1,089
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer

& ORCID Icon
Pages 301-332 | Received 03 Jun 2019, Accepted 31 Jul 2019, Published online: 20 Aug 2019

References

  • Achar YJ, Balogh D, Haracska L. 2011. Coordinated protein and DNA remodeling by human HLTF on stalled replication fork. Proc Natl Acad Sci USA. 108(34):14073–14078.
  • Achar YJ, Balogh D, Neculai D, Juhasz S, Morocz M, Gali H, Dhe-Paganon S, Venclovas Č, Haracska L. 2015. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucleic Acids Res. 43:10277–10291.
  • Actis M, Inoue A, Evison B, Perry S, Punchihewa C, Fujii N. 2013. Small molecule inhibitors of PCNA/PIP-box interaction suppress translesion DNA synthesis. Bioorg Med Chem. 21(7):1972–1977.
  • Actis ML, Ambaye ND, Evison BJ, Shao Y, Vanarotti M, Inoue A, McDonald ET, Kikuchi S, Heath R, Hara K. 2016. Identification of the first small-molecule inhibitor of the REV7 DNA repair protein interaction. Bioorganic Med Chem. 24(18):4339–4346.
  • Aksenova A, Volkov K, Maceluch J, Pursell ZF, Rogozin IB, Kunkel TA, Pavlov YI, Johansson E. 2010. Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε. PLoS Genet. 6(11):e1001209.
  • Albertella MR, Lau A, O’Connor MJ. 2005. The overexpression of specialized DNA polymerases in cancer. DNA Repair (Amst). 4(5):583–593.
  • Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, et al. 2013. Signatures of mutational processes in human cancer. Nature. 500(7463):415–421.
  • Alt A, Lammens K, Chiocchini C, Lammens A, Pieck C, Kuch D, Hopfner KP, Carell T. 2007. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Science. 318(5852):967–971.
  • Arcolia V, Paci P, Dhont L, Chantrain G, Sirtaine N, Decaestecker C, Remmelink M, Belayew A, Saussez S. 2014. Helicase-like transcription factor: a new marker of well-differentiated thyroid cancers. BMC Cancer. 14(1):1–12.
  • Arkin MR, Tang Y, Wells JA. 2014. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem Biol. 21(9):1102–1114.
  • Bacolla A, Wells RD. 2004. Non-B DNA conformations, genomic rearrangements, and human disease. J Biol Chem. 279(46):47411–47414.
  • Bailly V, Lamb J, Sung P, Prakash S, Prakash L. 1994. Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev. 8(7):811–820.
  • Bailly V, Lauder S, Prakash S, Prakash L. 1997. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J Biol Chem. 272(37):23360–23365.
  • Ball LG, Xu X, Blackwell S, Hanna MD, Lambrecht AD, Xiao W. 2014. The Rad5 helicase activity is dispensable for error-free DNA post-replication repair. DNA Repair (Amst). 16:74–83.
  • Barkley LR, Palle K, Durando M, Day TA, Gurkar A, Kakusho N, Li J, Masai H, Vaziri C. 2012. c-Jun N-terminal kinase – mediated Rad18 phosphorylation facilitates Pol η recruitment to stalled replication forks. Mol Biol Cell. 23(10):1943–1954.
  • Barnes RP, Hile SE, Lee MY, Eckert KA. 2017. DNA polymerases eta and kappa exchange with the polymerase delta holoenzyme to complete common fragile site synthesis. DNA Repair (Amst). 57:1–11.
  • Barnes RP, Tsao WC, Moldovan GL, Eckert KA. 2018. DNA polymerase eta prevents tumor cell-cycle arrest and cell death during recovery from replication stress. Cancer Res. 78(23):6549–6560.
  • Bartkova J, Hořejší Z, Koed K, Krämer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, et al. 2005. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 434(7035):864–870.
  • Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LVF, Kolettas E, Niforou K, Zoumpourlis VC, et al. 2006. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 444(7119):633–637.
  • Bavoux C, Leopoldino AM, Bergoglio V, O-Wang J, Ogi T, Bieth A, Judde JG, Pena SD, Poupon MF, Helleday T, et al. 2005. Up-regulation of the error prone DNA polymerase {kappa} promotes pleiotropic genetic alterations and tumorigenesis. Cancer Res. 65:325–330.
  • Becker JR, Nguyen HD, Wang X, Bielinsky AK. 2014. Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair. Cell Cycle. 13(11):1737–1748.
  • Becker JR, Pons C, Nguyen HD, Costanzo M, Boone C, Myers CL, Bielinsky AK. 2015. Genetic interactions implicating postreplicative repair in Okazaki fragment processing. PLoS Genet. 11:e1005659.
  • Bell SP, Dutta A. 2002. DNA replication in eukaryotic cells. Annu Rev Biochem. 71(1):333–374.
  • Bemark M, Khamlichi AA, Davies SL, Neuberger MS. 2000. Disruption of mouse polymerase ζ (Rev3) leads to embryonic lethality and impairs blastocyst development in vitro. Curr Biol. 10(19):1213–1216.
  • Bergoglio V, Bavoux C, Verbiest V, Hoffmann J, Cazaux C. 2002. Localisation of human DNA polymerase kappa to replication foci. J Cell Sci. 115(Pt 23):4413–4418.
  • Bergoglio V, Boyer A, Walsh E, Naim V, Legube G, Lee MYWT, Rey L, Rosselli F, Cazaux C, Eckert KA, et al. 2013. DNA synthesis by Pol η promotes fragile site stability by preventing under-replicated DNA in mitosis. J Cell Biol. 201(3):395–408.
  • Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B. 2011. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell. 145(3):435–446.
  • Betous R, Rey L, Wang G, Pillaire MJ, Puget N, Selves J, Biard DSF, Shin-Ya K, Vasquez KM, Cazaux C, et al. 2009. Role of TLS DNA polymerases eta and kappa in processing naturally occurring structured DNA in human cells. Mol Carcinog. 48:369–378.
  • Bhat A, Andersen PL, Qin Z, Xiao W. 2013. Rev3, the catalytic subunit of Polζ, is required for maintaining fragile site stability in human cells. Nucleic Acids Res. 41(4):2328–2339.
  • Bish RA, Myers MP. 2007. Werner helicase-interacting protein 1 binds polyubiquitin via its zinc finger domain. J Biol Chem. 282(32):23184–23193.
  • Blastyák A, Pintér L, Unk I, Prakash L, Prakash S, Haracska L. 2007. Yeast rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell. 28(1):167–175.
  • Blastyák A, Hajdu I, Unk I, Haracska L. 2010. Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol. 30(3):684–693.
  • Branzei D, Szakal B. 2016. DNA damage tolerance by recombination: molecular pathways and DNA structures. DNA Repair (Amst). 44:68–75.
  • Branzei D, Szakal B. 2017. Building up and breaking down: mechanisms controlling recombination during replication. Crit Rev Biochem Mol Biol. 52(4):381–394.
  • Branzei D, Seki M, Onoda F, Enomoto T. 2002. The product of Saccharomyces cerevisiae WHIP/MGS1, a gene related to replication factor C genes, interacts functionally with DNA polymerase δ. Mol Genet Genomics. 268(3):371–386.
  • Branzei D, Vanoli F, Foiani M. 2008. SUMOylation regulates rad18-mediated template switch. Nature. 456(7224):915–920.
  • Broomfield S, Chow BL, Xiao W. 1998. MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc Natl Acad Sci. 95(10):5678–5683.
  • Broughton BC, Cordonnier A, Kleijer WJ, Jaspers NGJ, Fawcett H, Raams A, Garritsen VH, Stary A, Avril MF, Boudsocq F, et al. 2002. Molecular analysis of mutations in DNA polymerase eta in xeroderma pigmentosum-variant patients. Proc Natl Acad Sci. 99(2):815–820.
  • Buisson R, Niraj J, Pauty J, Maity R, Zhao W, Coulombe Y, Sung P, Masson JY. 2014. Breast cancer proteins PALB2 and BRCA2 stimulate polymerase η in recombination-associated DNA synthesis at blocked replication forks. Cell Rep. 6(3):553–564.
  • Buoninfante OA, Pilzecker B, Aslam MA, Zavrakidis I, van der Wiel R, van de Ven M, Berk PCM. V D, Jacobs H. 2018. Precision cancer therapy: profiting from tumor specific defects in the DNA damage tolerance system. Oncotarget. 9(27):18832–18843.
  • Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. 2006. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34(19):5402–5415.
  • Burgers PMJ, Kunkel TA. 2017. Eukaryotic DNA replication fork. Annu Rev Biochem. 86:417–438.
  • Burkovics P, Sebesta M, Balogh D, Haracska L, Krejci L. 2014. Strand invasion by HLTF as a mechanism for template switch in fork rescue. Nucleic Acids Res. 42(3):1711–1720.
  • Capouillez A, Decaestecker C, Filleul O, Chevalier D, Coppée F, Leroy X, Belayew A, Saussez S. 2008. Helicase-like transcription factor exhibits increased expression and altered intracellular distribution during tumor progression in hypopharyngeal and laryngeal squamous cell carcinomas. Virchows Arch. 453(5):491–499.
