2,091
Views
62
CrossRef citations to date
0
Altmetric
Review Articles

Current insights into the mechanism of mammalian immunoglobulin class switch recombination

&
Pages 333-351 | Received 17 Jun 2019, Accepted 20 Aug 2019, Published online: 11 Sep 2019

References

  • Al Ismail A, Husain A, Kobayashi M, Honjo T, Begum NA. 2017. Depletion of recombination-specific cofactors by the C-terminal mutant of the activation-induced cytidine deaminase causes the dominant negative effect on class switch recombination. Int Immunol. 29 (11):525–537.
  • Balk B, Maicher A, Dees M, Klermund J, Luke-Glaser S, Bender K, Luke B. 2013. Telomeric RNA–DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol. 20(10):1199–1205.
  • Balter BB, Ciccone DN, Oettinger MA, Selsing E. 2012. Mice lacking Smu tandem repeats maintain RNA polymerase patterns but exhibit histone modification pattern shifts linked to class switch site locations. Mol Immunol. 52(1):1–8.
  • Barreto V, Reina-San-Martin B, Ramiro AR, McBride KM, Nussenzweig MC. 2003. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol Cell. 12(2):501–508.
  • Basu U, Meng FL, Keim C, Grinstein V, Pefanis E, Eccleston J, Zhang T, Myers D, Wasserman CR, Wesemann DR. 2011. The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell. 144(3):353–363.
  • Biffi G, Di Antonio M, Tannahill D, Balasubramanian S. 2014. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat Chem. 6(1):75–80.
  • Biffi G, Tannahill D, McCafferty J, Balasubramanian S. 2013. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem. 5(3):182–186.
  • Bjorkman A, Du L, Felgentreff K, Rosner C, Pankaj Kamdar R, Kokaraki G, Matsumoto Y, Davies EG, van der Burg M, Notarangelo LD. 2015. DNA-PKcs is involved in Ig class switch recombination in human B cells. J Immunol. 195:5608–5615.
  • Bosma GC, Kim J, Urich T, Fath DM, Cotticelli MG, Ruetsch NR, Radic MZ, Bosma MJ. 2002. DNA-dependent protein kinase activity is not required for immunoglobulin class switching. J Exp Med. 196(11):1483–1495.
  • Bottaro A, Lansford R, Xu L, Zhang J, Rothman P, Alt FW. 1994. S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J. 13(3):665–674.
  • Bransteitter R, Pham P, Calabrese P, Goodman MF. 2004. Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. J Biol Chem. 279(49):51612–51621.
  • Bransteitter R, Pham P, Scharff MD, Goodman MF. 2003. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA. 100(7):4102–4107.
  • Canugovi C, Samaranayake M, Bhagwat AS. 2009. Transcriptional pausing and stalling causes multiple clustered mutations by human activation-induced deaminase. FASEB J. 23(1):34–44.
  • Carrasco-Salas Y, Malapert A, Sulthana S, Molcrette B, Chazot-Franguiadakis L, Bernard P, Chedin F, Faivre-Moskalenko C, Vanoosthuyse V. 2019. The extruded non-template strand determines the architecture of R-loops. Nucleic Acids Res. 47(13):6783–6795.
  • Casellas R, Basu U, Yewdell WT, Chaudhuri J, Robbiani DF, Di Noia JM. 2016. Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat Rev Immunol. 16(3):164–176.
  • Cerritelli SM, Crouch RJ. 2009. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276(6):1494–1505.
  • Chaudhuri J, Alt FW. 2004. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol. 4(7):541–552.
  • Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, et al. 2007. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol. 94:157–214.
  • Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW. 2003. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature. 422(6933):726–730.
  • Daniels GA, Lieber MR. 1995a. RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res. 23(24):5006–5011.
  • Daniels GA, Lieber MR. 1995b. Strand-specificity in the transcriptional targeting of recombination at immunoglobulin class switch sequences. Proc Natl Acad Sci USA. 92(12):5625–5629.
  • Davis M, Kim SK, Hood LE. 1980. DNA sequences mediating class switching in alpha-immunoglobulins. Science. 209(4463):1360–1365.
  • Dickerson SK, Market E, Besmer E, Papavasiliou FN. 2003. AID mediates hypermutation by deaminating single stranded DNA. J Exp Med. 197(10):1291–1296.
