Neretti N, Helfand L. 2013. Dietary and genetic effects on age ‐ related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging. Aging. 5:813–824.
  • Jin C, Li J, Green CD, Yu X, Tang X, Han D, Xian B, Wang D, Huang X, Cao X, et al. 2011. Histone demethylase UTX-1 regulates C. elegans life span by targeting the insulin/IGF-1 signaling pathway. Cell Metab. 14:161–172.
  • Jintaridth P, Mutirangura A. 2010. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics. 41:194–200.
  • Jung HJ, Suh Y. 2012. MicroRNA in aging: from discovery to biology. Curr Genomics. 13:548–557.
  • Kaeberlein M, McVey M, Guarente L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13:2570–2580.
  • Kamakaka RT, Biggins S. 2005. Histone variants: deviants? Genes Dev. 19:295–310.
  • Kato M, Chen X, Inukai S, Zhao H, Slack FJ. 2011. Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA. 17:1804–1820.
  • Keizer PLJ, De Laberge RM, Campisi J. 2010. p53: Pro-aging or pro-longevity? Aging (Albany NY). 2:377–379.
  • Kennedy B, Gotta M, Sinclair D, Mills K, McNab D, Murthy M, Pak S, Laroche T, Gasser S, Guarente L. 1997. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell. 89:381–391.
  • Kim CH, Lee EK, Choi YJ, An HJ, Jeong HO, Park D, Kim BC, Yu BP, Bhak J, Chung HY. 2016. Short-term calorie restriction ameliorates genomewide, age-related alterations in DNA methylation. Aging Cell. 15:1074–1081.
  • Koch CM, Joussen S, Schellenberg A, Lin Q, Zenke M, Wagner W. 2012. Monitoring of cellular senescence by DNA-methylation at specific CpG sites. Aging Cell. 11:366–369.
  • Kouzarides T. 2007. Chromatin modifications and their function. Cell. 128:693–705.
  • Kozlowski M, Ladurner AG. 2015. ATM, MacroH2A.1, and SASP: the checks and balances of cellular senescence. Mol Cell. 59:713–715.
  • Kreiling JA, Tamamori-adachi M, Sexton AN, Jeyapalan JC, Munoz-najar U, Peterson AL, Manivannan J, Elizabeth S, Pchelintsev NA, Adams PD, et al. 2012. Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell. 10:292–304.
  • Krishnan V, Chow MZY, Wang Z, Zhang L, Liu B, Liu X, Zhou Z. 2011. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci USA. 108:12325–12330.
  • Kucharski R, Maleszka J, Foret S, Maleszka R. 2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 319:1827–1831.
  • Kwon J, Han E, Bui CB, Shin W, Lee J, Lee S, Choi YB, Lee AH, Lee KH, Park C, et al. 2012. Assurance of mitochondrial integrity and mammalian longevity by the p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep. 13:150–156.
  • Labbadia J, Richard I, Labbadia J, Morimoto RI. 2015. Repression of the heat shock response is a programmed event at the onset of reproduction. Mol Cell. 59:639–650.
  • Lake RJ, Boetefuer EL, Won K, Fan H. 2016. The CSB chromatin remodeler and CTCF architectural protein cooperate in response to oxidative stress. Nucleic Acids Res. 44:2125–2135.
  • Lamming DW. 2005. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science. 309:1861–1864.
  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. 2001. Initial sequencing and analysis of the human genome. Nature. 409:860–921.
  • Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Ait-Hamou N, Leschik J, Pellestor F, Ramirez J-M, De Vos J, et al. 2011. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25:2248–2253.
  • Larrieu D, Britton S, Demir M, Rodriguez R, Jackson SP. 2014. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science. 344:527–532.
  • Larson K, Yan S, Tsurumi A, Liu J, Zhou J, Gaur K, Guo D, Eickbush TH, Li WX. 2012. Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet. 8:e1002473.
  • Lauberth SM, Nakayama T, Wu X, Ferris A, Tang Z, Hughes SH, Roeder RG. 2013. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell. 152:1021–1036.
  • de Lázaro I, Yilmazer A, Nam Y, Qubisi S, Maizatul F, Degens H, Cossu G, Kostarelos K. 2019. Non-viral, Tumor-free Induction of Transient Cell Reprogramming in Mouse Skeletal Muscle to Enhance Tissue Regeneration. Mol Ther. 1:59–75.