  • Capouillez A, Debauve G, Decaestecker C, Filleul O, Leroy X, Chevalier D, Mortuaire G, Coppe F, Belayew A, Saussez S. 2009. The helicase-like transcription factor is a strong predictor of recurrence in hypopharyngeal but not in laryngeal squamous cell carcinomas. Histopathology. 55(1):77–90.
  • Carlile CM, Pickart CM, Matunis MJ, Cohen RE. 2009. Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase rad5. J Biol Chem. 284(43):29326–29334.
  • Cejka P, Vondrejs V, Storchova Z. 2001. Dissection of the functions of the Saccharomyces cerevisiae RAD6 postreplicative repair group in mutagenesis and UV sensitivity. Genetics. 159:953–963.
  • Ceppi P, Novello S, Cambieri A, Longo M, Monica V, Lo Iacono M, Giaj-Levra M, Saviozzi S, Volante M, Papotti M, et al. 2009. Polymerase η mRNA expression predicts survival of non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res. 15(3):1039–1045.
  • Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L. 2003. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell. 112(3):391–401.
  • Chang DJ, Lupardus PJ, Cimprich KA. 2006. Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities. J Biol Chem. 281(43):32081–32088.
  • Chavez DA, Greer BH, Eichman BF. 2018. The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression. J Biol Chem. 293(22):8484–8494.
  • Chen SS, Davies AA, Sagan D, Ulrich HD. 2005. The RING finger ATPase rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner. Nucleic Acids Res. 33(18):5878–5886.
  • Chen Y. W, Cleaver JE, Hanaoka F, Chang C. F, Chou K. M. 2006. A novel role of DNA polymerase eta in modulating cellular sensitivity to chemotherapeutic agents. Mol Cancer Res. 4(4):257–265.
  • Cheng CK, Chan NPH, Wan TSK, Lam LY, Cheung CHY, Wong THY, Ip RKL, Wong RSM, Ng MHL. 2016. Helicase-like transcription factor is a RUNX1 target whose downregulation promotes genomic instability and correlates with complex cytogenetic features in acute myeloid leukemia. Haematologica. 101(4):448–457.
  • Cherng N, Shishkin AA, Schlager LI, Tuck RH, Sloan L, Matera R, Sarkar PS, Ashizawa T, Freudenreich CH, Mirkin SM. 2011. Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proc Natl Acad Sci. 108(7):2843–2848.
  • Choi K, Batke S, Szakal B, Lowther J, Hao F, Sarangi P, Branzei D, Ulrich HD, Zhao X. 2015. Concerted and differential actions of two enzymatic domains underlie Rad5 contributions to DNA damage tolerance. Nucleic Acids Res. 43(5):2666–2677.
  • Ciccia A, Nimonkar AV, Hu Y, Hajdu I, Achar YJ, Izhar L, Petit SA, Adamson B, Yoon JC, Kowalczykowski SC, et al. 2012. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol Cell. 47(3):396–409.
  • Coggins GE, Maddukuri L, Penthala NR, Hartman JH, Eddy S, Ketkar A, Crooks PA, Eoff RL. 2013. N-Aroyl indole thiobarbituric acids as inhibitors of DNA repair and replication stress response polymerases. ACS Chem Biol. 8(8):1722–1729.
  • Cohen S. 1977. The mechanisms of lethal action of arabinosyl cytosine (araC) and arabinosyl adenine (araA). Cancer. 40(1):509–518.
  • Collins NS, Bhattacharyya S, Lahue RS. 2007. Rev1 enhances CAG.CTG repeat stability in Saccharomyces cerevisiae . DNA Repair (Amst). 6(1):38–44.
  • Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, et al. 2016. A global genetic interaction network maps a wiring diagram of cellular function. Science. 353(6306):aaf1420.
  • Cotta-Ramusino C, Fachinetti D, Lucca C, Doksani Y, Lopes M, Sogo J, Foiani M. 2005. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol Cell. 17(1):153–159.
  • Coulon S, Ramasubramanyan S, Alies C, Philippin G, Lehmann A, Fuchs RP. 2010. Rad8-Rad5/Mms2-Ubc13 ubiquitin ligase complex controls translesion synthesis in fission yeast. EMBO J. 29(12):2048–2058.
  • Crosetto N, Bienko M, Hibbert RG, Perica T, Ambrogio C, Kensche T, Hofmann K, Sixma TK, Dikic I. 2008. Human wrnip1 is localized in replication factories in a ubiquitin-binding zinc finger-dependent manner. J Biol Chem. 283(50):35173–35185.
  • Daee DL, Mertz T, Lahue RS. 2007. Postreplication repair inhibits CAG CTG repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol. 27(1):102–110.
  • Daigaku Y, Davies AA, Ulrich HD. 2010. Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature. 465(7300):951–955.
  • Daigaku Y, Etheridge TJ, Nakazawa Y, Nakayama M, Watson AT, Miyabe I, Ogi T, Osborne MA, Carr AM. 2017. PCNA ubiquitylation ensures timely completion of unperturbed DNA replication in fission yeast. PLoS Genet. 13(5):e1006789–21.
  • Daraba A, Gali VK, Halmai M, Haracska L, Unk I. 2014. Def1 promotes the degradation of Pol3 for polymerase exchange to occur during DNA-damage-induced mutagenesis in Saccharomyces cerevisiae. PLoS Biol. 12(1):e1001771–11.
  • Das R, Kundu S, Laskar S, Choudhury Y, Ghosh SK. 2018. Assessment of DNA repair susceptibility genes identified by whole exome sequencing in head and neck cancer. DNA Repair (Amst). 66–67:50–63.
  • Dash RC, Ozen Z, Rizzo AA, Lim S, Korzhnev DM, Hadden MK. 2018. Structural approach to identify a lead scaffold that targets the translesion synthesis polymerase rev1. J Chem Inf Model. 58(11):2266–2277.
  • Davies AA, Huttner D, Daigaku Y, Chen S, Ulrich HD. 2008. Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein A. Mol Cell. 29(5):625–636.
  • Debauve G, Nonclercq D, Ribaucour F, Wiedig M, Gerbaux C, Leo O, Laurent G, Journé F, Belayew A, Toubeau G. 2006. Early expression of the helicase-like transcription factor (HLTF/SMARCA3) in an experimental model of estrogen-induced renal carcinogenesis. Mol Cancer. 5:1–15.
  • Despras E, Sittewelle M, Pouvelle C, Delrieu N, Cordonnier A, Kannouche P. 2016. Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA. Nat Commun. 7:1–15.
  • Dhont L, Pintilie M, Kaufman E, Navab R, Tam S, Burny A, Shepherd F, Belayew A, Tsao MS, Mascaux C. 2018. Helicase-like transcription factor expression is associated with a poor prognosis in non-small-cell lung cancer (NSCLC). BMC Cancer. 18(1):1–10.
  • Ding L, Forsburg SL. 2014. Essential domains of schizosaccharomyces pombe rad8 required for DNA damage response. G3 (Bethesda). 4:1373–1384.
  • Dixon MJ, Lahue RS. 2002. Examining the potential role of DNA polymerases η and ζ in triplet repeat instability in yeast. DNA Repair (Amst). 1(9):763–770.
  • Dobzhansky TH. 1946. Genetics of natural populations. XIII. Recombinations and variability in populations of drosophila pseudoobscura. Genetics. 31:269–290.
  • Doles J, Oliver TG, Cameron ER, Hsu G, Jacks T, Walker GC, Hemann MT. 2010. Suppression of Rev3, the catalytic subunit of Pol{zeta}, sensitizes drug-resistant lung tumors to chemotherapy. Proc Natl Acad Sci USA. 107(48):20786–20791.
  • Dorjsuren D, Wilson DM, Beard WA, McDonald JP, Austin CP, Woodgate R, Wilson SH, Simeonov A. 2009. A real-time fluorescence method for enzymatic characterization of specialized human DNA polymerases. Nucleic Acids Res. 37:1–12.
  • Dumstorf CA, Mukhopadhyay S, Krishnan E, Haribabu B, Mcgregor WG. 2009. REV1 is implicated in the development of carcinogen-induced lung cancer. Mol Cancer Res. 7(2):247–255.
  • Eddy S, Ketkar A, Zafar MK, Maddukuri L, Choi JY, Eoff RL. 2014. Human rev1 polymerase disrupts G-quadruplex DNA. Nucleic Acids Res. 42(5):3272–3285.
  • Eddy S, Tillman M, Maddukuri L, Ketkar A, Zafar MK, Eoff RL. 2016. Human translesion polymerase κ exhibits enhanced activity and reduced fidelity two nucleotides from G-Quadruplex DNA. Biochemistry. 55(37):5218–5229.
  • Edmunds CE, Simpson LJ, Sale JE. 2008. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol Cell. 30(4):519–529.
  • Enervald E, Lindgren E, Katou Y, Shirahige K, Ström L. 2013. Importance of polη for damage-induced cohesion reveals differential regulation of cohesion establishment at the break site and genome-wide. PLoS Genet. 9(1):e1003158–17.