  • Di Noia J, Neuberger MS. 2002. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature. 419:43–48.
  • Di Noia JM, Neuberger MS. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem. 76:1–22.
  • Drolet M, Broccoli S, Rallu F, Hraiky C, Fortin C, Masse E, Baaklini I. 2003. The problem of hypernegative supercoiling and R-loop formation in transcription. Front Biosci. 8(4):d210–d221.
  • Dunnick WA, Collins JT, Shi J, Westfield G, Fontaine C, Hakimpour P, Papavasiliou FN. 2009. Switch recombination and somatic hypermutation are controlled by the heavy chain 3′ enhancer region. J Exp Med. 206(12):2613–2623.
  • Dunnick WA, Hertz GZ, Scappino L, Gritzmacher C. 1993. DNA sequence at immunoglobulin switch region recombination sites. Nucleic Acids Res. 21(3):365–372.
  • Dunnick WA, Shi J, Graves KA, Collins JT. 2005. The 3′ end of the heavy chain constant region locus enhances germline transcription and switch recombination of the four gamma genes. J Exp Med. 201(9):1459–1466.
  • Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N. 2004. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 18(13):1618–1629.
  • Duquette ML, Pham P, Goodman MF, Maizels N. 2005. AID binds to transcription-induced structures in c-MYC that map to regions associated with translocation and hypermutation. Oncogene. 24(38):5791–5798.
  • El Hage A, French SL, Beyer AL, Tollervey D. 2010. Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24(14):1546–1558.
  • Faili A, Aoufouchi S, Gueranger Q, Zober C, Leon A, Bertocci B, Weill JC, Reynaud CA. 2002. AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line. Nat Immunol. 3(9):815–821.
  • Geisberger R, Rada C, Neuberger MS. 2009. The stability of AID and its function in class-switching are critically sensitive to the identity of its nuclear-export sequence. Proc Natl Acad Sci USA. 106(16):6736–6741.
  • Ginno PA, Lim YW, Lott PL, Korf I, Chedin F. 2013. GC skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res. 23(10):1590–1600.
  • Ginno PA, Lott PL, Christensen HC, Korf I, Chedin F. 2012. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell. 45(6):814–825.
  • Goodman MF, Scharff MD, Romesberg FE. 2007. AID-initiated purposeful mutations in immunoglobulin genes. Adv Immunol. 94:127–155.
  • Goossens T, Klein U, Kuppers R. 1998. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci USA. 95(5):2463–2468.
  • Gostissa M, Schwer B, Chang A, Dong J, Meyers RM, Marecki GT, Choi VW, Chiarle R, Zarrin AA, Alt FW. 2014. IgH class switching exploits a general property of two DNA breaks to be joined in cis over long chromosomal distances. Proc Natl Acad Sci USA. 111(7):2644–2649.
  • Grunseich C, Wang IX, Watts JA, Burdick JT, Guber RD, Zhu Z, Bruzel A, Lanman T, Chen K, Schindler AB, et al. 2018. Senataxin mutation reveals how R-loops promote transcription by blocking DNA methylation at gene promoters. Mol Cell. 69(3):426–437.
  • Guglielmi L, Le Bert M, Truffinet V, Cogne M, Denizot Y. 2003. Insulators to improve expression of a 3(′)IgH LCR-driven reporter gene in transgenic mouse models. Biochem Biophys Res Commun. 307(3):466–471.
  • Hackney JA, Misaghi S, Senger K, Garris C, Sun Y, Lorenzo MN, Zarrin AA. 2009. DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv Immunol. 101:163–189.
  • Han L, Masani S, Yu K. 2011. Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination. Proc Natl Acad Sci USA. 108(28):11584–11589.
  • Han L, Yu K. 2008. Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells. J Exp Med. 205(12):2745–2753.
  • Harris RS, Sale JE, Petersen-Mahrt SK, Neuberger MS. 2002. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr Biol. 12(5):435–438.
  • Hu Z, Zhang A, Storz G, Gottesman S, Leppla SH. 2006. An antibody-based microarray assay for small RNA detection. Nucleic Acids Res. 34(7):e52.
