1,140
Views
20
CrossRef citations to date
0
Altmetric
Review Articles

Spatial control of AMPK signaling at subcellular compartments

ORCID Icon, & ORCID Icon
Pages 17-32 | Received 14 Nov 2019, Accepted 06 Feb 2020, Published online: 18 Feb 2020

References

  • Amodio G, Moltedo O, Faraonio R, Remondelli P. 2018. Targeting the endoplasmic reticulum unfolded protein response to counteract the oxidative stress-induced endothelial dysfunction. Oxid Med Cell Longevity. 2018:1–13.
  • Anderson K.A, Ribar T.J, Lin F, Noeldner P.K, Green M.F, Muehlbauer M.J, Witters L.A, Kemp B.E, Means A.R. 2008. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7(5):377–388.
  • Appelqvist H, Waster P, Kagedal K, Ollinger K. 2013. The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol. 5(4):214–226.
  • Baas A.F, Kuipers J, van der Wel N.N, Batlle E, Koerten H.K, Peters P.J, Clevers H.C. 2004. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell. 116(3):457–466.
  • Benham A.M. 2012. Protein secretion and the endoplasmic reticulum. Cold Spring Harbor Perspect Biol. 4(8):a012872–a012872.
  • Bottanelli F, Kilian N, Ernst A.M, Rivera-Molina F, Schroeder L.K, Kromann E.B, Lessard M.D, Erdmann R.S, Schepartz A, Baddeley D, et al. 2017. A novel physiological role for Arf1 in the formation of bidirectional tubules from the Golgi. MBoC. 28(12):1676–1687.
  • Bungard D, Fuerth B.J, Zeng P.Y, Faubert B, Maas N.L, Viollet B, Carling D, Thompson C.B, Jones R.G, Berger S.L. 2010. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science (New York, N.Y.). 329(5996):1201–1205.
  • Carroll B, Dunlop E.A. 2017. The lysosome: a crucial hub for AMPK and mTORC1 signalling. Biochem J. 474(9):1453–1466.
  • Chantranupong L, Wolfson R.L, Sabatini D.M. 2015. Nutrient-sensing mechanisms across evolution. Cell. 161(1):67–83.
  • Chauhan A.S, Liu X, Jing J, Lee H, Yadav R.K, Liu J, Zhou Y, Gan B. 2018. STIM2 interacts with AMPK and regulates calcium-induced AMPK activation. FASEB J. 33(2):2957–2970.
  • Chen Z, Lei C, Wang C, Li N, Srivastava M, Tang M, Zhang H, Choi J.M, Jung S.Y, Qin J, et al. 2019. Global phosphoproteomic analysis reveals ARMC10 as an AMPK substrate that regulates mitochondrial dynamics. Nat Commun. 10(1):104.
  • Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. 2016. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta. 1866:232–251.
  • Coughlan K.A, Valentine R.J, Ruderman N.B, Saha A.K. 2014. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 7:241–253.
  • Desjardins M. 2003. ER-mediated phagocytosis: a new membrane for new functions. Nat Rev Immunol. 3(4):280–291.
  • Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, Wu M, Choi H.C, Lyons T.J, Zou M.H. 2010. Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes. 59(6):1386–1396.
  • Dorfman J, Macara I.G. 2008. STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7. MBoC. 19(4):1614–1626.
  • Ducommun S, Deak M, Sumpton D, Ford R.J, Nunez Galindo A, Kussmann M, Viollet B, Steinberg G.R, Foretz M, Dayon L, et al. 2015. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell Signalling. 27(5):978–988.
  • Efeyan A, Comb W.C, Sabatini D.M. 2015. Nutrient-sensing mechanisms and pathways. Nature. 517(7534):302–310.
  • Egan D.F, Shackelford D.B, Mihaylova M.M, Gelino S, Kohnz R.A, Mair W, Vasquez D.S, Joshi A, Gwinn D.M, Taylor R, et al. 2011. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 331(6016):456–461.