  • Evison BJ, Actis ML, Wu SZ, Shao Y, Heath RJ, Yang L, Fujii N. 2014. A site-selective, irreversible inhibitor of the DNA replication auxiliary factor proliferating cell nuclear antigen (PCNA). Bioorganic Med Chem. 22(22):6333–6343.
  • Fallet E, Jolivet P, Soudet J, Lisby M, Gilson E, Teixeira MT. 2014. Length-dependent processing of telomeres in the absence of telomerase. Nucleic Acids Res. 42(6):3648–3665.
  • Fan Q, Xu X, Zhao X, Wang Q, Xiao W, Guo Y, Fu YV. 2018. Rad5 coordinates translesion DNA synthesis pathway by recognizing specific DNA structures in Saccharomyces cerevisiae. Curr Genet. 64(4):889–899.
  • De Feraudy S, Limoli CL, Giedzinski E, Karentz D, Marti TM, Feeney L, Cleaver JE. 2007. Pol η is required for DNA replication during nucleotide deprivation by hydroxyurea. Oncogene. 26(39):5713–5721.
  • Florea AM, Büsselberg D. 2011. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 3(1):1351–1371.
  • Frampton J, Irmisch A, Green CM, Neiss A, Trickey M, Ulrich HD, Furuya K, Watts FZ, Carr AM, Lehmann AR. 2006. Postreplication repair and PCNA modification in schizosaccharomyces pombe. Mol Biol Cell. 17(7):2976–2985.
  • Frizzell A, Nguyen JHG, Petalcorin MIR, Turner KD, Boulton SJ, Freudenreich CH, Lahue RS. 2014. RTEL1 inhibits trinucleotide repeat expansions and fragility. Cell Rep. 6(5):827–835.
  • Fumasoni M, Zwicky K, Vanoli F, Lopes M, Branzei D. 2015. Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the polα/primase/Ctf4 complex. Mol Cell. 57(5):812–823.
  • Gabrielsen M, Buetow L, Nakasone MA, Ahmed SF, Sibbet GJ, Smith BO, Zhang W, Sidhu SS, Huang DT. 2017. A general strategy for discovery of inhibitors and activators of RING and U-box E3 ligases with ubiquitin variants. Mol Cell. 68(2):456–470.
  • Gaillard H, García-Muse T, Aguilera A. 2015. Replication stress and cancer. Nat Rev Cancer. 15(5):276–280.
  • Gallo D, Kim T, Szakal B, Saayman X, Narula A, Park Y, Branzei D, Zhang Z, Brown GW. 2019. Rad5 recruits error-prone DNA polymerases for mutagenic repair of ssDNA gaps on undamaged templates. Mol Cell. 73(5):900–914.
  • Gangavarapu V, Haracska L, Unk I, Johnson RE, Prakash S, Prakash L. 2006. Mms2-Ubc13-dependent and independent roles of rad5 ubiquitin ligase in postreplication repair and translesion DNA synthesis in Saccharomyces cerevisiae. Mol Cell Biol. 26(20):7783–7790.
  • Gao Y, Mutter-Rottmayer E, Greenwalt AM, Goldfarb D, Yan F, Yang Y, Martinez-Chacin RC, Pearce KH, Tateishi S, Major MB, et al. 2016. A neomorphic cancer cell-specific role of MAGE-A4 in trans-lesion synthesis. Nat Commun. 7:1–14.
  • Garbacz M, Araki H, Flis K, Bebenek A, Zawada AE, Jonczyk P, Makiela-Dzbenska K, Fijalkowska IJ. 2015. Fidelity consequences of the impaired interaction between DNA polymerase epsilon and the GINS complex. DNA Repair (Amst). 29:23–35.
  • Garbacz MA, Cox PB, Sharma S, Lujan SA, Chabes A, Kunkel TA. 2019. The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ε strongly reduces DNA replication fidelity. Nucleic Acids Res. 47:3986–3995.
  • Garcia-Exposito L, Bournique E, Bergoglio V, Bose A, Barroso-Gonzalez J, Zhang S, Roncaioli JL, Lee M, Wallace CT, Watkins SC, et al. 2016. Proteomic profiling reveals a specific role for translesion DNA polymerase η in the alternative lengthening of telomeres. Cell Rep. 17(7):1858–1871.
  • García-Luis J, Machín F. 2018. Fanconi anaemia-like Mph1 helicase backs up rad54 and rad5 to circumvent replication stress-driven chromosome bridges. Genes (Basel). 9(11):558.
  • Gonzalez-Huici V, Szakal B, Urulangodi M, Psakhye I, Castellucci F, Menolfi D, Rajakumara E, Fumasoni M, Bermejo R, Jentsch S. 2014. DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity. EMBO J. 33(4):327–340.
  • Grabowska E, Wronska U, Denkiewicz M, Jaszczur M, Respondek A, Alabrudzinska M, Suski C, Makiela-Dzbenska K, Jonczyk P, Fijalkowska IJ. 2014. Proper functioning of the GINS complex is important for the fidelity of DNA replication in yeast. Mol Microbiol. 92(4):659–680.
  • Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, Mis M, Zimmermann M, Fradet-Turcotte A, Sun S, et al. 2015. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 163(6):1515–1526.
  • Hayashi M, Keyamura K, Hishida T. 2018. Cyclin-dependent kinase modulates budding yeast Rad5 stability during cell cycle. PLoS One. 13(9):e0204680–14.
  • Haynes B, Zhang Y, Liu F, Li J, Petit S, Kothayer H, Bao X, Westwell AD, Mao G, Shekhar, MPV. (2016). Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization. Nanomedicine Nanotechnology. Biol Med. 12:745–757.
  • He C, Wu S, Gao A, Su Y, Min H, Shang ZF, Wu J, Yang L, Ding WQ, Zhou J. 2017. Phosphorylation of ETS-1 is a critical event in DNA polymerase iota-induced invasion and metastasis of esophageal squamous cell carcinoma. Cancer Sci. 108(12):2503–2510.
  • Hibi K, Nakayama H, Kanyama Y, Kodera Y, Ito K, Akiyama S, Nakao A. 2003. Methylation pattern of HLTF gene in digestive tract cancers. Int J Cancer. 104(4):433–436.
  • Hills SA, Diffley JFX. 2014. DNA replication and oncogene-induced replicative stress. Curr Biol. 24(10):R435–R444.
  • Hishida T, Iwasaki H, Ohno T, Morishita T, Shinagawa H. 2001. A yeast gene, MGS1, encoding a DNA-dependent AAA(+) ATPase is required to maintain genome stability. Proc Natl Acad Sci USA. 98(15):8283–8289.
  • Hishida T, Ohno T, Iwasaki H, Shinagawa H. 2002. Saccharomyces cerevisiae MGS1 is essential in strains deficient in the RAD6-dependent DNA damage tolerance pathway. EMBO J. 21(8):2019–2029.
  • Hishida T, Kubota Y, Carr AM, Iwasaki H. 2009. RAD6–RAD18–RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light. Nature. 457(7229):612–615.
  • Hishiki A, Hara K, Ikegaya Y, Yokoyama H, Shimizu T, Sato M, Hashimoto H. 2015. Structure of a novel DNA-binding domain of helicase-like transcription factor (HLTF) and its functional implication in DNA damage tolerance. J Biol Chem. 290(21):13215–13223.
  • Hodge CD, Edwards RA, Markin CJ, McDonald D, Pulvino M, Huen MSY, Zhao J, Spyracopoulos L, Hendzel MJ, Glover JNM. 2015. Covalent inhibition of ubc13 affects ubiquitin signaling and reveals active site elements important for targeting. ACS Chem Biol. 10(7):1718–1728.
  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 419(6903):135–141.
  • Hofmann RM, Pickart CM. 1999. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell. 96(5):645–653.
  • Huang D, Piening BD, Paulovich AG. 2013. The preference for error-free or error-prone postreplication repair in Saccharomyces cerevisiae exposed to low-dose methyl methanesulfonate is cell cycle dependent. Mol Cell Biol. 33(8):1515–1527.
  • Huang ME, Rio AG, Galibert MD, Galibert F. 2002. POL32, a subunit of the Saccharomyces cerevisiae DNA polymerase delta, defines a link between DNA replication and the mutagenic bypass repair pathway. Genetics. 160:1409–1422.
  • Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W. 1991. Action of 2’,2’-difluorodeoxycytidine on DNA synthesis. Cancer Res. 51(22):6110–6117.
  • Hyman DM, Taylor BS, Baselga J. 2017. Implementing genome-driven oncology. Cell. 168(4):584–599.
  • Iguchi M, Osanai M, Hayashi Y, Koentgen F, Lee G. 2014. The error-prone DNA polymerase i provides quantitative resistance to lung tumorigenesis and mutagenesis in mice. Oncogene. 33(27):3612–3617.
  • Inoue A, Kikuchi S, Hishiki A, Shao Y, Heath R, Evison BJ, Actis M, Canman CE, Hashimoto H, Fujii N. 2014. A small molecule inhibitor of monoubiquitinated proliferating cell nuclear antigen (PCNA) inhibits repair of interstrand DNA cross-link, enhances DNA double strand break, and sensitizes cancer cells to cisplatin. J Biol Chem. 289(10):7109–7120.