  • Huang F-T, Yu K, Balter BB, Selsing E, Oruc Z, Khamlichi AA, Hsieh C-L, Lieber MR. 2007. Sequence-dependence of chromosomal R-loops at the immunoglobulin heavy chain Smu class switch region. Mol Cell Biol. 27(16):5921–5932.
  • Huang F-T, Yu K, Hsieh C-L, Lieber MR. 2006. Downstream boundary of chromosomal R-loops at murine switch regions: implications for the mechanism of class switch recombination. Proc Natl Acad Sci USA. 103(13):5030–5035.
  • Hwang JK, Alt FW, Yeap LS. 2015. Related mechanisms of antibody somatic hypermutation and class switch recombination. Microbiol Spectr. 3.
  • Imai K, Zhu Y, Revy P, Morio T, Mizutani S, Fischer A, Nonoyama S, Durandy A. 2005. Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin Immunol. 115(3):277–285.
  • Jansen JG, Langerak P, Tsaalbi-Shtylik A, van den Berk P, Jacobs H, de Wind N. 2006. Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice. J Exp Med. 203(2):319–323.
  • Jinks-Robertson S, Bhagwat AS. 2014. Transcription-associated mutagenesis. Annu Rev Genet. 48(1):341–359.
  • Jung S, Rajewsky K, Radbruch A. 1993. Shutdown of class switch recombination by deletion of a switch region control element. Science. 259(5097):984–987.
  • Kadungure T, Ucher AJ, Linehan EK, Schrader CE, Stavnezer J. 2015. Individual substitution mutations in the AID C terminus that ablate IgH class switch recombination. PLoS One. 10(8):e0134397.
  • Kim A, Han L, Santiago GE, Verdun RE, Yu K. 2016. Class-switch recombination in the absence of the IgH 3′ regulatory region. J Immunol. 197(7):2930–2935.
  • King JJ, Manuel CA, Barrett CV, Raber S, Lucas H, Sutter P, Larijani M. 2015. Catalytic pocket inaccessibility of activation-induced cytidine deaminase is a safeguard against excessive mutagenic activity. Structure. 23(4):615–627.
  • Kinoshita K, Tashiro J, Tomita S, Lee CG, Honjo T. 1998. Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions. Immunity. 9(6):849–858.
  • Konig F, Schubert T, Langst G. 2017. The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences. PLoS One. 12:e0178875.
  • Kuppers R. 2005. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 5:251–262.
  • Larijani M, Martin A. 2007. Single-stranded DNA structure and positional context of the target cytidine determine the enzymatic efficiency of AID. Mol Cell Biol. 27(23):8038–8048.
  • Lebecque SG, Gearhart P. 1990. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is about 1 kb from V(D)J gene. J Exp Med. 172(6):1717–1727.
  • Lepse CL, Kumar R, Ganea D. 1994. Extrachromosomal eukaryotic DNA substrates for switch recombination: analysis of isotype and cell specificity. DNA Cell Biol. 13(12):1151–1161.
  • Leung H, Maizels N. 1992. Transcriptional regulatory elements stimulate recombination in extrachromosomal substrates carrying immunoglobulin switch-region sequences. Proc Natl Acad Sci USA. 89(9):4154–4158.
  • Leung H, Maizels N. 1994. Regulation and targeting of recombination in extrachromosomal substrates carrying immunoglobulin switch region sequences. Mol Cell Biol. 14(2):1450–1458.
  • Li J, Daniels GA, Lieber MR. 1996. Asymmetric mutation around the recombination break point of immunoglobulin class switch sequences on extrachromosomal substrates. Nucleic Acids Res. 24(11):2104–2111.
  • Lieber MR. 2016. Mechanisms of human lymphoid chromosomal translocations. Nat Rev Cancer. 16(6):387–398.
  • Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH, Schatz DG. 2008. Two levels of protection for the B cell genome during somatic hypermutation. Nature. 451(7180):841–845.
  • Lu Z, Tsai AG, Akasaka T, Ohno H, Jiang Y, Melnick AM, Greisman HA, Lieber MR. 2013. BCL6 breaks occur at different AID sequence motifs in Ig-BCL6 and non-Ig-BCL6 rearrangements. Blood. 121(22):4551–4554.
  • Lundqvist ML, Middleton DL, Hazard S, Warr GW. 2001. The immunoglobulin heavy chain locus of the duck. Genomic organization and expression of D, J, and C region genes. J Biol Chem. 276(50):46729–46736.