  • Eichner L.J, Brun S.N, Herzig S, Young N.P, Curtis S.D, Shackelford D.B, Shokhirev M.N, Leblanc M, Vera L.I, Hutchins A, et al. 2019. Genetic analysis reveals ampk is required to support tumor growth in murine Kras-dependent lung cancer models. Cell Metab. 29(2):285–302 e287.
  • Emerling B.M, Weinberg F, Snyder C, Burgess Z, Mutlu G.M, Viollet B, Budinger G.R, Chandel N.S. 2009. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 46(10):1386–1391.
  • Fennelly C, Amaravadi R.K. 2017. Lysosomal biology in cancer. Methods Mol Biol. 1594:293–308.
  • Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. 2014. Metformin: from mechanisms of action to therapies. Cell Metab. 20(6):953–966.
  • Garcia D, Shaw R.J. 2017. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 66(6):789–800.
  • Goodman M, Liu Z, Zhu P, Li J. 2014. AMPK activators as a drug for diabetes, cancer and cardiovascular disease. Pharma Regul Aff. 03(02):pii:118.
  • Gowans G.J, Hawley S.A, Ross F.A, Hardie D.G. 2013. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 18(4):556–566.
  • Gwinn D.M, Shackelford D.B, Egan D.F, Mihaylova M.M, Mery A, Vasquez D.S, Turk B.E, Shaw R.J. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 30(2):214–226.
  • Hardie D.G. 2013. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 62(7):2164–2172.
  • Hardie D.G. 2014. AMPK-sensing energy while talking to other signaling pathways. Cell Metab. 20(6):939–952.
  • Hardie D.G, Ross F.A, Hawley S.A. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 13(4):251–262.
  • Hardie D.G, Schaffer B.E, Brunet A. 2016. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 26(3):190–201.
  • Hawley S.A, Boudeau J, Reid J.L, Mustard K.J, Udd L, Makela T.P, Alessi D.R, Hardie D.G. 2003. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2(4):28.
  • Hawley S.A, Pan D.A, Mustard K.J, Ross L, Bain J, Edelman A.M, Frenguelli B.G, Hardie D.G. 2005. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2(1):9–19.
  • He L, Wondisford F.E. 2015. Metformin action: concentrations matter. Cell Metab. 21(2):159–162.
  • Helenius A, Aebi M. 2001. Intracellular functions of N-linked glycans. Science. 291(5512):2364–2369.
  • Herzig S, Shaw R.J. 2018. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol. 19(2):121–135.
  • Hong S.P, Leiper F.C, Woods A, Carling D, Carlson M. 2003. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. PNAS. 100(15):8839–8843.
  • Hurley R.L, Anderson K.A, Franzone J.M, Kemp B.E, Means A.R, Witters L.A. 2005. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem. 280(32):29060–29066.
  • Inoki K, Zhu T, Guan K.L. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 115(5):577–590.
  • Jackson C.L. 2018. Activators and effectors of the small G protein Arf1 in regulation of Golgi dynamics during the cell division cycle. Front Cell Dev Biol. 6:29.
  • Jager S, Handschin C, St-Pierre J, Spiegelman B.M. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. PNAS. 104(29):12017–12022.
  • Jeon S.M. 2016. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 48(7):e245–e245.
  • Ji H, Ramsey M.R, Hayes D.N, Fan C, McNamara K, Kozlowski P, Torrice C, Wu M.C, Shimamura T, Perera S.A, et al. 2007. LKB1 modulates lung cancer differentiation and metastasis. Nature. 448(7155):807–810.
  • Jin L, Chun J, Pan C, Kumar A, Zhang G, Ha Y, Li D, Alesi G.N, Kang Y, Zhou L, et al. 2018. The PLAG1-GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer. Mol Cell. 69(1):87–99 e87.
  • Ju T.C, Chen H.M, Lin J.T, Chang C.P, Chang W.C, Kang J.J, Sun C.P, Tao M.H, Tu P.H, Chang C, et al. 2011. Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington’s disease. J Cell Biol. 194(2):209–227.