  • Lee C, Klopp RG, Weindruch R, Prolla TA. 1999. Gene expression profile of aging and its retardation by caloric restriction. Science. 285:1390–1394.
  • Lee J, Kemper JK. 2010. Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging. 2:27–34.
  • Lee JT. 2009. Lessons from X-chromosome inactivation: Long ncRNA as guides and tethers to the epigenome. Genes Dev. 23:1831–1842.
  • Lesur I, Campbell JL. 2004. The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells. Mol Biol Cell. 15:1297–1312.
  • Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, et al. 2018. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 10:573–591.
  • Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. 2015. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci USA. 112:201417566.
  • Li B, Choulet F, Heng Y, Hao W, Paux E, Liu Z, Yue W, Jin W, Feuillet C, Zhang X. 2013. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J. 73:952–965.
  • Li L, Greer C, Eisenman RN, Secombe J. 2010. Essential functions of the histone demethylase lid. PLoS Genet. 6:e1001221.
  • Li S, Christiansen L, Christensen K, Kruse TA, Redmond P, Marioni RE, Deary IJ, Tan Q. 2017. Identification, replication and characterization of epigenetic remodelling in the aging genome: A cross population analysis. Sci Rep. 7:1–8.
  • Li X, Khanna A, Li N, Wang E. 2011. Circulatory miR34a as an RNAbased, noninvasive biomarker for brain aging. Aging (Albany NY). 3:985–1002.
  • Li Y, Daniel M, Tollefsbol TO. 2011. Epigenetic regulation of caloric restriction in aging. BMC Med. 9:1–12.
  • Lin M, Tang L, Reddy MN, Shen CJ. 2005. DNA methyltransferase gene dDnmt2 and longevity of Drosophila. J Biol Chem. 280:861–865.
  • Liu B, Wang Z, Zhang L, Ghosh S, Zheng H, Zhou Z. 2013. Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a Progeria mouse model. Nat Commun. 4:1812–1868.
  • Liu G, Barkho BZ, Ruiz S, Diep D, Qu J, Yang S, Panopoulos AD, Suzuki K, Kurian L, Walsh C, et al. 2011. Recapitulation of premature aging with iPSCs from Hutchinson Gilford Progeria Syndrome. Nature. 472:221–225.
  • Liu L, Cheung T, Charville G, Marie Ceniza Hurgo B, Leavitt T, Shih J, Brunet A, Rando T. 2013. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 4:189–204.
  • Liu Y, Wang D-L, Chen S, Zhao L, Sun F-L. 2012. Oncogene Ras/phosphatidylinositol 3-kinase signaling targets histone H3 acetylation at lysine 56. J Biol Chem. 287:41469–41480.
  • Logan CY, Nusse R. 2004. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810.
  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G, López-otín C, Blasco MA, Partridge L, Serrano M. 2013. The hallmarks of aging. Cell. 153:1194–1217.
  • Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM, Drake D, Liu XS, et al. 2014. REST and stress resistance in ageing and Alzheimer's disease. Nature. 507:448–454.
  • Luger K, Rechsteiner TJ, Flaus AJ, Waye MMY, Richmond TJ, Zu C. 1997. Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol. 272:301–311.
  • Lyu G, Guan Y, Zhang C, Zong L, Sun L, Huang X, Huang L, Zhang L, Tian X, Zhou Z, Tao W. 2018. TGF-β signaling alters H4K20me3 status via miR- 29 and contributes to cellular senescence and cardiac aging. Nat Commun. 9:2560.
  • Madabhushi R, Pan L, Tsai LH. 2014. DNA damage and its links to neurodegeneration. Neuron. 83:266–282.
  • Madeo F, Eisenberg T, Pietrocola F, Kroemer G. 2018. Spermidine in health and disease. Science. 359:6374.
  • Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JJ. 2010. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20:332–340.
  • Maegawa S, Lu Y, Tahara T, Lee JT, Madzo J, Liang S, Jelinek J, Colman RJ, Issa JPJ. 2017. Caloric restriction delays age-related methylation drift. Nat Commun. 8:1–11.
  • Maes OC, An J, Sarojini H, Wu H, Wang E. 2008. Changes in microRNA expression patterns in human fibroblasts after low-LET radiation. J Cell Biochem. 105:824–834.