  • Lutzker S, Alt F. 1988. Structure and expression of germ line immunoglobulin gamma 2b transcripts. Mol Cell Biol. 8(4):1849–1852.
  • Manis JP, Dudley D, Kaylor L, Alt FW. 2002. IgH class switch recombination to IgG1 in DNA-PKcs-deficient B cells. Immunity. 16(4):607–617.
  • Masani S, Han L, Meek K, Yu K. 2016. Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination. Proc Natl Acad Sci USA. 113(5):1261–1266.
  • Masani S, Han L, Yu K. 2013. Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Mol Cell Biol. 33(7):1468–1473.
  • Masse E, Phoenix P, Drolet M. 1997. DNA topoisomerases regulate R-loop formation during transcription of the rrnB operon in E. coli. J Biol Chem. 272:12816–12823.
  • Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. 2014. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol. 122:1–57.
  • Maul RW, Chon H, Sakhuja K, Cerritelli SM, Gugliotti LA, Gearhart PJ, Crouch RJ. 2017. R-loop depletion by over-expressed RNase H1 in mouse B cells increases activation-induced deaminase access to the transcribed strand without altering frequency of isotype switching. J Mol Biol. 429(21):3255–3263.
  • Methot SP, Litzler LC, Subramani PG, Eranki AK, Fifield H, Patenaude A-M, Gilmore JC, Santiago GE, Bagci H, Côté J-F, et al. 2018. A licensing step links AID to transcription elongation for mutagenesis in B cells. Nat Commun. 9(1):1248.
  • Methot SP, Di Noia JM. 2017. Molecular mechanisms of somatic hypermutation and class switch recombination. Adv Immunol. 133:37–87.
  • Min IM, Rothlein LR, Schrader CE, Stavnezer J, Selsing E. 2005. Shifts in targeting of class switch recombination sites in mice that lack mu switch region tandem repeats or Msh2. J Exp Med. 201(12):1885–1890.
  • Mischo HE, Gomez-Gonzalez B, Grzechnik P, Rondon AG, Wei W, Steinmetz L, Aguilera A, Proudfoot NJ. 2011. Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell. 41(1):21–32.
  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. 2000. Class switch recombination and somatic hypermutation require activation-induced cytidine deaminase (AID), a member of the RNA editing cytidine deaminase family. Cell. 102(5):553–544.
  • Muramatsu M, Sankaranand V, Anant S, Sugai M, Kinoshita K, Davidson N, Honjo T. 1999. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 274(26):18470–18476.
  • Mußmann R, Courtet M, Schwager J, Du Pasquier L. 1997. Microsites for immunoglobulin switch recombination breakpoints from Xenopus to mammals. Eur J Immunol. 27(10):2610–2619.
  • Nakama M, Kawakami K, Kajitani T, Urano T, Murakami Y. 2012. DNA–RNA hybrid formation mediates RNAi-directed heterochromatin formation. Genes Cells. 17:218–233.
  • Okazaki IM, Kinoshita K, Muramatsu M, Yoshikawa K, Honjo T. 2002. The AID enzyme induces class switch recombination in fibroblasts. Nature. 416(6878):340–345.
  • Ott DE, Alt FW, Marcu KB. 1987. Immunoglobulin heavy chain switch region recombination within a retroviral vector in murine pre-B cells. EMBO J. 6(3):577–584.
  • Ott DE, Marcu KB. 1989. Molecular requirements for immunoglobulin heavy chain constant region gene switch-recombination revealed with switch-substrate retroviruses. Int Immunol. 1(6):582–591.
  • Pan-Hammarstrom Q, Zhao Y, Hammarstrom L. 2007. Class switch recombination: a comparison between mouse and human. Adv Immunol. 93:1–61.
  • Pannunzio NR, Watanabe G, Lieber MR. 2018. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem. 293(27):10512–10523.
  • Pasqualucci L, Bhagat G, Jankovic M, Compagno M, Smith P, Muramatsu M, Honjo T, Morse HC, Nussenzweig MC, Dalla-Favera R. 2008. AID is required for germinal center-derived lymphomagenesis. Nat Genet. 40(1):108–112.