  • Jung T W, Kyung E J, Kim H-C, Shin Y K, Lee S H, Park E S, Hacımüftüoğlu A, Abd El-Aty A. M, Jeong J H. 2018. Protectin DX ameliorates hepatic steatosis by suppression of endoplasmic reticulum stress via AMPK-induced ORP150 expression. J Pharmacol Exp Ther. 365(3):485–493.
  • Kalia R, Wang R.Y, Yusuf A, Thomas P.V, Agard D.A, Shaw J.M, Frost A. 2018. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature. 558(7710):401–405.
  • Kazgan N, Williams T, Forsberg L.J, Brenman J.E. 2010. Identification of a nuclear export signal in the catalytic subunit of AMP-activated protein kinase. MBoC. 21(19):3433–3442.
  • Kikuchi A. 1999. Roles of Axin in the Wnt signalling pathway. Cell Signal. 11(11):777–788.
  • Kim J, Kundu M, Viollet B, Guan K.L. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13(2):132–141.
  • Kodiha M, Rassi J.G, Brown C.M, Stochaj U. 2007. Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEK→ERK1/2 pathway. Am J Physiol, Cell Physiol. 293(5):C1427–1436.
  • Kurz T, Eaton J.W, Brunk U.T. 2011. The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol. 43(12):1686–1697.
  • Lamia K.A, Sachdeva U.M, DiTacchio L, Williams E.C, Alvarez J.G, Egan D.F, Vasquez D.S, Juguilon H, Panda S, Shaw R.J, et al. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 326(5951):437–440.
  • Lawrence R.E, Zoncu R. 2019. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat Cell Biol. 21(2):133–142.
  • Lee H, Yoon Y. 2016. Mitochondrial fission and fusion. Biochem Soc Trans. 44(6):1725–1735.
  • Li M, Zhang C.S, Zong Y, Feng J.W, Ma T, Hu M, Lin Z, Li X, Xie C, Wu Y, et al. 2019. Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. Cell Metab. 30(3):508–524 e512.
  • Li Q, Wang Y, Wu S, Zhou Z, Ding X, Shi R, Thorne R.F, Zhang X.D, Hu W, Wu M. 2019. CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab. 30(1):157–173 e157.
  • Li X, Wang L, Zhou X.E, Ke J, de Waal P.W, Gu X, Tan M.H, Wang D, Wu D, Xu H.E, et al. 2015. Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res. 25(1):50–66.
  • Li Y, Xu S, Mihaylova M.M, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy J.Y, et al. 2011. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13(4):376–388.
  • Lim C.Y, Zoncu R. 2016. The lysosome as a command-and-control center for cellular metabolism. J Cell Biol. 214(6):653–664.
  • Lin S.C, Hardie D.G. 2018. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27(2):299–313.
  • Liu J.Q, Zhang L, Yao J, Yao S, Yuan T. 2018. AMPK alleviates endoplasmic reticulum stress by inducing the ER-chaperone ORP150 via FOXO1 to protect human bronchial cells from apoptosis. Biochem Biophys Res Commun. 497(2):564–570.
  • Liu L, Cash T.P, Jones R.G, Keith B, Thompson C.B, Simon M.C. 2006. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 21(4):521–531.
  • Liu X, Xiao Z.D, Han L, Zhang J, Lee S.W, Wang W, Lee H, Zhuang L, Chen J, Lin H.K, et al. 2016. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nat Cell Biol. 18(4):431–442.
  • Mansueto G, Armani A, Viscomi C, D’Orsi L, De Cegli R, Polishchuk E.V, Lamperti C, Meo I. D, Romanello V, Marchet S, et al. 2017. Transcription factor EB controls metabolic flexibility during exercise. Cell Metab. 25(1):182–196.
  • Mao L, Li N, Guo Y, Xu X, Gao L, Xu Y, Zhou L, Liu W. 2013. AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J Cell Sci. 126(6):1498–1505.
