598
Views
20
CrossRef citations to date
0
Altmetric
Review Articles

Mitochondrial F-type ATP synthase: multiple enzyme functions revealed by the membrane-embedded FO structure

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 309-321 | Received 26 Mar 2020, Accepted 15 Jun 2020, Published online: 24 Jun 2020

References

  • Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park H-A, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, et al. 2014. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci USA. 111(29):10580–10585.
  • Algieri C, Trombetti F, Pagliarani A, Ventrella V, Bernardini C, Fabbri M, Forni M, Nesci S. 2019. Mitochondrial Ca2+ -activated F1 FO -ATPase hydrolyzes ATP and promotes the permeability transition pore. Ann N Y Acad Sci. 1457(1):142–157.
  • Allegretti M, Klusch N, Mills DJ, Vonck J, Kühlbrandt W, Davies KM. 2015. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature. 521(7551):237–240.
  • Anselmi C, Davies KM, Faraldo-Gómez JD. 2018. Mitochondrial ATP synthase dimers spontaneously associate due to a long-range membrane-induced force. J Gen Physiol. 150(5):763–770.
  • Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H. 1998. Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits. Embo J. 17(24):7170–7178.
  • Arselin G, Giraud M-F, Dautant A, Vaillier J, Brèthes D, Coulary-Salin B, Schaeffer J, Velours J. 2003. The GxxxG motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane. Eur J Biochem. 270(8):1875–1884.
  • Baines CP, Gutiérrez-Aguilar M. 2018. The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. Cell Calcium. 73:121–130.
  • Baracca A, Sgarbi G, Mattiazzi M, Casalena G, Pagnotta E, Valentino ML, Moggio M, Lenaz G, Carelli V, Solaini G. 2007. Biochemical phenotypes associated with the mitochondrial ATP6 gene mutations at nt8993. Biochim Biophys Acta. 1767(7):913–919.
  • Blum TB, Hahn A, Meier T, Davies KM, Kühlbrandt W. 2019. Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. Proc Natl Acad Sci USA. 116(10):4250–4255.
  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, et al. 2013. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle. 12(4):674–683.
  • Bonora M, Morganti C, Morciano G, Pedriali G, Lebiedzinska-Arciszewska M, Aquila G, Giorgi C, Rizzo P, Campo G, Ferrari R, et al. 2017. Mitochondrial permeability transition involves dissociation of F1FO ATP synthase dimers and C-ring conformation. EMBO Rep. 18(7):1077–1089.
  • Boyer PD. 1997. The ATP synthase-a splendid molecular machine. Annu Rev Biochem. 66:717–749.
  • Boyer PD. 2002. Catalytic site occupancy during ATP synthase catalysis. FEBS Lett. 512(1-3):29–32.
  • Burrage LC, Tang S, Wang J, Donti TR, Walkiewicz M, Luchak JM, Chen L-C, Schmitt ES, Niu Z, Erana R, et al. 2014. Mitochondrial myopathy, lactic acidosis, and sideroblastic anemia (MLASA) plus associated with a novel de novo mutation (m.8969G > A) in the mitochondrial encoded ATP6 gene. Mol Genet Metab. 113(3):207–212.
  • Bustos DM, Velours J. 2005. The modification of the conserved GXXXG motif of the membrane-spanning segment of subunit g destabilizes the supramolecular species of yeast ATP synthase. J Biol Chem. 280(32):29004–29010.
  • Carraro M, Checchetto V, Sartori G, Kucharczyk R, di Rago J-P, Minervini G, Franchin C, Arrigoni G, Giorgio V, Petronilli V, et al. 2018. High-Conductance Channel Formation in Yeast Mitochondria is Mediated by F-ATP Synthase e and g Subunits. Cell Physiol Biochem. 50(5):1840–1855.
  • Carroll J, He J, Ding S, Fearnley IM, Walker JE. 2019. Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase. Proc Natl Acad Sci USA. 116(26):12816–12821.
  • Daum B, Walter A, Horst A, Osiewacz HD, Kühlbrandt W. 2013. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci USA. 110(38):15301–15306.
  • Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, di Rago J-P, Kucharczyk R. 2018. ATP synthase diseases of mitochondrial genetic origin. Front Physiol. 9:329.
  • Davies KM, Anselmi C, Wittig I, Faraldo-Gómez JD, Kühlbrandt W. 2012. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci USA. 109(34):13602–13607.
  • Di Lisa F, Bernardi P. 2005. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res. 66(2):222–232.