  • Irony-Tur Sinai M, Kerem B. 2019. Genomic instability in fragile sites—still adding the pieces. Genes Chromosomes Cancer. 58(5):295–304.
  • Iyer LM, Babu MM, Aravind L. 2006. The HIRAN domain and recruitment of chromatin remodeling and repair activities to damaged DNA. Cell Cycle. 5(7):775–782.
  • Jansen JG, Tsaalbi-Shtylik A, Hendriks G, Gali H, Hendel A, Johansson F, Erixon K, Livneh Z, Mullenders LHF, Haracska L, et al. 2009. Separate domains of rev1 mediate two modes of DNA damage bypass in mammalian cells. Mol Cell Biol. 29(11):3113–3123.
  • Jentsch S, McGrath JP, Varshavsky A. 1987. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature. 329(6135):131–134.
  • Johnson RE, Henderson ST, Petes TD, Prakash S, Bankmann M, Prakash L. 1992. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol Cell Biol. 12(9):3807–3818.
  • Johnson RE, Prakash S, Prakash L. 1994. Yeast DNA repair protein RAD5 that promotes instability of simple repetitive sequences is a DNA-dependent ATPase. J Biochem. 269:28259–28262.
  • Jones JS, Prakash L. 1991. Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD18 increase in UV irradiated cells and during meiosis but not during the mitotic cell cycle. Nucl Acids Res. 19(4):893–898.
  • Jones MJK, Colnaghi L, Huang TT. 2012. Dysregulation of DNA polymerase κ recruitment to replication forks results in genomic instability. EMBO J. 31(4):908–918.
  • Kannouche PL, Wing J, Lehmann AR. 2004. Interaction of human DNA polymerase η with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell. 14(4):491–500.
  • Kanu N, Zhang T, Burrell RA, Chakraborty A, Cronshaw J, DaCosta C, Grönroos E, Pemberton HN, Anderton E, Gonzalez L, et al. 2016. RAD18, WRNIP1 and ATMIN promote ATM signalling in response to replication stress. Oncogene. 35(30):4009–4019.
  • Karras GI, Jentsch S. 2010. The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell. 141(2):255–267.
  • Karras GI, Fumasoni M, Sienski G, Vanoli F, Branzei D, Jentsch S. 2013. Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol Cell. 49(3):536–546.
  • Kawabe Y, Branzei D, Hayashi T, Suzuki H, Masuko T, Onoda F, Heo SJ, Ikeda H, Shimamoto A, Furuichi Y, et al. 2001. A novel protein interacts with the werner’s syndrome gene product physically and functionally. J Biol Chem. 276(23):20364–20369.
  • Kelly TJ, Brown GW. 2000. Regulation of chromosome replication. Annu Rev Biochem. 69:829–880.
  • Ketkar A, Zafar MK, Maddukuri L, Yamanaka K, Banerjee S, Egli M, Choi JY, Lloyd RS, Eoff RL. 2013. Leukotriene biosynthesis inhibitor MK886 impedes DNA polymerase activity. Chem Res Toxicol. 26(2):221–232.
  • Kile AC, Chavez DA, Bacal J, Eldirany S, Korzhnev DM, Bezsonova I, Eichman BF, Cimprich KA. 2015. HLTF’s ancient HIRAN domain binds 3’ DNA ends to drive replication fork reversal. Mol Cell. 58(6):1090–1100.
  • Kimura T, Takeuchi T, Kumamoto-Yonezawa Y, Ohashi E, Ohmori H, Masutani C, Hanaoka F, Sugawara F, Yoshida H, Mizushina Y. 2009. Penicilliols A and B, novel inhibitors specific to mammalian Y-family DNA polymerases. Bioorganic Med Chem. 17(5):1811–1816.
  • Knobel PA, Kotov IN, Felley-Bosco E, Stahel RA, Marti TM. 2011. Inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. Neoplasia. 13(10):961–970.
  • Kobbe D, Kahles A, Walter M, Klemm T, Mannuss A, Knoll A, Focke M, Puchta H. 2016. AtRAD5A is a DNA translocase harboring a HIRAN domain which confers binding to branched DNA structures and is required for DNA repair in vivo. Plant J. 88(4):521–530.
  • Koken MH, Reynolds P, Jaspers-Dekker I, Prakash L, Prakash S, Bootsma D, Hoeijmakers JH. 1991. Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc Natl Acad Sci USA. 88(20):8865–8869.
  • Kondo Y, Higashi Y, Hanaoka F, Kanao R, Ohkumo T, Sugimoto T, Tsukamoto T, Yamada A, Kondoh H, Tatematsu M. 2006. UV-B radiation induces epithelial tumors in mice lacking DNA polymerase eta and mesenchymal tumors in mice deficient for DNA polymerase iota. Mol Cell Biol. 26:7696–7706.
  • Korzhnev DM, Neculai D, Dhe-Paganon S, Arrowsmith CH, Bezsonova I. 2016. Solution NMR structure of the HLTF HIRAN domain: a conserved module in SWI2/SNF2 DNA damage tolerance proteins. J Biomol Nmr. 66(3):209–219.
  • Kothayer H, Elshanawani AA, Abu Kull ME, El-Sabbagh OI, Shekhar MPV, Brancale A, Jones AT, Westwell AD. 2013. Design, synthesis and in vitro anticancer evaluation of 4,6-diamino-1,3,5-triazine-2-carbohydrazides and -carboxamides. Bioorganic Med Chem Lett. 23(24):6886–6889.
  • Kothayer H, Spencer SM, Tripathi K, Westwell AD, Palle K. 2016. Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors. Bioorganic Med Chem Lett. 26(8):2030–2034.
  • Kotov IN, Siebring-van Olst E, Knobel PA, van der Meulen-Muileman IH, Felley-Bosco E, van Beusechem VW, Smit EF, Stahel RA, Marti TM. 2014. Whole genome RNAi screens reveal a critical role of REV3 in coping with replication stress. Mol Oncol. 8(8):1747–1759.
  • Kotsantis P, Petermann E, Boulton SJ. 2018. Mechanisms of oncogene-induced replication stress: jigsaw falling into place. Cancer Discov. 8(5):537–555.
  • Kraszewska J, Garbacz M, Jonczyk P, Fijalkowska IJ, Jaszczur M. 2012. Defect of Dpb2p, a noncatalytic subunit of DNA polymerase e, promotes error prone replication of undamaged chromosomal DNA in Saccharomyces cerevisiae. Mutat Res Fundam Mol Mech Mutagen. 737(1–2):34–42.
  • Kreisel K, Engqvist MKM, Kalm J, Thompson LJ, Boström M, Navarrete C, McDonald JP, Larsson E, Woodgate R, Clausen AR. 2019. DNA polymerase η contributes to genome-wide lagging strand synthesis. Nucleic Acids Res. 47(5):2425–2435.
  • Krijger PHL, Lee K, Wit N, Berk PCMVD, Wu X, Roest HP, Maas A, Ding H, Hoeijmakers JHJ, Myung K, et al. 2011. HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: Existence of an alternative E3 ligase. DNA Repair (Amst). 10(4):438–444.
  • Kuang L, Kou H, Xie Z, Zhou Y, Feng X, Wang L, Wang Z. 2013. A non-catalytic function of Rev1 in translesion DNA synthesis and mutagenesis is mediated by its stable interaction with Rad5. DNA Repair (Amst). 12(1):27–37.
  • Kurashima K, Sekimoto T, Oda T, Kawabata T, Hanaoka F, Yamashita T. 2018. Polη. a Y-family translesion synthesis polymerase, promotes cellular tolerance of myc-induced replication stress. J Cell Sci. 131:1–15.
  • Lang GI, Murray AW. 2011. Mutation rates across budding yeast chromosome VI Are correlated with replication timing. Genome Biol Evol. 3:799–811.
  • Lange SS, Wittschieben JP, Wood RD. 2012. DNA polymerase zeta is required for proliferation of normal mammalian cells. Nucleic Acids Res. 40(10):4473–4482.
  • Lawrence CW, Christensen RB. 1978. Ultraviolet-induced reversion of cyc1 alleles in radiation sensitive strains of yeast. II. rev2 mutant strains. Genetics. 90:213–226.
  • Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 505(7484):495–501.
  • Lazzaro F, Novarina D, Amara F, Watt DL, Stone JE, Costanzo V, Burgers PM, Kunkel TA, Plevani P, Muzi-Falconi M. 2012. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol Cell. 45(1):99–110.
  • Leach CA, Michael WM. 2005. Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J Cell Biol. 171(6):947–954.
  • Lee GH, Matsushita H. 2005. Genetic linkage between Polι deficiency and increased susceptibility to lung tumors in mice. Cancer Sci. 96(5):256–259.
  • Lemontt JF. 1971. Mutants of yeast defective in mutation induced by ultraviolet light. Genetics. 68:21–33.
  • Leung W, Baxley R, Moldovan GL, Bielinsky AK. 2019. Mechanisms of DNA damage tolerance: post-translational regulation of PCNA. Genes (Basel). 10:1–25.