  • Mahmoudi S, Brunet A. 2012. Aging and reprogramming: a two-way street. Curr Opin Cell Biol. 24:744–756.
  • Maierhofer A, Flunkert J, Oshima J, Martin GM, Haaf T, Horvath S. 2017. Accelerated epigenetic aging in Werner syndrome. Aging (Albany NY). 9:1143–1152.
  • Mansour AA, Gafni O, Weinberger L, Zviran A, Ayyash M, Rais Y, Krupalnik V, Zerbib M, Amann-Zalcenstein D, Maza I, et al. 2012. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature. 488:409–413.
  • Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 332:1443–1446.
  • Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA. 2009. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 4:141–154.
  • Martin SG, Laroche T, Suka N, Grunstein M, Gasser SM, Boveresses C, Epalinges C. 1999. Relocalization of telomeric ku and SIR proteins in response to DNA strand breaks in yeast. Cell. 97:621–633.
  • Maures TJ, Greer EL, Hauswirth AG, Brunet A. 2011. H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent, manner. Aging Cell. 10:980–990.
  • Maxwell PH, Burhans WC, Curcio MJ. 2011. Retrotransposition is associated with genome instability during chronological aging. PNAS. 108:20376–20381.
  • Maze I, Wenderski W, Noh K, Bagot RC, Purushothaman I, Elsässer SJ, Guo Y, Ionete C, Hurd YL, Tamminga CA, et al. 2015. Critical role of histone turnover in neuronal transcription and plasticity. Neuron. 87:77–94.
  • Mcainsh AD, Scott-drew S, Murray JAH, Jackson SP. 1999. DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr Biol. 9:963–967.
  • Mcclay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY, Hudson AD, Harada A, Hultman CM, Magnusson PKE, et al. 2014. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet. 23:1175–1185.
  • McCormick MA, Delaney JR, Tsuchiya M, Tsuchiyama S, Shemorry A, Sim S, Chou AC-Z, Ahmed U, Carr D, Murakami CJ, et al. 2015. A comprehensive analysis of replicative lifespan in 4698 single-gene deletion strains uncovers conserved mechanisms of aging. Cell Metab. 22:895–906.
  • Mccormick MA, Mason AG, Guyenet SJ, Dang W, Garza RM, Ting MK, Moller RM, Berger SL, Kaeberlein M, Pillus L, et al. 2014. The SAGA histone deubiquitinase module controls yeast replicative lifespan via Sir2 interaction. Cell Rep. 8:477–486.
  • Merkwirth C, Jovaisaite V, Durieux J, Matilainen O, Jordan SD, Quiros PM, Steffen KK, Williams EG, Mouchiroud L, Tronnes SU, et al. 2016. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell. 165:1209–1223.
  • Mertens J, Paquola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, Mcgrath S, Campbell B, Lee H, JR, Gonçalves JT, et al. 2018. Directly reprogrammed human neurons retain aging- associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell. 17:705–718.
  • Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A. 2008. Dissecting direct reprogramming through integrative genomic analysis. Nature. 454:49–55.
  • Mills KD, Sinclair DA, Guarente L. 1999. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell. 97:609–620.
  • Monnier P, Martinet C, Pontis J, Stancheva I, Ait-si-ali S, Dandolo L. 2013. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci USA. 110:20693–20698.
  • Mori MA, Raghavan P, Thomou T, Boucher J, Robida-Stubbs S, Macotela Y, Russell SJ, Kirkland JL, Blackwell KT, Kahn CR, et al. 2012. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 16:336–347.
  • Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, et al. 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 124:315–329.
  • Narita M, Narita M, Krizhanovsky V, Nuñez S, Chicas A, Hearn SA, Myers MP, Lowe SW. 2006. A Novel role for high-mobility group A proteins in cellular senescence and heterochromatin formation. Cell. 126:503–514.
  • Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. 2003. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 113:703–716.
  • Nashun B, Hill PW, Hajkova P. 2015. Reprogramming of cell fate: epigenetic memory and the erasure of memories past. Embo J. 34:1296–1308.
  • Nativio R, Donahue G, Berson A, Lan Y, Amlie-Wolf A, Tuzer F, Toledo JB, Gosai SJ, Gregory BD, Torres C, et al. 2018. Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat Neurosci. 21:497–505.