  • Pasqualucci L, Guglielmino R, Houldsworth J, Mohr J, Aoufouchi S, Polakiewicz R, Chaganti RS, Dalla-Favera R. 2004. Expression of the AID protein in normal and neoplastic B cells. Blood. 104(10):3318–3325.
  • Pefanis E, Wang J, Rothschild G, Lim J, Chao J, Rabadan R, Economides AN, Basu U. 2014. Noncoding RNA transcription targets AID to divergently transcribed loci in murine B cells. Nature. 514(7522):389–393.
  • Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, Federation A, Chao J, Elliott O, Liu Z-P, et al. 2015. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell. 161(4):774–789.
  • Petersen-Mahrt SK, Harris RS, Neuberger MS. 2002. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. 418(6893):99–103.
  • Pfeiffer V, Crittin J, Grolimund L, Lingner J. 2013. The THO complex component Thp2 counteracts telomeric R-loops and telomere shortening. EMBO J. 32(21):2861–2871.
  • Pham P, Afif SA, Shimoda M, Maeda K, Sakaguchi N, Pedersen LC, Goodman MF. 2017. Activation-induced deoxycytidine deaminase: structural basis for favoring WRC hot motif specificities unique among APOBEC family members. DNA Repair. 54:8–12.
  • Pham P, Bransteitter R, Petruska J, Goodman MF. 2003. Processive AID-catalyzed cytosine deamination on single-stranded DNA stimulates somatic hypermutation. Nature. 424(6944):103–107.
  • Phillips DD, Garboczi DN, Singh K, Hu Z, Leppla SH, Leysath CE. 2013. The sub-nanomolar binding of DNA–RNA hybrids by the single-chain Fv fragment of antibody S9.6. J Mol Recognit. 26(8):376–381.
  • Pinaud E, Marquet M, Fiancette R, Peron S, Vincent-Fabert C, Denizot Y, Cogne M. 2011. The IgH locus 3′ regulatory region: pulling the strings from behind. Adv Immunol. 110:27–70.
  • Qiao Q, Wang L, Meng FL, Hwang JK, Alt FW, Wu H. 2017. AID recognizes structured DNA for class switch recombination. Mol Cell. 67(3):361–373.
  • Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS. 2002. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol. 12(20):1748–1755.
  • Rajagopal D, Maul RW, Ghosh A, Chakraborty T, Khamlichi AA, Sen R, Gearhart PJ. 2009. Immunoglobulin switch mu sequence causes RNA polymerase II accumulation and reduces dA hypermutation. J Exp Med. 206(6):1237–1244.
  • Ramiro AR, Stavropoulos P, Jankovic M, Nussenzweig MC. 2003. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol. 4(5):452–456.
  • Reaban ME, Griffin JA. 1990. Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature. 348(6299):342–344.
  • Reaban ME, Lebowitz J, Griffin JA. 1994. Transcription induces the formation of a stable RNA.DNA hybrid in the immunoglobulin alpha switch region. J Biol Chem. 269(34):21850–21857.
  • Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Lagelouse R, Gennery A, et al. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the hyper-IgM syndrome (HIGM2). Cell. 102(5):565–575.
  • Ribeiro de Almeida C, Dhir S, Dhir A, Moghaddam AE, Sattentau Q, Meinhart A, Proudfoot NJ. 2018. RNA helicase DDX1 converts RNA G-quadruplex structures into R-loops to promote IgH class switch recombination. Mol Cell. 70(4):650–662, e658.
  • Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A, et al. 2008. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 135(6):1028–1038.
  • Roberts RW, Crothers DM. 1992. Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science. 258(5087):1463–1466.
  • Ronai D, Iglesias-Ussel MD, Fan M, Li Z, Martin A, Scharff MD. 2007. Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation. J Exp Med. 204(1):181–190.
  • Roy D, Lieber MR. 2009. G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Mol Cell Biol. 29(11):3124–3133.
  • Roy D, Yu K, Lieber MR. 2008. Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol Cell Biol. 28(1):50–60.
  • Roy D, Zhang Z, Lu Z, Hsieh CL, Lieber MR. 2010. Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Mol Cell Biol. 30(1):146–159.
  • Selsing E. 2006. Ig class switching: targeting the recombinational mechanism. Curr Opin Immunol. 18(3):249–254.
  • Setiaputra D, Durocher D. 2019. Shieldin – the protector of DNA ends. EMBO Rep. 20(5).