  • Leung WK, Yu J, Bai AHC, Chan MWY, Chan K, To K, Chan FKL, Ng EKW, Chung SCS, Sung JJY. 2003. Inactivation of helicase-like transcription factor by promoter hypermethylation in human gastric cancer. Mol Carcinog. 37(2):91–97.
  • Leuzzi G, Marabitti V, Pichierri P, Franchitto A. 2016a. WRNIP1 protects stalled forks from degradation and promotes fork restart after replication stress. EMBO J. 35(13):1437–1451.
  • Leuzzi G, Marabitti V, Pichierri P, Franchitto A. 2016b. WRNIP1: a new guardian of genome integrity at stalled replication forks. Mol Cell Oncol. 3:1–2.
  • Li B, Carey M, Workman JL. 2007. The role of chromatin during transcription. Cell. 128(4):707–719.
  • Li J, Yu T, Yan M, Zhang X, Liao L, Zhu M, Lin H, Pan H, Yao M. 2019. DCUN1D1 facilitates tumor metastasis by activating FAK signaling and up-regulates PD-L1 in non-small-cell lung cancer. Exp Cell Res. 374(2):304–314.
  • Liefshitz B, Steinlauf R, Friedl A, Eckardt-Schupp F, Kupiec M. 1998. Genetic interactions between mutants of the ‘error-prone’ repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Mutat Res. 407(2):135–145.
  • Lin JR, Zeman MK, Chen JY, Yee MC, Cimprich KA. 2011. SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell. 42(2):237–249.
  • Lin X, Okuda T, Trang J, Howell SB. 2006. Human REV1 modulates the cytotoxicity and mutagenicity of cisplatin in human ovarian carcinoma cells. Mol Pharmacol. 69(5):1748–1754.
  • Lindahl T, Barnes D. 2000. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 65:127–133.
  • Lõoke M, Maloney MF, Bell SP. 2017. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase. Genes Dev. 31(3):291–305.
  • Lopes M, Foiani M, Sogo JM. 2006. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell. 21(1):15–27.
  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. Cell. 153(6):1194–1217.
  • Lord CJ, Ashworth A. 2016. BRCAness revisited. Nat Rev Cancer. 16(2):110–120.
  • Di Lucca J, Guedj M, Lacapère JJ, Fargnoli MC, Bourillon A, Dieudé P, Dupin N, Wolkenstein P, Aegerter P, Saiag P, et al. 2009. Variants of the xeroderma pigmentosum variant gene (POLH) are associated with melanoma risk. Eur J Cancer. 45(18):3228–3236.
  • Luedeke M, Linnert CM, Hofer MD, Surowy HM, Rinckleb AE, Hoegel J, Kuefer R, Rubin MA, Vogel W, Maier C. 2009. Predisposition for TMPRSS2-ERG fusion in prostate cancer by variants in DNA repair genes. Cancer Epidemiol Biomarkers Prev. 18(11):3030–3035.
  • Lyakhovich A, Shekhar MPV. 2004. RAD6B overexpression confers chemoresistance: RAD6 expression during cell cycle and its redistribution to chromatin during DNA damage-induced response. Oncogene. 23(17):3097–3106.
  • Macheret M, Halazonetis TD. 2015. DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 10:425–448.
  • Mackay C, Toth R, Rouse J. 2009. Biochemical characterisation of the SWI/SNF family member HLTF. Biochem Biophys Res Commun. 390(2):187–191.
  • Madaan K, Kaushik D, Verma T. 2012. Hydroxyurea: a key player in cancer chemotherapy. Expert Rev Anticancer Ther. 12(1):19–29.
  • Madura K, Prakash S, Prakash L. 1990. Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucl Acids Res. 18(4):771–778.
  • Mansilla SF, Bertolin AP, Bergoglio V, Pillaire MJ, González Besteiro MA, Luzzani C, Miriuka SG, Cazaux C, Hoffmann JS, Gottifredi V. 2016. Cyclin kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells. Elife. 5:1–26.
  • Margalef P, Kotsantis P, Borel V, Bellelli R, Panier S, Boulton SJ. 2018. Stabilization of reversed replication forks by telomerase drives telomere catastrophe. Cell. 172(3):439–453.
  • Masuda Y, Mitsuyuki S, Kanao R, Hishiki A, Hashimoto H, Masutani C. 2018. Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway. Nucleic Acids Res. 46:11340–11356.
  • Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, Araki M, Iwai S, Takio K, Hanaoka F. 1999. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature. 399(6737):700–704.
  • Masuyama S, Tateishi S, Yomogida K, Nishimune Y, Suzuki K, Sakuraba Y, Inoue H, Ogawa M, Yamaizumi M. 2005. Regulated expression and dynamic changes in subnuclear localization of mammalian Rad18 under normal and genotoxic conditions. Genes Cells. 10(8):753–762.
  • Meroni A, Nava GM, Bianco E, Grasso L, Galati E, Bosio MC, Delmastro D, Muzi-Falconi M, Lazzaro F. 2019. RNase H activities counteract a toxic effect of polymerase η in cells replicating with depleted dNTP pools. Nucleic Acids Res. 47:4612–4623.
  • Michiels S, Danoy P, Dessen P, Bera A, Boulet T, Bouchardy C, Lathrop M, Sarasin A, Benhamou S. 2007. Polymorphism discovery in 62 DNA repair genes and haplotype associations with risks for lung and head and neck cancers. Carcinogenesis. 28(8):1731–1739.
  • Minca EC, Kowalski D. 2010. Multiple rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol Cell. 38(5):649–661.
  • Minesinger BK, Jinks-Robertson S. 2005. Roles of RAD6 epistasis group members in spontaneous Polζ-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics. 169(4):1939–1955.
  • Mirkin EV, Mirkin SM. 2007. Replication fork stalling at natural impediments. Microbiol Mol Biol Rev. 71(1):13–35.
  • Mizushina Y, Motoshima H, Yamaguchi Y, Takeuchi T, Hirano K, Sugawara F, Yoshida H. 2009. 3-O-methylfunicone, a selective inhibitor of mammalian Y-family DNA polymerases from an Australian sea salt fungal strain. Mar Drugs. 7(4):624–639.
  • Mohni KN, Thompson PS, Luzwick JW, Glick GG, Pendleton CS, Lehmann BD, Pietenpol JA, Cortez D. 2015. A synthetic lethal screen identifies DNA repair pathways that sensitize cancer cells to combined ATR inhibition and cisplatin treatments. PLoS One. 10(5):e0125482–22.
  • Mohni KN, Wessel SR, Zhao R, Wojciechowski AC, Luzwick JW, Layden H, Eichman BF, Thompson PS, Mehta KPM, Cortez D. 2019. HMCES maintains genome integrity by shielding abasic sites in single-strand DNA. Cell. 176(1–2):144–153.
  • Moinova HR, Chen WD, Shen L, Smiraglia D, Olechnowicz J, Ravi L, Kasturi L, Myeroff L, Plass C, Parsons R, et al. 2002. HLTF gene silencing in human colon cancer. Proc Natl Acad Sci USA. 99(7):4562–4567.
  • Moraes TF, R. A, Mckenna, S E, Pastushok L, Xiao W, Glover JNM, Ellison MJ. 2001. Crystal structure of the human ubiquitin complex, hMms2 – hUbc13. Nat Struct Biol. 8:715–719.
  • Motegi A, Sood R, Moinova H, Markowitz SD, Liu PP, Myung K. 2006. Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J Cell Biol. 175(5):703–708.
  • Motegi A, Kuntz K, Majeed A, Smith S, Myung K. 2006. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Mol Cell Biol. 26(4):1424–1433.
  • Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JHJ, et al. 2008. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci. 105(34):12411–12416.
  • Nagai S, Dubrana K, Tsai-Pflugfelder M, Davidson MB, Roberts TM, Brown GW, Varela E, Hediger F, Gasser SM, Krogan NJ. 2008. Functional targeting of DNA damage to a nuclear pore–associated SUMO-dependent ubiquitin ligase. Science. 322(5901):597–602.
  • Naganuma M, Nishida M, Kuramochi K, Sugawara F, Yoshida H, Mizushina Y. 2008. 1-Deoxyrubralactone, a novel specific inhibitor of families X and Y of eukaryotic DNA polymerases from a fungal strain derived from sea algae. Bioorganic Med Chem. 16(6):2939–2944.
  • Nick McElhinny SA, Watts BE, Kumar D, Watt DL, Lundstrom EB, Burgers PMJ, Johansson E, Chabes A, Kunkel TA. 2010. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci. 107(11):4949–4954.
  • Niimi A, Brown S, Sabbioneda S, Kannouche PL, Scott A, Yasui A, Green CM, Lehmann AR. 2008. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc Natl Acad Sci. 105(42):16125–16130.
  • Niimi K, Murakumo Y, Watanabe N, Kato T, Mii S, Enomoto A, Asai M, Asai N, Yamamoto E, Kajiyama H. 2014. Suppression of REV7 enhances cisplatin sensitivity in ovarian clear cell carcinoma cells. Cancer Sci. 105(5):545–552.