  • Nelson DM, Jaber-hijazi F, Cole JJ, Robertson NA, Pawlikowski JS, Norris KT, Criscione SW, Pchelintsev NA, Piscitello D, Stong N, et al. 2016. Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability. Genome Biol. 17:158.
  • Ni Z, Ebata A, Alipanahiramandi E, Lee SS. 2012. Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell. 11:315–325.
  • Nikolaev LG, Akopov SB, Didych DA, Sverdlov ED. 2009. Vertebrate protein CTCF and its multiple roles in a large-scale regulation of genome activity. CG Genomics. 10:294–302.
  • O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J. 2010. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol. 17:1218–1225.
  • Oberdoerffer P, Michan S, Mcvay M, Mostoslavsky R, Park S, Hartlerode A, Stegmuller J, Hafner A, Wright SM, Mills KD, et al. 2008. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell. 135:907–918.
  • Oberdoerffer P, Sinclair DA. 2007. The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol. 8:692–702.
  • Ocampo A, Reddy P, Belmonte JCI. 2016. Anti-aging strategies based on cellular reprogramming. Trends Mol Med. 22:725–738.
  • Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E, et al. 2016. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 167:1719–1733.e12.
  • Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T, et al. 2014. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell. 156:663–677.
  • Pal S, Tyler J. 2016. Epigenetics and aging. Sci Adv. 2:e1600584.
  • Paredes S, Angulo-ibanez M, Tasselli L, Carlson SM, Zheng W, Li T, Chua KF. 2018. The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. J Biol Chem. 293:11242–11250.
  • Pasque V, Gillich A, Garrett N, Gurdon JB. 2011. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J. 30:2373–2387.
  • Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T. 2009. Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol. 11:1261–1267.
  • Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-javan S, Agis-balboa RC, Cota P, Wittnam JL, Gogol-doering A, Opitz L, et al. 2010. Associated with age-dependent memory impairment in mice. Science. 328:3–8.
  • Petkovich DA, Podolskiy DI, Lobanov AV, Lee SG, Miller RA, Gladyshev VN. 2017. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25:954–960.e6.
  • Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, Borkent M, Apostolou E, Alaei S, Cloutier J, et al. 2012. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 151:1617–1632.
  • Pruitt K, Zinn RL, Ohm JE, Mcgarvey KM, Kang SL, Watkins DN, Herman JG, Baylin SB. 2006. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2:e40.
  • Pu M, Ni Z, Wang M, Wang X, Wood JG, Helfand SL, Yu H, Lee SS. 2015. Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev. 29:718–731.
  • Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, Ritz B, Bandinelli S, Neuhouser ML, Beasley JM, et al. 2017. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 9:419–446.
  • Raddatz G, Hagemann S, Aran D, Söhle J, Kulkarni PP, Kaderali L, Hellman A, Winnefeld M, Lyko F. 2013. Aging is associated with highly defined epigenetic changes in the human epidermis. Epigenetics Chromatin. 6.
  • Rakyan VK, Down TA, Maslau S, Andrew T, Yang T, Beyan H, Whittaker P, Mccann OT, Finer S, Valdes AM, et al. 2010. Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 20:434–439.
  • Rando TA, Chang HY. 2012. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 148:46–57.
  • Ren R, Deng L, Xue Y, Suzuki K, Zhang W, Yu Y, Wu J, Sun L, Gong X, Luan H, et al. 2017. Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Res. 27:483–504.
  • Riedel CG, Dowen RH, Lourenco GF, Kirienko NV, Heimbucher T, West JA, Bowman SK, Kingston RE, Dillin A, Asara JM, et al. 2013. DAF-16 employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat Cell Biol. 15:491–501.
  • Rohde JR, Cardenas ME. 2003. The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Society. 23:629–635.
  • Romanov G, Vanyushin B. 1981. Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochim Biophys Acta. 653:204–218.
  • Ryu SH, Kang K, Yoo T, Joe CO, Chung JH. 2011. Transcriptional repression of repeat-derived transcripts correlates with histone hypoacetylation at repetitive DNA elements in aged mice brain. Exp Gerontol. 46:811–818.
  • Sado T, Brockdorff N. 2013. Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos Trans R Soc B Biol Sci. 368:160.