  • Elston T, Wang H, Oster G. 1998. Energy transduction in ATP synthase. Nature. 391(6666):510–513.
  • Esparza-Moltó PB, Cuezva JM. 2018. The role of mitochondrial H+-ATP synthase in cancer. Front Oncol. 8:53.
  • Eydt K, Davies KM, Behrendt C, Wittig I, Reichert AS. 2017. Cristae architecture is determined by an interplay of the MICOS complex and the F1FO ATP synthase via Mic27 and Mic10. Microb Cell. 4(8):259–272.
  • Faccenda D, Tan CH, Seraphim A, Duchen MR, Campanella M. 2013. IF1 limits the apoptotic-signalling cascade by preventing mitochondrial remodelling. Cell Death Differ. 20(5):686–697.
  • García JJ, Morales-Ríos E, Cortés-Hernandez P, Rodríguez-Zavala JS. 2006. The inhibitor protein (IF1) promotes dimerization of the mitochondrial F1F0-ATP synthase. Biochemistry. 45(42):12695–12703.
  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, et al. 2013. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA. 110(15):5887–5892.
  • Gu J, Zhang L, Zong S, Guo R, Liu T, Yi J, Wang P, Zhuo W, Yang M. 2019. Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1. Science. 364(6445):1068–1075.
  • Guo H, Bueler SA, Rubinstein JL. 2017. Atomic model for the dimeric FO region of mitochondrial ATP synthase. Science. 358(6365):936–940.
  • Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kühlbrandt W, Meier T. 2016. Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Mol Cell. 63(3):445–456.
  • Hahn A, Vonck J, Mills DJ, Meier T, Kühlbrandt W. 2018. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science. 360(6389):eaat4318.
  • He J, Carroll J, Ding S, Fearnley IM, Walker JE. 2017. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase. Proc Natl Acad Sci USA. 114(34):9086–9091.
  • He J, Ford HC, Carroll J, Ding S, Fearnley IM, Walker JE. 2017. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase. Proc Natl Acad Sci Usa. 114(13):3409–3414.
  • Jonckheere AI, Smeitink JAM, Rodenburg RJT. 2012. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis. 35(2):211–225.
  • Junge W, Lill H, Engelbrecht S. 1997. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci. 22(11):420–423.
  • Junge W, Sielaff H, Engelbrecht S. 2009. Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase. Nature. 459(7245):364–370.
  • Karch J, Bround MJ, Khalil H, Sargent MA, Latchman N, Terada N, Peixoto PM, Molkentin JD. 2019. Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD. Sci Adv. 5(8):eaaw4597.
  • Klusch N, Murphy BJ, Mills DJ, Yildiz Ö, Kühlbrandt W. 2017. Structural basis of proton translocation and force generation in mitochondrial ATP synthase. Elife. 6:e33274.
  • Kucharczyk R, Dautant A, Godard F, Tribouillard-Tanvier D, di Rago J-P. 2019. Functional investigation of an universally conserved leucine residue in subunit a of ATP synthase targeted by the pathogenic m.9176 T > G mutation. Biochim Biophys Acta Bioenerg. 1860(1):52–59.
  • Kucharczyk R, Rak M, di Rago J-P. 2009. Biochemical consequences in yeast of the human mitochondrial DNA 8993T > C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta. 1793(5):817–824.
  • Kühlbrandt W. 2019. Structure and mechanisms of F-type ATP synthases. Annu Rev Biochem. 88:515–549.
  • Kühlbrandt W, Davies KM. 2016. Rotary ATPases: a new twist to an ancient machine. Trends Biochem Sci. 41(1):106–116.
  • Mitome N, Ono S, Sato H, Suzuki T, Sone N, Yoshida M. 2010. Essential arginine residue of the F(o)-a subunit in F(o)F(1)-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the F(o) proton channel. Biochem J. 430(1):171–177.
  • Mnatsakanyan N, Llaguno MC, Yang Y, Yan Y, Weber J, Sigworth FJ, Jonas EA. 2019. A mitochondrial megachannel resides in monomeric F1FO ATP synthase. Nat Commun. 10(1):5823.
  • Morciano G, Preti D, Pedriali G, Aquila G, Missiroli S, Fantinati A, Caroccia N, Pacifico S, Bonora M, Talarico A, et al. 2018. Discovery of novel 1,3,8-triazaspiro[4.5]decane derivatives that target the c subunit of F1/FO-adenosine triphosphate (ATP) synthase for the treatment of reperfusion damage in myocardial infarction. J Med Chem. 61(16):7131–7143.