  • Marin T.L, Gongol B, Zhang F, Martin M, Johnson D.A, Xiao H, Wang Y, Subramaniam S, Chien S, Shyy J.Y. 2017. AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci Signal. 10(464):pii:eaaf7478.
  • Martina J.A, Chen Y, Gucek M, Puertollano R. 2012. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 8(6):903–914.
  • Mekahli D, Bultynck G, Parys J.B, Smedt H. D, Missiaen L. 2011. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harbor Perspect Biol. 3(6):a004317–a004317.
  • Mihaylova M.M, Shaw R.J. 2011. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 13(9):1016–1023.
  • Miyamoto T, Oshiro N, Yoshino K, Nakashima A, Eguchi S, Takahashi M, Ono Y, Kikkawa U, Yonezawa K. 2008. AMP-activated protein kinase phosphorylates Golgi-specific brefeldin A resistance factor 1 at Thr1337 to induce disassembly of Golgi apparatus. J Biol Chem. 283(7):4430–4438.
  • Miyamoto T, Rho E, Inoue T. 2015. Deconvoluting AMPK dynamics. Oncotarget. 6(31):30431–30432.
  • Miyamoto T, Rho E, Sample V, Akano H, Magari M, Ueno T, Gorshkov K, Chen M, Tokumitsu H, Zhang J, et al. 2015. Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators. Cell Reports. 11(4):657–670.
  • Oakhill J.S, Steel R, Chen Z.P, Scott J.W, Ling N, Tam S, Kemp B.E. 2011. AMPK is a direct adenylate charge-regulated protein kinase. Science. 332(6036):1433–1435.
  • Okamoto S, Asgar N.F, Yokota S, Saito K, Minokoshi Y. 2019. Role of the alpha2 subunit of AMP-activated protein kinase and its nuclear localization in mitochondria and energy metabolism-related gene expressions in C2C12 cells. Metabolism. 90:52–68.
  • Ozcan L, Tabas I. 2012. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med. 63(1):317–328.
  • Platt F.M, d’Azzo A, Davidson B.L, Neufeld E.F, Tifft C.J. 2018. Lysosomal storage diseases. Nat Rev Dis Primers. 4(1):27.
  • Qi J, Gong J, Zhao T, Zhao J, Lam P, Ye J, Li J.Z, Wu J, Zhou H.M, Li P. 2008. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. Embo J. 27(11):1537–1548.
  • Rabinovitch R.C, Samborska B, Faubert B, Ma E.H, Gravel S.P, Andrzejewski S, Raissi T.C, Pause A, St-Pierre J, Jones R.G. 2017. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Reports. 21(1):1–9.
  • Ross F.A, Jensen T.E, Hardie D.G. 2016. Differential regulation by AMP and ADP of AMPK complexes containing different gamma subunit isoforms. Biochem J. 473(2):189–199.
  • Ross F.A, MacKintosh C, Hardie D.G. 2016. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. Febs J. 283(16):2987–3001.
  • Sabatini D.M. 2017. Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci USA. 114(45):11818–11825.
  • Sakamaki J.I, Wilkinson S, Hahn M, Tasdemir N, O’Prey J, Clark W, Hedley A, Nixon C, Long J.S, New M, et al. 2017. Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function. Mol Cell. 66(4):517–532 e519.
  • Salt I, Celler J.W, Hawley S.A, Prescott A, Woods A, Carling D, Hardie D.G. 1998. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem J. 334 (1):177–187.
  • Sancak Y, Bar-Peled L, Zoncu R, Markhard A.L, Nada S, Sabatini D.M. 2010. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 141(2):290–303.
  • Sardiello M, Palmieri M, di Ronza A, Medina D.L, Valenza M, Gennarino V.A, Malta C. D, Donaudy F, Embrione V, Polishchuk R.S, et al. 2009. A gene network regulating lysosomal biogenesis and function. Science. 325(5939):473–477.
  • Saxton R.A, Sabatini D.M. 2017. mTOR signaling in growth, metabolism, and disease. Cell. 169(2):361–371.