  • Saka K, Ide S, Ganley ARD, Kobayashi T. 2013. Cellular senescence in yeast is regulated by rDNA noncoding transcription. Curr Biol. 23:1794–1798.
  • Salih D, Brunet A. 2008. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol. 20:126–136.
  • Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH. 2002. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem. 277:39195–39201.
  • Sarkar S, Jun S, Rellick S, Quintana D, Cavendish J, Simpkins J. 2016. Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res. 1646:139–151.
  • Scaffidi P, Misteli T. 2006. Lamin A-dependent nuclear defects in human aging. Science. 312:1059–1063.
  • Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F. 2010. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24:1590–1595.
  • Schwoerer S, Becker F, Feller C, Baig A, Koeber U, Henze H, Kraus J, Xin B, Lechel A, Lipka D, et al. 2016. Epigenetic stress responses induce muscle stem cell aging by Hoxa9 developmental signals. Nature. 540:428–432.
  • Sedivy J, Banumathy G, Adams P. 2008. Aging by epigenetics-a consequence of chromatin damage? Exp Cell Res. 314:1909–1917.
  • Sen P, Dang W, Donahue G, Dai J, Dorsey J, Cao X, Liu W, Cao K, Perry R, Lee JY, et al. 2015. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 29:1362–1376.
  • Sen P, Shah PP, Nativio R, Berger SL. 2016. Epigenetic mechanisms of longevity and aging. Cell. 166:822–839.
  • Shah K, McCormack CE, Bradbury NA. 2014. Do you know the sex of your cells? Am J Physiol Cell Physiol. 306:C3–C18.
  • Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K, Aggarwala V, Cruickshanks HA, Rai TS, McBryan T, et al. 2013. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27:1787–1799.
  • Shevchenko AI, Grigor’eva EV, Medvedev SP, Zakharova IS, Dementyeva EV, Elisaphenko EA, Malakhova AA, Pavlova SV, Zakian SM. 2018. Impact of Xist RNA on chromatin modifications and transcriptional silencing maintenance at different stages of imprinted X chromosome inactivation in vole Microtus levis. Chromosoma. 127:129–139.
  • Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, et al. 2006. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. PNAS. 103:8703–8708.
  • Siebold AP, Banerjee R, Tie F, Kiss DL, Moskowitz J, Harte PJ. 2010. Polycomb repressive complex 2 and trithorax modulate Drosophila longevity and stress resistance. PNAS. 107:169–174.
  • Sinclair D, Mills K, Guarente L. 1998. Aging in Saccharomyces cerevisiae. Annu Rev Microbiol. 52:533–560.
  • Sinclair DA, Guarente L. 1997. Extrachromosomal rDNA circles-a cause of aging in yeast. Cell. 91:1033–1042.
  • Sinclair DA, Mills K, Guarente L. 1997. Accelerated aging and nucleolar fragmentation in yeast SGS1 mutants. Science. 277:1313–1316.
  • Sinclair DA, Mills K, Guarente L. 1998. Molecular mechanisms of yeast aging. Trends Biochem Sci. 23:131–134.
  • Sinclair DA, Oberdoerffer P. 2009. The ageing epigenome: damaged beyond repair? Ageing Res Rev. 8:189–198.
  • Singh GM, Danaei G, Farzadfar F, Stevens GA, Woodward M, Wormser D, Kaptoge S, Whitlock G, Qiao Q, Lewington S, et al. 2013. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One. 8:e65174.
  • Singh P, Thakur MK. 2018. Histone deacetylase 2 inhibition attenuates downregulation of hippocampal plasticity gene expression during aging. Mol Neurobiol. 55:2432–2442.
  • Skene PJ, Henikoff S. 2013. Histone variants in pluripotency and disease. Development. 140:2513–2524.
  • Slotkin RK, Martienssen R. 2007. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 8:272–285.
  • Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, Patel S, Lopez D, Mishra N, Pellegrini M, et al. 2013. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat Cell Biol. 15:872–882.
  • Stubbs TM, Bonder MJ, Stark AK, Krueger F, von Meyenn F, Stegle O, Reik W, Bolland D, Butcher G, Chandra T, et al. 2017. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18:1–14.
  • Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, Wang H, Le T, Faull K, Chen R, et al. 2014. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 14:673–688.
  • Sykiotis G, Bohmann D. 2008. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell. 14:76–85.