  • Shinkura R, Tian M, Smith M, Chua K, Fujiwara Y, Alt FW. 2003. The influence of transcriptional orientation on endogenous switch region function. Nat Immunol. 4(5):435–441.
  • Sinden RR. 1994. DNA structure and function. San Diego: Academic Press.
  • Skourti-Stathaki K, Kamieniarz-Gdula K, Proudfoot NJ. 2014. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature. 516(7531):436.
  • Skourti-Stathaki K, Proudfoot NJ, Gromak N. 2011. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell. 42(6):794–805.
  • Sohail A, Klapacz J, Samaranayake M, Ullah A, Bhagwat AS. 2003. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res. 31(12):2990–2994.
  • Stavnezer J, Amemiya CT. 2004. Evolution of isotype switching. Semin Immunol. 16(4):257–275.
  • Stavnezer J, Bradley SP, Rousseau N, Pearson T, Shanmugam A, Waite DJ, Rogers PR, Kenter AL. 1999. Switch recombination in a transfected plasmid occurs preferentially in a B cell line that undergoes switch recombination of its chromosomal Ig heavy chain genes. J Immunol. 163(4):2028–2040.
  • Stavnezer J, Guikema JE, Schrader CE. 2008. Mechanism and regulation of class switch recombination. Annu Rev Immunol. 26:261–292.
  • Stirling PC, Chan YA, Minaker SW, Aristizabal MJ, Barrett I, Sipahimalani P, Kobor MS, Hieter P. 2012. R-loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. Genes Dev. 26(2):163–175.
  • Storb U. 2014. Why does somatic hypermutation by AID require transcription of its target genes? Adv Immunol. 122:253–277.
  • Sun Q, Csorba T, Skourti-Stathaki K, Proudfoot NJ, Dean C. 2013. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science. 340(6132):619–621.
  • Ta V-T, Nagaoka H, Catalan N, Durandy A, Fischer A, Imai K, Nonoyama S, Tashiro J, Ikegawa M, Ito S, et al. 2003. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat Immunol. 4(9):843–848.
  • Tsai AG, Engelhart AE, Hatmal MM, Houston SI, Hud NV, Haworth IS, Lieber MR. 2009. Conformational variants of duplex DNA correlated with cytosine-rich chromosomal fragile sites. J Biol Chem. 284(11):7157–7164.
  • Ucher AJ, Ranjit S, Kadungure T, Linehan EK, Khair L, Xie E, Limauro J, Rauch KS, Schrader CE, Stavnezer J. 2014. Mismatch repair proteins and AID activity are required for the dominant negative function of C-terminally deleted AID in class switching. J Immunol. 193(3):1440–1450.
  • Vaidyanathan B, Yen WF, Pucella JN, Chaudhuri J. 2014. AIDing chromatin and transcription-coupled orchestration of immunoglobulin class-switch recombination. Front Immunol. 5:120.
  • Vanoosthuyse V. 2018. Strengths and weaknesses of the current strategies to map and characterize R-loops. ncRNA. 4(2):9.
  • Vincent-Fabert C, Fiancette R, Pinaud E, Truffinet V, Cogne N, Cogne M, Denizot Y. 2010. Genomic deletion of the whole IgH 3′ regulatory region (hs3a, hs1,2, hs3b, and hs4) dramatically affects class switch recombination and Ig secretion to all isotypes. Blood. 116(11):1895–1898.
  • Wahba L, Amon JD, Koshland D, Vuica-Ross M. 2011. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol Cell. 44(6):978–988.
  • Wang L, Wuerffel R, Feldman S, Khamlichi AA, Kenter AL. 2009. S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination. J Exp Med. 206(8):1817–1830.
  • Weill JC, Reynaud CA. 2008. DNA polymerases in adaptive immunity. Nat Rev Immunol. 8(4):302–312.
  • Wilson PC, de Bouteiller O, Liu YJ, Potter K, Banchereau J, Capra JD, Pascual V. 1998. Somatic hypermutation introduces insertions and deletions into immunoglobulin V genes. J Exp Med. 187(1):59–70.
  • Woodbine L, Gennery AR, Jeggo PA. 2014. The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair (Amst). 16:84–96.