  • Northam MR, Garg P, Baitin DM, Burgers PMJ, Shcherbakova PV. 2006. A novel function of DNA polymerase zeta regulated by PCNA. EMBO J. 25(18):4316–4325.
  • Northam MR, Robinson HA, Kochenova OV, Shcherbakova PV. 2010. Participation of DNA polymerase ζ in replication of undamaged DNA in Saccharomyces cerevisiae. Genetics. 184(1):27–42.
  • Northam MR, Moore EA, Mertz TM, Binz SK, Stith CM, Stepchenkova EI, Wendt KL, Burgers PMJ, Shcherbakova PV. 2014. DNA polymerases ζ and Rev1 mediate error-prone bypass of non-B DNA structures. Nucleic Acids Res. 42(1):290–306.
  • Nyholm S, Thelander L, Graeslund A. 1993. Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyurea. Biochemistry. 32(43):11569–11574.
  • O-Wang J, Kawamura K, Tada Y, Ohmori H, Kimura H, Sakiyama S, Tagawa M. 2001. DNA polymerase K, implicated in spontaneous and DNA damage-induced mutagenesis, is overexpressed in lung cancer. Cancer Res. 61:5366–5369.
  • O’Neil NJ, Bailey ML, Hieter P. 2017. Synthetic lethality and cancer. Nat Rev Genet. 18(10):613–623.
  • Okuda T, Lin X, Trang J, Howell SB. 2005. Suppression of hREV1 expression reduces the rate at which human ovarian carcinoma cells acquire resistance to cisplatin. Mol Pharmacol. 67(6):1852–1860.
  • Ortiz-Bazán MÁ, Gallo-Fernández M, Saugar I, Jiménez-Martín A, Vázquez MV, Tercero JA. 2014. Rad5 plays a major role in the cellular response to DNA damage during chromosome replication. Cell Rep. 9(2):460–468.
  • Ouzon-Shubeita H, Baker M, Koag MC, Lee S. 2019. Structural basis for the bypass of the major oxaliplatin-DNA adducts by human DNA polymerase η. Biochem J. 476(4):747–758.
  • Pagès V, Bresson A, Acharya N, Prakash S, Fuchs RP, Prakash L. 2008. Requirement of Rad5 for DNA polymerase ζ-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics. 180(1):73–82.
  • Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD. 2005. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell. 19(1):123–133.
  • Parker JL, Ulrich HD. 2009. Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. EMBO J. 28(23):3657–3666.
  • Parker JL, Ulrich HD. 2012. A SUMO-interacting motif activates budding yeast ubiquitin ligase Rad18 towards SUMO-modified PCNA. Nucleic Acids Res. 40(22):11380–11388.
  • Pavlov YI, Shcherbakova PV, Kunkel TA. 2001. In vivo consequences of putative active site mutations in yeast DNA polymerases alpha, epsilon, delta and zeta. Genetics. 159:47–64.
  • Peng M, Cong K, Panzarino NJ, Nayak S, Calvo J, Deng B, Zhu LJ, Morocz M, Hegedus L, Haracska L, et al. 2018. Opposing roles of FANCJ and HLTF protect forks and restrain replication during. Stress Cell Rep. 24(12):3251–3261.
  • Pepe A, West SC. 2014. MUS81-EME2 promotes replication fork restart. Cell Rep. 7(4):1048–1055.
  • Piao S, Ojha R, Rebecca VW, Samanta A, Ma XH, Mcafee Q, Nicastri MC, Buckley M, Brown E, Winkler JD, et al. 2017. ALDH1A1 and HLTF modulate the activity of lysosomal autophagy inhibitors in cancer cells. Autophagy. 13(12):2056–2071.
  • Pilié PG, Tang C, Mills GB, Yap TA. 2019. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 16(2):81–104.
  • Poole LA, Cortez D. 2017. Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability. Crit Rev Biochem Mol Biol. 52(6):696–714.
  • Puccetti MV, Adams CM, Kushinsky S, Eischen CM. 2019. Smarcal1 and Zranb3 protect replication forks from Myc-induced DNA replication stress. Cancer Res. 79:1297.
  • Pulvino M, Liang Y, Oleksyn D, DeRan M, Van Pelt E, Shapiro J, Sanz I, Chen L, Zhao J. 2012. Inhibition of proliferation and survival of diffuse large B-cell lymphoma cells by a small-molecule inhibitor of the ubiquitin-conjugating enzyme Ubc13-Uev1A. Blood. 120(8):1668–1677.
  • Punchihewa C, Inoue A, Hishiki A, Fujikawa Y, Connelly M, Evison B, Shao Y, Heath R, Kuraoka I, Rodrigues P, et al. 2012. Identification of small molecule proliferating cell nuclear antigen (PCNA) inhibitor that disrupts interactions with PIP-box proteins and inhibits DNA replication. J Biol Chem. 287(17):14289–14300.
  • Putnam CD, Hayes TK, Kolodner RD. 2010. Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet. 6(5):e1000933–11.
  • Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, Yang J, Fan J, Liu L, Qin W. 2016. Hsa-circ-0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark. 16(1):161–169.
  • Quinet A, Lemaçon D, Vindigni A. 2017. Replication fork reversal: players and guardians. Mol Cell. 68(5):830–833.
  • Ran X, Gestwicki JE. 2018. Inhibitors of protein–protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Curr Opin Chem Biol. 44:75–86.
  • Rey L, Sidorova JM, Puget N, Boudsocq F, Biard DSF, Monnat RJ, Cazaux C, Hoffmann JS. 2009. Human DNA polymerase eta is required for common fragile site stability during unperturbed DNA replication. Mol Cell Biol. 29(12):3344–3354.
  • Rimkus C, Friederichs J, Rosenberg R, Holzmann B, Siewert JR, Janssen KP. 2007. Expression of the mitotic checkpoint gene MAD2L2 has prognostic significance in colon cancer. Int J Cancer. 120(1):207–211.
  • Saadat N, Liu F, Haynes B, Nangia-Makker P, Bao X, Li J, Polin L, Gupta S, Mao G, Shekhar MP. (2018). Nano-targeted Delivery of Rad6/Translesion Synthesis Inhibitor SMI#9 for Triple Negative Breast Cancer Therapy. Mol Cancer Ther. 17:2586–2597.
  • Sail V, Rizzo AA, Chatterjee N, Dash RC, Ozen Z, Walker GC, Korzhnev DM, Hadden MK. 2017. Identification of small molecule translesion synthesis inhibitors that target the rev1-CT/RIR protein-protein interaction. ACS Chem Biol. 12(7):1903–1912.
  • Sakiyama T, Kohno T, Mimaki S, Ohta T, Yanagitani N, Sobue T, Kunitoh H, Saito R, Shimizu K, Hirama C, et al. 2005. Association of amino acid substitution polymorphisms in DNA repair genes TP53, POLI, REV1 and LIG4 with lung cancer risk. Int J Cancer. 114(5):730–737.
  • Sale JE, Lehmann AR, Woodgate R. 2012. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol. 13(3):141–152.
  • Sanders MA, Brahemi G, Nangia-Makker P, Balan V, Morelli M, Kothayer H, Westwell AD, Shekhar MPV. 2013. Novel inhibitors of rad6 ubiquitin conjugating enzyme: design, synthesis, identification, and functional characterization. Mol Cancer Ther. 12(4):373–383.
  • Sanders MA, Haynes B, Nangia-Makker P, Polin LA, Shekhar MP. 2017. Pharmacological targeting of RAD6 enzyme-mediated translesion synthesis overcomes resistance to platinum-based drugs. J Biol Chem. 292(25):10347–10363.
  • Sandhu S, Wu X, Nabi Z, Rastegar M, Kung S, Mai S, Ding H. 2012. Loss of HLTF function promotes intestinal carcinogenesis. Mol Cancer. 11:1–16.
  • Sarkies P, Reams C, Simpson LJ, Sale JE. 2010. Epigenetic instability due to defective replication of structured DNA. Mol Cell. 40(5):703–713.
  • Sarkies P, Murat P, Phillips LG, Patel KJ, Balasubramanian S, Sale JE. 2012. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res. 40(4):1485–1498.
  • Sasatani M, Xi Y, Kajimura J, Kawamura T, Piao J, Masuda Y, Honda H, Kubo K, Mikamoto T, Watanabe H. 2017. Overexpression of Rev1 promotes the development of carcinogen-induced intestinal adenomas via accumulation of point mutation and suppression of apoptosis proportionally to the Rev1 expression level. Carcinogenesis. 38(5):570–578.
  • Saugar I, Parker JL, Zhao S, Ulrich HD. 2012. The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA. Nucleic Acids Res. 40(1):245–257.
  • Savio M, Coppa T, Cazzalini O, Perucca P, Necchi D, Nardo T, Stivala LA, Prosperi E. 2009. Degradation of p21CDKN1A after DNA damage is independent of type of lesion, and is not required for DNA repair. DNA Repair (Amst). 8(7):778–785.