  • Szafranski K, Abraham K, Mekhail K. 2015. Non-coding RNA in neural function, disease, and aging. Front Genet. 6:87.
  • Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676.
  • Tan L, Ke Z, Tombline G, Macoretta N, Hayes K, Tian X, Lv R, Ablaeva J, Gilbert M, Bhanu NV, et al. 2017. Naked mole rat cells have a stable epigenome that resists iPSC reprogramming. Stem Cell Rep. 9:1721–1734.
  • Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, et al. 2011. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 146:1016–1028.
  • Tebey L, Robertson H, Durant S, Vitale S, Penning T, Dinkova-Kostova A, Hayes J. 2016. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med. 88:108–146.
  • Teschendorff AE, Menon U, Gentry-maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, et al. 2010. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 20:440–446.
  • Thompson MJ, von Holdt B, Horvath S, Pellegrini M. 2017. An epigenetic aging clock for dogs and wolves. Aging (Albany NY). 9:1055–1068.
  • Tsuchiya M, Dang N, Kerr EO, Hu D, Steffen KK, Oakes JA, Kennedy BK, Kaeberlein M. 2006. Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell. 5:505–514.
  • Tsurumi A, Li WX. 2012. Global heterochromatin loss: a unifying theory of aging? Epigenetics. 7:680–688.
  • Tullet JMA, Green JW, Au C, Benedetto A, Thompson MA, Clark E, Gilliat AF, Young A, Schmeisser K, Gems D. 2017. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms. Aging Cell. 16:1191–1194.
  • Ungvari Z, Tucsek Z, Sosnowska D, Toth P, Gautam T, Podlutsky A, Csiszar A, Losonczy G, Valcarcel-ares MN, Sonntag WE, Csiszar A. 2013. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J Gerontol - Ser A Biol Sci Med Sci. 68:877–891.
  • van Meter M, Kashyap M, SR, Geneva A, Morello T, Seluanov A, Gorbunova V. 2014. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun. 5:5011.
  • Vanyushin B, Nemirovsky L, Klimenko V, Vasiliev V, Belozersky A. 1973. The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia. 19:138–152.
  • Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D. 2007. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 450:440–444.
  • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. 2004. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 16:93–105.
  • Vaux D, Pfefferli C, Passannante M, Belhaj K, Essen A, Von Sprecher SG, Mu F, Wicky C. 2013. The Caenorhabditis elegans LET-418/Mi2 plays a conserved role in lifespan regulation. Aging Cell. 12:1012–1020.
  • Venkatraman A, He X, Thorvaldsen J, Sugimura R, Perry J, Tao F, Zhao M, Christenson M, Sanchez R, Yu J, et al. 2013. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence . Nature. 500:345–349.
  • Villeponteau B. 1997. The heterochromatin loss model of aging. Exp Gerontol. 32:383–394.
  • Wagner W. 2017. Epigenetic aging clocks in mice and men. Genome Biol. 18:17–19.
  • Wahlestedt M, Norddahl GL, Sten G, Ugale A, Frisk MM, Mattsson R, Deierborg T, Sigvardsson M, Bryder D. 2013. An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood. 121:4257–4265.
  • Wallrath LL. 1998. Unfolding the mysteries of heterochromatin. Curr Opin Genet Dev. 8:147–153.
  • Wang CM, Tsai SN, Yew TW, Kwan YW, Ngai SM. 2010. Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. Biogerontology. 11:87–102.
  • Wang J, Geesman GJ, Hostikka SL, Atallah M, Blackwell B, Lee E, Cook PJ, Pasaniuc B, Shariat G, Halperin E, et al. 2011. Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle. 10:3016–3030.
  • Wang T, Tsui B, Kreisberg JF, Robertson NA, Gross AM, Yu MK, Carter H, Brown-borg HM, Adams PD, Ideker T. 2017. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18:1–11.
  • Wang W, Huang Q, Hu Y, Stromberg AJ, Nelson PT. 2011. Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol. 121:193–205.
  • Wang WY, Pan L, Su SC, Quinn EJ, Sasaki M, Jimenez JC, MacKenzie IRA, Huang EJ, Tsai LH. 2013. Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat Neurosci. 16:1383–1391.
  • Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C. 2009. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer ’ s disease, inhibits bcl2 translation. Brain Res Bull. 80:268–273.