  • Schwarz D.S, Blower M.D. 2016. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 73(1):79–94.
  • Sebbagh M, Santoni M.J, Hall B, Borg J.P, Schwartz M.A. 2009. Regulation of LKB1/STRAD localization and function by E-cadherin. Curr Biol. 19(1):37–42.
  • Settembre C, Di Malta C, Polito V. A, Arencibia M. G, Vetrini F, Erdin S, Erdin S. U, Huynh T, Medina D, Colella P, et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science. 332(6036):1429–1433.
  • Settembre C, Fraldi A, Medina D.L, Ballabio A. 2013. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 14(5):283–296.
  • Settembre C, Zoncu R, Medina D.L, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard M.C, et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31(5):1095–1108.
  • Shackelford D.B, Shaw R.J. 2009. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer. 9(8):563–575.
  • Shaw R.J, Kosmatka M, Bardeesy N, Hurley R.L, Witters L.A, DePinho R.A, Cantley L.C. 2004. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. PNAS. 101(10):3329–3335.
  • Stein B.D, Calzolari D, Hellberg K, Hu Y.S, He L, Hung C.M, Toyama E.Q, Ross D.S, Lillemeier B.F, Cantley L.C, et al. 2019. Quantitative in vivo proteomics of metformin response in liver reveals AMPK-dependent and -independent signaling networks. Cell Reports. 29(10):3331–3348 e3337.
  • Steinberg G.R, Kemp B.E. 2009. AMPK in health and disease. Physiol Rev. 89(3):1025–1078.
  • Sundararaman A, Amirtham U, Rangarajan A. 2016. Calcium-oxidant signaling network regulates AMP-activated protein kinase (AMPK) activation upon matrix deprivation. J Biol Chem. 291(28):14410–14429.
  • Suzuki A, Okamoto S, Lee S, Saito K, Shiuchi T, Minokoshi Y. 2007. Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the alpha2 form of AMP-activated protein kinase. Mol Cell Biol. 27(12):4317–4327.
  • Tamas P, Hawley S.A, Clarke R.G, Mustard K.J, Green K, Hardie D.G, Cantrell D.A. 2006. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med. 203:1665–1670.
  • Tojkander S, Ciuba K, Lappalainen P. 2018. CaMKK2 regulates mechanosensitive assembly of contractile actin stress fibers. Cell Reports. 24(1):11–19.
  • Toyama E.Q, Herzig S, Courchet J, Lewis T.L, Jr., Loson O.C, Hellberg K, Young N.P, Chen H, Polleux F, Chan D.C, et al. 2016. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 351(6270):275–281.
  • Vander Heiden M.G, Cantley L.C, Thompson C.B. 2009. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science. 324(5930):1029–1033.
  • Vara-Ciruelos D, Dandapani M, Gray A, Egbani E.O, Evans A.M, Hardie D.G. 2018. Genotoxic damage activates the AMPK-alpha1 isoform in the nucleus via Ca(2+)/CaMKK2 signaling to enhance tumor cell survival. Mol Cancer Res. 16(2):345–357.
  • Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 334(6059):1081–1086.
  • Wan L, Xu K, Wei Y, Zhang J, Han T, Fry C, Zhang Z, Wang Y.V, Huang L, Yuan M, et al. 2018. Phosphorylation of EZH2 by AMPK suppresses PRC2 methyltransferase activity and oncogenic function. Mol Cell. 69(2):279–291 e275.
  • Westermann B. 2010. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 11(12):872–884.
  • Wikstrom J.D, Israeli T, Bachar-Wikstrom E, Swisa A, Ariav Y, Waiss M, Kaganovich D, Dor Y, Cerasi E, Leibowitz G. 2013. AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1. Mol Endocrinol. 27(10):1706–1723.
  • Woods A, Dickerson K, Heath R, Hong S.P, Momcilovic M, Johnstone S.R, Carlson M, Carling D. 2005. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2(1):21–33.