  • Wuerffel R, Jamieson CE, Morgan L, Merkulov GV, Sen R, Kenter AL. 1992. Switch recombination breakpoints are strictly correlated with DNA recognition motifs for immunoglobulin Sg3 DNA-binding proteins. J Exp Med. 176(2):339–349.
  • Wuerffel R, Wang L, Grigera F, Manis J, Selsing E, Perlot T, Alt FW, Cogne M, Pinaud E, Kenter AL. 2007. S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity. 27(5):711–722.
  • Xu L, Gorham B, Li SC, Bottaro A, Alt FW, Rothman P. 1993. Replacement of germ-line e promoter by gene targeting alters control of immunoglobulin heavy chain class switching. Proc Natl Acad Sci USA. 90(8):3705–3709.
  • Yancopoulos GD, DePinho RA, Zimmerman KA, Lutzker SG, Rosenberg N, Alt FW. 1986. Secondary genomic rearrangement events in pre-B cells: VhDJh replacement by a LINE-1 sequence and directed class switching. EMBO J. 5(12):3259–3266.
  • Yang Y, McBride KM, Hensley S, Lu Y, Chedin F, Bedford MT. 2014. Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Mol Cell. 53(3):484–497.
  • Yeap L-S, Hwang JK, Du Z, Meyers RM, Meng F-L, Jakubauskaitė A, Liu M, Mani V, Neuberg D, Kepler TB, et al. 2015. Sequence-intrinsic mechanisms that target AID mutational outcomes on antibody genes. Cell. 163(5):1124–1137.
  • Yu K, Chedin F, Hsieh C-L, Wilson TE, Lieber MR. 2003. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol. 4(5):442–451.
  • Yu K, Huang FT, Lieber MR. 2004. DNA substrate length and surrounding sequence affect the activation induced deaminase activity at cytidine. J Biol Chem. 279(8):6496–6500.
  • Yu K, Lieber MR. 2003. Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. DNA Repair. 2(11):1163–1174.
  • Yu K, Roy D, Bayramyan M, Haworth IS, Lieber MR. 2005. Fine-structure analysis of activation-induced deaminase accessibility to class switch region R-loops. Mol Cell Biol. 25(5):1730–1736.
  • Yu K, Roy D, Huang FT, Lieber MR. 2006. Detection and structural analysis of R-loops. Meth Enzymol. 409:316–329.
  • Zahn A, Eranki AK, Patenaude A-M, Methot SP, Fifield H, Cortizas EM, Foster P, Imai K, Durandy A, Larijani M, et al. 2014. Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination. Proc Natl Acad Sci USA. 111(11):E988–E997.
  • Zanotti KJ, Gearhart PJ. 2016. Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair. 38:110–116.
  • Zarrin AA, Tian M, Wang J, Borjeson T, Alt FW. 2005. Influence of switch region length on immunoglobulin class switch recombination. Proc Natl Acad Sci USA. 102(7):2466–2470.
  • Zhang J, Alt FW, Honjo T. 1995. Regulation of class switch recombination of the immunoglobulin heavy chain genes. In: Honjo T, Alt FW, editors. Immunoglobulin genes. London: Academic Press Ltd.
  • Zhang ZZ, Pannunzio NR, Han L, Hsieh CL, Yu K, Lieber MR. 2014a. The strength of an Ig switch region is determined by its ability to drive R loop formation and its number of WGCW sites. Cell Rep. 8(2):557–569.
  • Zhang ZZ, Pannunzio NR, Hsieh C-L, Yu K, Lieber MR. 2015. Complexities due to single-stranded RNA during antibody detection of genomic RNA:DNA hybrids. BMC Res Notes. 8(1):127.
  • Zhang ZZ, Pannunzio NR, Hsieh CL, Yu K, Lieber MR. 2014b. The role of G-density in switch region repeats for immunoglobulin class switch recombination. Nucleic Acids Res. 42(21):13186–13193.
  • Zheng S, Vuong BQ, Vaidyanathan B, Lin JY, Huang FT, Chaudhuri J. 2015. Non-coding RNA generated following lariat debranching mediates targeting of AID to DNA. Cell. 161(4):762–773.
  • Zhu C, Lee V, Finn A, Senger K, Zarrin AA, Du Pasquier L, Hsu E. 2012. Origin of immunoglobulin isotype switching. Curr Biol. 22(10):872–880.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.