  • Moro L. 2019. Mitochondrial dysfunction in aging and cancer. J Clin Med. 8(11):1983.
  • Muench SP, Trinick J, Harrison MA. 2011. Structural divergence of the rotary ATPases. Q Rev Biophys. 44(3):311–356.
  • Mühleip AW, Dewar CE, Schnaufer A, Kühlbrandt W, Davies KM. 2017. In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits. Proc Natl Acad Sci USA. 114(5):992–997.
  • Mühleip AW, Joos F, Wigge C, Frangakis AS, Kühlbrandt W, Davies KM. 2016. Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria. Proc Natl Acad Sci USA. 113(30):8442–8447.
  • Murataliev MB, Boyer PD. 1992. The mechanism of stimulation of MgATPase activity of chloroplast F1-ATPase by non-catalytic adenine-nucleotide binding. Acceleration of the ATP-dependent release of inhibitory ADP from a catalytic site. Eur J Biochem. 209(2):681–687.
  • Murphy BJ, Klusch N, Langer J, Mills DJ, Yildiz Ö, Kühlbrandt W. 2019. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling. Science. 364(6446):eaaw9128.
  • Nakamura J, Fujikawa M, Yoshida M. 2013. IF1, a natural inhibitor of mitochondrial ATP synthase, is not essential for the normal growth and breeding of mice. Biosci. Rep. 33(5):e00067.
  • Neginskaya MA, Solesio ME, Berezhnaya EV, Amodeo GF, Mnatsakanyan N, Jonas EA, Pavlov EV. 2019. ATP synthase C-subunit-deficient mitochondria have a small cyclosporine A-sensitive channel, but lack the permeability transition pore. Cell Rep. 26(1):11.e2–17.e2.
  • Nesci S. 2018. A lethal channel between the ATP synthase monomers. Trends Biochem Sci. 43(5):311–313.
  • Nesci S, Pagliarani A. 2019. Emerging roles for the mitochondrial ATP synthase supercomplexes. Trends Biochem Sci. 44(10):821–823.
  • Nesci S, Trombetti F, Ventrella V, Pagliarani A. 2015. Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry. J Membr Biol. 248(2):163–169.
  • Nesci S, Trombetti F, Ventrella V, Pagliarani A. 2016. The c-ring of the F1FO-ATP synthase: facts and perspectives. J Membr Biol. 249(1–2):11–21.
  • Nesci S, Trombetti F, Ventrella V, Pagliarani A. 2018. From the Ca2+-activated F1FO-ATPase to the mitochondrial permeability transition pore: an overview. Biochimie. 152:85–93.
  • Nesci S, Ventrella V, Trombetti F, Pirini M, Pagliarani A. 2013. Mussel and mammalian ATP synthase share the same bioenergetic cost of ATP. J Bioenerg Biomembr. 45(3):289–300.
  • Niedzwiecka K, Baranowska E, Panja C, Kucharczyk R. 2020. ATP synthase subunit a supports permeability transition in yeast lacking dimerization subunits and modulates yPTP conductance. Cell Physiol Biochem. 54(2):211–229.
  • Niedzwiecka K, Tisi R, Penna S, Lichocka M, Plochocka D, Kucharczyk R. 2018. Two mutations in mitochondrial ATP6 gene of ATP synthase, related to human cancer, affect ROS, calcium homeostasis and mitochondrial permeability transition in yeast. Biochim Biophys Acta Mol Cell Res. 1865(1):117–131.
  • Niu Y, Moghimyfiroozabad S, Safaie S, Yang Y, Jonas EA, Alavian KN. 2017. Phylogenetic profiling of mitochondrial proteins and integration analysis of bacterial transcription units suggest evolution of F1Fo ATP synthase from multiple modules. J Mol Evol. 85(5-6):219–233.
  • Okuno D, Iino R, Noji H. 2011. Rotation and structure of FoF1-ATP synthase. J Biochem. 149(6):655–664.
  • Paradies G, Paradies V, Ruggiero FM, Petrosillo G. 2013. Changes in the mitochondrial permeability transition pore in aging and age-associated diseases. Mech Ageing Dev. 134(1–2):1–9.
  • Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brèthes D, di Rago J-P, Velours J. 2002. The ATP synthase is involved in generating mitochondrial cristae morphology. Embo J. 21(3):221–230.
  • Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJG, Evans PR, McMahon HT. 2004. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science. 303(5657):495–499.
  • Pogoryelov D, Klyszejko AL, Krasnoselska GO, Heller E-M, Leone V, Langer JD, Vonck J, Muller DJ, Faraldo-Gomez JD, Meier T. 2012. Engineering rotor ring stoichiometries in the ATP synthase. Proc Natl Acad Sci USA. 109(25):E1599–E1608.
  • Pogoryelov D, Krah A, Langer JD, Yildiz Ö, Faraldo-Gómez JD, Meier T. 2010. Microscopic rotary mechanism of ion translocation in the F(o) complex of ATP synthases. Nat Chem Biol. 6(12):891–899.
  • Schmidt T, Situ AJ, Ulmer TS. 2016. Structural and thermodynamic basis of proline-induced transmembrane complex stabilization. Sci Rep. 6:29809.
  • Sgarbi G, Baracca A, Lenaz G, Valentino LM, Carelli V, Solaini G. 2006. Inefficient coupling between proton transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtDNA. Biochem J. 395(3):493–500.
  • Skoczeń N, Dautant A, Binko K, Godard F, Bouhier M, Su X, Lasserre J-P, Giraud M-F, Tribouillard-Tanvier D, Chen H, et al. 2018. Molecular basis of diseases caused by the mtDNA mutation m.8969G > A in the subunit a of ATP synthase. Biochim Biophys Acta Bioenerg. 1859(8):602–611.
  • Solaini G, Harris DA, Lenaz G, Sgarbi G, Baracca A. 2008. The study of the pathogenic mechanism of mitochondrial diseases provides information on basic bioenergetics. Biochim Biophys Acta. 1777(7–8):941–945.
  • Song J, Pfanner N, Becker T. 2018. Assembling the mitochondrial ATP synthase. Proc Natl Acad Sci USA. 115(12):2850–2852.
  • Srivastava AP, Luo M, Zhou W, Symersky J, Bai D, Chambers MG, Faraldo-Gómez JD, Liao M, Mueller DM. 2018. High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Science. 360(6389):eaas9699.
  • Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W. 2008. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. Embo J. 27(7):1154–1160.
  • Suzuki T, Tanaka K, Wakabayashi C, Saita E, Yoshida M. 2014. Chemomechanical coupling of human mitochondrial F1-ATPase motor. Nat Chem Biol. 10(11):930–936.
  • Symersky J, Pagadala V, Osowski D, Krah A, Meier T, Faraldo-Gómez JD, Mueller DM. 2012. Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol. 19(5):485–491.
  • Szabo I, Zoratti M. 2014. Mitochondrial channels: ion fluxes and more. Physiol Rev. 94(2):519–608.
  • Trounce I, Neill S, Wallace DC. 1994. Cytoplasmic transfer of the mtDNA nt 8993 T->G (ATP6) point mutation associated with Leigh syndrome into mtDNA-less cells demonstrates cosegregation with a decrease in state III respiration and ADP/O ratio. Proc Natl Acad Sci USA. 91(18):8334–8338.
  • Urbani A, Giorgio V, Carrer A, Franchin C, Arrigoni G, Jiko C, Abe K, Maeda S, Shinzawa-Itoh K, Bogers JFM, et al. 2019. Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun. 10(1):4341
  • Uziel G, Moroni I, Lamantea E, Fratta GM, Ciceri E, Carrara F, Zeviani M. 1997. Mitochondrial disease associated with the T8993G mutation of the mitochondrial ATPase 6 gene: a clinical, biochemical, and molecular study in six families. J Neurol Neurosurg Psychiatry. 63(1):16–22.
  • Vinogradov AD. 2019. New perspective on the reversibility of ATP synthesis and hydrolysis by Fo × F1-ATP synthase (Hydrolase). Biochemistry Mosc. 84(11):1247–1255.
  • von Ballmoos C, Cook GM, Dimroth P. 2008. Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys. 37:43–64.
  • Wolf DM, Segawa M, Kondadi AK, Anand R, Bailey ST, Reichert AS, Bliek AM, Shackelford DB, Liesa M, Shirihai OS. 2019. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. Embo J. 38(22):e101056.
  • Xu T, Pagadala V, Mueller DM. 2015. Understanding structure, function, and mutations in the mitochondrial ATP synthase. Microb Cell. 2(4):105–125.
  • Yoshida M, Muneyuki E, Hisabori T. 2001. ATP synthase-a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol. 2(9):669–677.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.