  • Schiavone D, Guilbaud G, Murat P, Papadopoulou C, Sarkies P, Prioleau MN, Balasubramanian S, Sale JE. 2014. Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells. EMBO J. 33(21):2507–2520.
  • Schürer KA, Rudolph C, Ulrich HD, Kramer W. 2004. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair. Genetics. 166:1673–1686.
  • Sekimoto T, Oda T, Kurashima K, Hanaoka F, Yamashita T. 2015. Both high-fidelity replicative and low-fidelity Y-family polymerases are involved in DNA rereplication. Mol Cell Biol. 35(4):699–715.
  • Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, Schildkraut CL, de Lange T. 2009. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell. 138(1):90–103.
  • Shcherbakova PV, Noskov VN, Pshenichnov MR, Pavlov YI. 1996. Base analog 6-N-hydroxylaminopurine mutagenesis in the yeast Saccharomyccs cerevisiae is controlled by replicative DNA polymerases. Mutat Res. 369(1–2):33–44.
  • Shekhar MP, Lyakhovich, AS, Visscher DW, Heng H, Kondrat N. 2002. Rad6 overexpression induces multinucleation. Centrosome amplification, abnormal mitosis, aneuploidy, and transformation. Cancer Res. 62:2115–2124.
  • Shin S, Hyun K, Kim J, Hohng S. 2018. ATP binding to rad5 initiates replication fork reversal by inducing the unwinding of the leading arm and the formation of the Holliday junction. Cell Rep. 23(6):1831–1839.
  • Shishkin AA, Voineagu I, Matera R, Cherng N, Chernet BT, Krasilnikova MM, Narayanan V, Lobachev KS, Mirkin SM. 2009. Large-scale expansions of friedreich’s ataxia GAA repeats in yeast. Mol Cell. 35(1):82–92.
  • Silvestrov P, Maier SJ, Fang M, Cisneros GA. 2018. DNArCdb: a database of cancer biomarkers in DNA repair genes that includes variants related to multiple cancer phenotypes. DNA Repair (Amst). 70:10–17.
  • Simpson AJG, Caballero OL, Jungbluth A, Chen YT, Old LJ. 2005. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 5(8):615–625.
  • Simpson LJ, Ross A, Szuts D, Alviani CA, Oestergaard VH, Patel KJ, Sale JE. 2006. RAD18-independent ubiquitination of proliferating-cell nuclear antigen in the avian cell line DT40. EMBO Rep. 7(9):927–932.
  • Smith S, Hwang JY, Banerjee S, Majeed A, Gupta A, Myung K. 2004. Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 101(24):9039–9044.
  • Sogo JM, Lopes M, Foiani M. 2002. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science. 297(5581):599–602.
  • Somasagara RR, Spencer SM, Tripathi K, Clark DW, Mani C, Silva LM, Da Scalici J, Kothayer H, Westwell AD, Rocconi RP. 2017. RAD6 promotes DNA repair and stem cell signaling in ovarian cancer and is a promising therapeutic target to prevent and treat acquired chemoresistance. Oncogene. 36(48):6680–6690.
  • Sonoda E, Okada T, Zhao GY, Tateishi S, Araki K, Yamaizumi M, Yagi T, Verkaik NS, Gent DC, Van T, M, et al. 2003. Multiple roles of Rev3, the catalytic subunit of pol zeta in maintaining genome stability in vertebrates. EMBO J. 22(12):3188–3197.
  • Sood R, Makalowska I, Galdzicki M, Hu P, Eddings E, Robbins CM, Moses T, Namkoong J, Chen S, Trent JM. 2003. Cloning and characterization of a novel gene, SHPRH, encoding a conserved putative protein with SNF2/helicase and PHD-finger domains from the 6q24 region. Genomics. 82(2):153–161.
  • Srivastava AK, Han C, Zhao R, Cui T, Dai Y, Mao C, Zhao W, Zhang X, Yu J, Wang QE. 2015. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells. Proc Natl Acad Sci USA. 112(14):4411–4416.
  • Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, Sunyaev SR. 2009. Human mutation rate associated with DNA replication timing. Nat Genet. 41(4):393–395.
  • Stepchenkova EI, Tarakhovskaya ER, Siebler HM, Pavlov YI. 2017. Defect of Fe-S cluster binding by DNA polymerase δ in yeast suppresses UV-induced mutagenesis, but enhances DNA polymerase ζ – dependent spontaneous mutagenesis. DNA Repair (Amst). 49:60–69.
  • Strickson S, Campbell DG, Emmerich CH, Knebel A, Plater L, Ritorto MS, Shpiro N, Cohen P. 2013. The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem J. 451(3):427–437.
  • Su WP, Hsu SH, Wu CK, Chang SB, Lin YJ, Yang WB, Hung JJ, Chiu WT, Tzeng SF, Tseng YL, et al. 2014. Chronic treatment with cisplatin induces replication-dependent sister chromatid recombination to confer cisplatin-resistant phenotype in nasopharyngeal carcinoma. Oncotarget. 5(15):6323–6337.
  • Sun H, Zou S, Zhang S, Liu B, Meng X, Li X, Yu J, Wu J, Zhou J. 2015. Elevated DNA polymerase iota (Poli) is involved in the acquisition of aggressive phenotypes of human esophageal squamous cell cancer. Int J Clin Exp Pathol. 8:3591–3601.
  • Takaoka K, Kawazu M, Koya J, Yoshimi A, Masamoto Y, Maki H, Toya T, Kobayashi T, Nannya Y, Arai S, et al. 2019. A germline HLTF mutation in familial MDS induces DNA damage accumulation through impaired PCNA polyubiquitination. Leukemia. 33(7):1773.
  • Tateishi S, Sakuraba Y, Masuyama S, Inoue H, Yamaizumi M. 2000. Dysfunction of human Rad18 results in defective postreplication repair and hypersensitivity to multiple mutagens. Proc Natl Acad Sci USA. 97(14):7927–7932.
  • Tateishi S, Niwa H, Miyazaki JI, Fujimoto S, Inoue H, Yamaizumi M. 2003. Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells. Mol Cell Biol. 23(2):474–481.
  • Ting L, Jun H, Junjie C. 2010. RAD18 lives a double life: its implication in DNA double-strand break repair. DNA Repair (Amst). 9(12):1241–1248.
  • Tonzi P, Yin Y, Lee CWT, Rothenberg E, Huang TT. 2018. Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery. Elife. 7:1–28.
  • Tsuji Y, Watanabe K, Araki K, Shinohara M, Yamagata Y, Tsurimoto T, Hanaoka F, Yamamura, K, Yamaizumi, M, Tateishi, S. (2008). Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes to Cells 13:343–354.
  • Tubbs A, Sridharan S, van Wietmarschen N, Maman Y, Callen E, Stanlie A, Wu W, Wu X, Day A, Wong N, et al. 2018. Dual roles of poly(dA:dT) tracts in replication initiation and fork collapse. Cell. 174(5):1127–1142.
  • Ubhi T, Brown GW. 2019. Exploiting DNA replication stress for cancer treatment. Cancer Res. 79(8):1730.
  • Ulrich HD. 2003. Protein-protein interactions within an E2-RING finger complex: implications for ubiquitin-dependent DNA damage repair. J Biol Chem. 278(9):7051–7058.
  • Ulrich HD, Jentsch S. 2000. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19(13):3388–3397.
  • Ummat A, Rechkoblit O, Jain R, Choudhury JR, Johnson RE, Silverstein TD, Buku A, Lone S, Prakash L, Prakash S, et al. 2012. Structural basis for cisplatin DNA damage tolerance by human polymerase η during cancer chemotherapy. Nat Struct Mol Biol. 19(6):628–632.
  • Unk I, Hajdu I, Fatyol K, Szakal B, Blastyák A, Bermudez V, Hurwitz J, Prakash L, Prakash S, Haracska L. 2006. Human SHPRH is a ubiquitin ligase for Mms2–Ubc13-dependent polyubiquitylation of proliferating cell nuclear antigen. Proc Natl Acad Sci. 103(48):18107–18112.
  • Unk I, Hajdu I, Fatyol K, Hurwitz J, Yoon J, Prakash L, Prakash S, Haracska L. 2008. Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc Natl Acad Sci. 105(10):3768–3773.
  • Unk I, Hajdú I, Blastyák A, Haracska L. 2010. Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair (Amst). 9(3):257–267.
  • Vaisman A, Woodgate R. 2017. Translesion DNA polymerases in eukaryotes: what makes them tick? Crit Rev Biochem Mol Biol. 52(3):274–303.
  • Vaisman A, Masutani C, Hanaoka F, Chaney SG. 2000. Efficient translesion replication past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta. Biochemistry. 39(16):4575–4580.
  • Vanarotti M, Grace CR, Miller DJ, Actis ML, Inoue A, Evison BJ, Vaithiyalingam S, Singh AP, McDonald ET, Fujii N. 2018. Structures of REV1 UBM2 domain complex with ubiquitin and with a small-molecule that inhibits the REV1 UBM2–ubiquitin interaction. J Mol Biol. 430(17):2857–2872.