  • Wu D, Hu D, Chen H, Shi G, Fetahu I.S, Wu F, Rabidou K, Fang R, Tan L, Xu S, et al. 2018. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature. 559(7715):637–641.
  • Xiao B, Sanders M.J, Underwood E, Heath R, Mayer F.V, Carmena D, Jing C, Walker P.A, Eccleston J.F, Haire L.F, et al. 2011. Structure of mammalian AMPK and its regulation by ADP. Nature. 472(7342):230–233.
  • Yang L, Sha H, Davisson R.L, Qi L. 2013. Phenformin activates the unfolded protein response in an AMP-activated protein kinase (AMPK)-dependent manner. J Biol Chem. 288(19):13631–13638.
  • Yano T, Matsui T, Tamura A, Uji M, Tsukita S. 2013. The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J Cell Biol. 203(4):605–614.
  • Yano T, Torisawa T, Oiwa K, Tsukita S. 2018. AMPK-dependent phosphorylation of cingulin reversibly regulates its binding to actin filaments and microtubules. Sci Rep. 8(1):15550.
  • Youle R.J, van der Bliek A.M. 2012. Mitochondrial fission, fusion, and stress. Science. 337(6098):1062–1065.
  • Young N.P, Kamireddy A, Van Nostrand J.L, Eichner L.J, Shokhirev M.N, Dayn Y, Shaw R.J. 2016. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes. Genes Dev. 30(5):535–552.
  • Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek T.J, Perry W.L, 3rd, Lee J.J, Tilghman S.M, Gumbiner B.M, Costantini F. 1997. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell. 90(1):181–192.
  • Zhang C.S, Hawley S.A, Zong Y, Li M, Wang Z, Gray A, Ma T, Cui J, Feng J.W, Zhu M, et al. 2017. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature. 548(7665):112–116.
  • Zhang C.S, Jiang B, Li M, Zhu M, Peng Y, Zhang Y.L, Wu Y.Q, Li T.Y, Liang Y, Lu Z, et al. 2014. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20(3):526–540.
  • Zhang C.S, Li M, Ma T, Zong Y, Cui J, Feng J.W, Wu Y.Q, Lin S.Y, Lin S.C. 2016. Metformin activates AMPK through the lysosomal pathway. Cell Metab. 24(4):521–522.
  • Zhang L, Jouret F, Rinehart J, Sfakianos J, Mellman I, Lifton R.P, Young L.H, Caplan M.J. 2011. AMP-activated protein kinase (AMPK) activation and glycogen synthase kinase-3beta (GSK-3beta) inhibition induce Ca2+-independent deposition of tight junction components at the plasma membrane. J Biol Chem. 286(19):16879–16890.
  • Zhang L, Li J, Young L.H, Caplan M.J. 2006. AMP-activated protein kinase regulates the assembly of epithelial tight junctions. PNAS. 103(46):17272–17277.
  • Zhang Y.L, Guo H, Zhang C.S, Lin S.Y, Yin Z, Peng Y, Luo H, Shi Y, Lian G, Zhang C, et al. 2013. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 18(4):546–555.
  • Zhao H, Li T, Wang K, Zhao F, Chen J, Xu G, Zhao J, Li T, Chen L, Li L, et al. 2019. AMPK-mediated activation of MCU stimulates mitochondrial Ca(2+) entry to promote mitotic progression. Nat Cell Biol. 21(4):476–486.
  • Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, Zhang S, Huang Q, Shi M. 2017. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer. 16(1):79.
  • Zheng B, Cantley L.C. 2007. Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. PNAS. 104(3):819–822.
  • Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini D.M. 2011. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 334(6056):678–683.
  • Zong Y, Zhang C.S, Li M, Wang W, Wang Z, Hawley S.A, Ma T, Feng J.W, Tian X, Qi Q, et al. 2019. Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Res. 29(6):460–473.
  • Zungu M, Schisler J.C, Essop M.F, McCudden C, Patterson C, Willis M.S. 2011. Regulation of AMPK by the ubiquitin proteasome system. Am J Pathol. 178(1):4–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.