  • Webb AE, Kundaje A, Brunet A. 2016. Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell. 15:673–685.
  • Wei L, Liu B, Tuo J, Shen D, Chen P, Li Z, Ni J, Dagur P, Sen HN, Jawad S, et al. 2012. Hypomethylation of the IL17RC promoter associates with age-related macular degeneration. Cell Rep. 2:1151–1158.
  • Welstead GG, Creyghton MP, Bilodeau S, Cheng AW, Markoulaki S, Young RA, Jaenisch R. 2012. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc Natl Acad Sci USA. 109:13004–13009.
  • Williams SK, Truong D, Tyler JK. 2008. Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. PNAS. 105:9000–9005.
  • Wilson VL, Smith RA, Ma S, Cutler RG. 1987. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 262:9948–9951.
  • Wilusz JE, Sunwoo H, Spector DL. 2009. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23:1494–1504.
  • Wood JG, Helfand SL. 2013. Chromatin structure and transposable elements in organismal aging. Front Endocrinol (Lausanne). 4:274.
  • Wood JG, Hillenmeyer S, Lawrence C, Chang C, Hosier S, Lightfoot W, Mukherjee E, Jiang N, Schorl C, Brodsky AS, et al. 2010. Chromatin remodeling in the aging genome of Drosophila. Aging Cell. 9:971–978.
  • Wood SH, Dam SV, Craig T, Tacutu R, Toole AO, Merry BJ. 2015. Transcriptome analysis in calorie-restricted rats implicates epigenetic and post- translational mechanisms in neuroprotection and aging. Genome Biol. 16:1–18.
  • Yagi T, Kosakai A, Ito D, Okada Y, Akamatsu W, Nihei Y, Nabetani A, Ishikawa F, Arai Y, Hirose N, et al. 2012. Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research. PLoS One. 7:1–7.
  • Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg D. 2015. DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu Rev Entomol. 60:435–452.
  • Yilmazer A, de Lázaro I, Bussy C, Kostarelos K. 2013. In vivo cell reprogramming towards pluripotency by virus-free overexpression of defined factors. PLoS One. 8:e54754.
  • Yuan T, Jiao Y, Jong SD, Ophoff RA, Beck S. 2015. An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging. PLoS Genet. 11:e10014996.
  • Zahn JM, Poosala S, Owen AB, Ingram DK, Lustig A, Carter A, Weeraratna AT, Taub DD, Gorospe M, Mazan-mamczarz K, et al. 2007. AGEMAP: a gene expression database for aging in mice. PLoS Genet. 3:e201.
  • Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Bürkle A, Caiafa P. 2015. Reconfiguration of DNA methylation in aging. Mech Ageing Dev. 151:60–70.
  • Zaret KS, Carroll JS. 2011. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25:2227–2241.
  • Zentner GE, Tesar PJ, Scacheri PC. 2011. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 21:1273–1283.
  • Zhang R, Chen W, Adams PD. 2007. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol. 27:2343–2358.
  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, et al. 2005. Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell. 8:19–30.
  • Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A, et al. 2015. A Werner syndrome stem cell model\nunveils heterochromatin alterations\nas a driver of human aging. Science. 348:1160–1163.
  • Zhang Y, Fan M, Zhang XUE, Huang F, Wu K, Zhang J, Liu JUN, Huang Z, Luo H, Tao L, Zhang HUI. 2014. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA. 20:1878–1889.
  • Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S, Smith SB, Cairns BR, Peterson CL, Bustamante C. 2006. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol Cell. 24:559–568.
  • Zhang Z, Deng C, Lu Q, Richardson B. 2002. Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter. Mech Ageing Dev. 123:1257–1268.
  • Zhao Y, Wu D, Fei C, Guo J, Gu S, Zhu Y, Xu F, Zhang Z, Wu L, Li X, Chang C. 2015. Down-regulation of Dicer1 promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells in patients with myelodysplastic syndrome. Haematologica. 100:194–204.
  • Zupkovitz G, Lagger S, Martin D, Steiner M, Hagelkruys A, Seiser C, Schöfer C, Pusch O. 2018. Histone deacetylase 1 expression is inversely correlated with age in the short-lived fish Nothobranchius furzeri. Histochem Cell Biol. 150:225–269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.