  • Vanarotti M, Evison BJ, Actis ML, Inoue A, McDonald ET, Shao Y, Heath RJ, Fujii N. 2018. Small-molecules that bind to the ubiquitin-binding motif of REV1 inhibit REV1 interaction with K164-monoubiquitinated PCNA and suppress DNA damage tolerance. Bioorganic Med Chem. 26(9):2345–2353.
  • Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MIR, Ding H, Boulton SJ. 2012. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell. 149(4):795–806.
  • Villafañez F, García IA, Carbajosa S, Pansa MF, Mansilla S, Llorens MC, Angiolini V, Guantay L, Jacobs H, Madauss KP, et al. 2019. AKT inhibition impairs PCNA ubiquitylation and triggers synthetic lethality in homologous recombination-deficient cells submitted to replication stress. Oncogene. 38(22):4310.
  • Vujanovic M, Krietsch J, Raso MC, Terraneo N, Zellweger R, Schmid JA, Taglialatela A, Huang JW, Holland CL, Zwicky K, et al. 2017. Replication fork slowing and reversal upon DNA damage require PCNA polyubiquitination and ZRANB3 DNA translocase activity. Mol Cell. 67(5):882–890.
  • Waga S, Stillman B. 1998. The DNA replication fork in eukaryotic cells. Annu Rev Biochem. 67:721–751.
  • Walsh E, Wang X, Lee MY, Eckert KA. 2013. Mechanism of replicative DNA polymerase delta pausing and a potential role for DNA polymerase kappa in common fragile site replication. J Mol Biol. 425(2):232–243.
  • Wang H, Zhang SY, Wang S, Lu J, Wu W, Weng L, Chen D, Zhang Y, Lu Z, Yang J, et al. 2009. REV3L confers chemoresistance to cisplatin in human gliomas: the potential of its RNAi for synergistic therapy. Neuro Oncol. 11(6):790–802.
  • Wang M, Devereux TR, Vikis HG, McCulloch SD, Holliday W, Anna C, Wang Y, Bebenek K, Kunkel TA, Guan K, et al. 2004. Pol ι is a candidate for the mouse pulmonary adenoma resistance 2 locus, a major modifier of chemically induced lung neoplasia. Cancer Res. 64(6):1924–1931.
  • Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM. 2015. Identification and characterization of essential genes in the human genome. Science. 350(6264):1096–1101.
  • Wang W, Sheng W, Yu C, Cao J, Zhou J, Wu J, Zhang H, Zhang S. 2015. REV3L modulates cisplatin sensitivity of non-small cell lung cancer H1299 cells. Oncol Rep. 34(3):1460–1468.
  • Waters LS, Walker GC. 2006. The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G2/M phase rather than S phase. Proc Natl Acad Sci. 103(24):8971–8976.
  • Watkins JF, Sung P, Prakash S, Prakash L. 1993. The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation. Genes Dev. 7(2):250–261.
  • Wheate NJ, Walker S, Craig GE, Oun R. 2010. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39(35):8113–8127.
  • Wittschieben JP, Reshmi SC, Gollin SM, Wood RD. 2006. Loss of DNA polymerase ζ causes chromosomal instability in mammalian cells. Cancer Res. 66(1):134–142.
  • Wittschieben JP, Patil V, Glushets V, Robinson LJ, Kusewitt DF, Wood RD. 2010. Loss of DNA polymerase ζ enhances spontaneous tumorigenesis. Cancer Res. 70:2770–2779.
  • Wu F, Lin X, Okuda T, Howell SB. 2004. DNA polymerase ζ regulates cisplatin cytotoxicity, mutagenicity, and the rate of development of cisplatin resistance. Cancer Res. 64(21):8029–8035.
  • Xie K, Doles J, Hemann MT, Walker GC. 2010. Error-prone translesion synthesis mediates acquired chemoresistance. Proc Natl Acad Sci. 107(48):20792–20797.
  • Xu X, Lin A, Zhou C, Blackwell SR, Zhang Y, Wang Z, Feng Q, Guan R, Hanna MD, Chen Z, et al. 2016. Involvement of budding yeast Rad5 in translesion DNA synthesis through physical interaction with Rev1. Nucleic Acids Res. 44(11):5231–5245.
  • Yamanaka K, Dorjsuren D, Eoff RL, Egli M, Maloney DJ, Jadhav A, Simeonov A, Lloyd RS. 2012. A comprehensive strategy to discover inhibitors of the translesion synthesis DNA polymerase κ. PLoS One. 7(10):e45032–8.
  • Yang W, Gao Y. 2018. Translesion and repair DNA polymerases: diverse structure and mechanism. Annu Rev Biochem. 87:239–261.
  • Yang J, Chen Z, Liu Y, Hickey RJ, Malkas LH. 2004. Altered DNA polymerase ι expression in breast cancer cells leads to a reduction in DNA replication fidelity and a higher rate of mutagenesis. Cancer Res. 64(16):5597–5607.
  • Yang L, Shi T, Liu F, Ren C, Wang Z, Li Y, Tu X, Yang G, Cheng X. 2015. REV3L, a promising target in regulating the chemosensitivity of cervical cancer cells. PLoS One. 10:1–18.
  • Yang Y, Gao Y, Mutter-Rottmayer L, Zlatanou A, Durando M, Ding W, Wyatt D, Ramsden D, Tanoue Y, Tateishi S, et al. 2017. DNA repair factor RAD18 and DNA polymerase Polκ confer tolerance of oncogenic DNA replication stress. J Cell Biol. 216(10):3097–3115.
  • Yang Y, Gao Y, Zlatanou A, Tateishi S, Yurchenko V, Rogozin IB, Vaziri C. 2018. Diverse roles of RAD18 and Y-family DNA polymerases in tumorigenesis. Cell Cycle. 17(7):833–843.
  • Yao NY, O’Donnell ME. 2016. Evolution of replication machines. Crit Rev Biochem Mol Biol. 51(3):135–149.
  • Yoon JH, McArthur MJ, Park J, Basu D, Wakamiya M, Prakash L, Prakash S. 2019. Error-prone replication through UV lesions by DNA polymerase θ protects against skin cancers. Cell. 176:1295–1309.e15.
  • Yoshimura A, Seki M, Kanamori M, Tateishi S, Tsurimoto T, Tada S, Enomoto T. 2009. Physical and functional interaction between WRNIP1 and RAD18. Genes Genet Syst. 84(2):171–178.
  • Youds JL, O’Neil NJ, Rose AM. 2006. Homologous recombination is required for genome stability in the absence of DOG-1 in Caenorhabditis elegans. Genetics. 173(2):697–708.
  • Yuan F, Xu Z, Yang M, Wei Q, Zhang Y, Yu J, Zhi Y, Liu Y, Chen Z, Yang J. 2013. Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer. PLoS One. 8:1–12.
  • Zafar MK, Maddukuri L, Ketkar A, Penthala NR, Reed MR, Eddy S, Crooks PA, Eoff RL. 2018. A Small-molecule inhibitor of human DNA polymerase η potentiates the effects of cisplatin in tumor cells. Biochemistry. 57(7):1262–1273.
  • Zeman MK, Cimprich KA. 2014. Causes and consequences of replication stress. Nat Cell Biol. 16(1):2–9.
  • Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al. 2018. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 37(13):1805–1814.
  • Zhao Y, Biertumpfel C, Gregory MT, Hua YJ, Hanaoka F, Yang W. 2012. Structural basis of human DNA polymerase eta-mediated chemoresistance to cisplatin. Proc Natl Acad Sci. 109(19):7269–7274.
  • Zheng XF, Prakash R, Saro D, Longerich S, Niu H, Sung P. 2011. Processing of DNA structures via DNA unwinding and branch migration by the S. cerevisiae Mph1 protein. DNA Repair (Amst). 10(10):1034–1043.
  • Zhou J, Zhang S, Xie L, Liu P, Xie F, Wu J, Cao J, Ding WQ. 2012. Overexpression of DNA polymerase iota (Polι) in esophageal squamous cell carcinoma. Cancer Sci. 103(8):1574–1579.
  • Zhou W, Chen YW, Liu X, Chu P, Loria S, Wang Y, Yen Y, Chou KM. 2013. Expression of DNA translesion synthesis polymerase η in head and neck squamous cell cancer predicts resistance to gemcitabine and cisplatin-based chemotherapy. PLoS One. 8(12):e83978–10.
  • Ziv O, Zeisel A, Mirlas-Neisberg N, Swain U, Nevo R, Ben-Chetrit N, Martelli MP, Rossi R, Schiesser S, Canman CE. 2014. Identification of novel DNA-damage tolerance genes reveals regulation of translesion DNA synthesis by nucleophosmin. Nat Commun. 5:1–13.
  • Zou S, Shang ZF, Liu B, Zhang S, Wu J, Huang M, Ding WQ, Zhou J. 2016. DNA polymerase iota promotes invasion and metastasis of esophageal squamous cell carcinoma. Oncotarget. 7(22):32274–32285.
  • Zou S, Yang J, Guo J, Su Y, He C, Wu J, Yu L, Ding WQ, Zhou J. 2018. RAD18 promotes the migration and invasion of esophageal squamous cell cancer via the JNK-MMPs pathway. Cancer Lett. 417:65–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.