671
Views
18
CrossRef citations to date
0
Altmetric
Review Articles

Mechanisms governing PARP expression, localization, and activity in cells

ORCID Icon & ORCID Icon
Pages 541-554 | Received 08 Jun 2020, Accepted 31 Aug 2020, Published online: 23 Sep 2020

References

  • Abio Madeira F, Mi Park Y, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, et al. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. [accessed 2020 Jun 1]. https://www.ebi.ac.uk/Tools/services/rest/clustalo/.
  • Amé J-C, Spenlehauer C, de Murcia G. 2004. The PARP superfamily. Bioessays. 26(8):882–893.
  • Belousova EA, IShchenko AA, Lavrik OI. 2018. Dna is a new target of Parp3. Sci Rep. 8(1):4176.
  • Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. 2020. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 181(5):1036–1045.e9.
  • Bock FJ, Todorova TT, Chang P. 2015. RNA regulation by poly(ADP-ribose) polymerases. Mol Cell. 58(6):959–969.
  • Bonfiglio JJ, Fontana P, Zhang Q, Colby T, Gibbs-Seymour I, Atanassov I, Bartlett E, Zaja R, Ahel I, Matic I. 2017. Serine ADP-ribosylation depends on HPF1. Mol Cell. 65(5):932–940.e6.
  • Cambronne XA, Stewart ML, Kim D, Jones-Brunette AM, Morgan RK, Farrens DL, Cohen MS, Goodman RH. 2016. Biosensor reveals multiple sources for mitochondrial NAD+. Science. 352(6292):1474–1477.
  • Carter-O’Connell I, Jin H, Morgan RK, David LL, Cohen MS, Carter-O’Connell I, Jin H, Morgan RK, David LL, Cohen MS. 2014. Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets. J Am Chem Soc. 136(14):5201–5204.
  • Carter-O'Connell I, Jin H, Morgan RK, Zaja R, David LL, Ahel I, Cohen MS. 2016. Identifying family-member-specific targets of mono-ARTDs by using a chemical genetics approach. Cell Rep. 14(3):621–631.
  • Carter-O'Connell I, Vermehren-Schmaedick A, Jin H, Morgan RK, David LL, Cohen MS. 2018. Combining chemical genetics with proximity-dependent labeling reveals cellular targets of poly(ADP-ribose) polymerase 14 (PARP14). ACS Chem Biol. 13(10):2841–2848.
  • Catara G, Grimaldi G, Schembri L, Spano D, Turacchio G, Lo Monte M, Beccari AR, Valente C, Corda D. 2017. PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions. Sci Rep. 7(1):1–17.
  • Cohen MS, Chang P. 2018. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol. 14(3):236–243.
  • Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2020. WebLogo: a sequence logo generator. [accessed 2020 Jun 1]. www.genome.org
  • Dawicki-McKenna JM, Langelier MF, DeNizio JE, Riccio AA, Cao CD, Karch KR, McCauley M, Steffen JD, Black BE, Pascal JM. 2015. PARP-1 activation requires local unfolding of an autoinhibitory domain. Mol Cell. 60(5):755–768.
  • Di Paola S, Micaroni M, Di Tullio G, Buccione R, Di Girolamo M. 2012. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-ß1.van der Goot FG, editor. PLoS One. 7(6):e37352.
  • Eisemann T, Langelier M-F, Pascal JM. 2019. Structural and functional analysis of parameters governing tankyrase-1 interaction with telomeric repeat-binding factor 1 and GDP-mannose dehydratase. J Biol Chem. 294(40):14574–14590.
  • Eisemann T, McCauley M, Langelier MF, Gupta K, Roy S, Van Duyne GD, Pascal JM. 2016. Tankyrase-1 ankyrin repeats form an adaptable binding platform for targets of ADP-ribose modification. Structure. 24(10):1679–1692.
  • Fan C, Yarravarapu N, Chen H, Kulak O, Dasari P, Herbert J, Yamaguchi K, Lum L, Zhang X. 2018. Regulation of tankyrase activity by a catalytic domain dimer interface. Biochem Biophys Res Commun. 503(3):1780–1785.
  • Fischbach A, Krüger A, Hampp S, Assmann G, Rank L, Hufnagel M, Stöckl MT, Fischer JMF, Veith S, Rossatti P, et al. 2018. The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Res. 46(2):804–822.
  • Fontana P, Bonfiglio JJ, Palazzo L, Bartlett E, Matic I, Ahel I. 2017. Serine ADP-ribosylation reversal by the hydrolase ARH3. Elife. 6:e28533.
  • Fujimoto M, Takii R, Takaki E, Katiyar A, Nakato R, Shirahige K, Nakai A. 2017. The HSF1-PARP13-PARP1 complex facilitates DNA repair and promotes mammary tumorigenesis. Nat Commun. 8(1):1–16.
  • Gibbs-Seymour I, Fontana P, Rack JGM, Ahel I. 2016. HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol Cell. 62(3):432–442.
  • Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH, Lin H, Schwede F, Yu Y, Kraus WL. 2016. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science (80-). 353(6294):45–50.
  • Gomez A, Bindesbøll C, Satheesh SV, Grimaldi G, Hutin D, MacPherson L, Ahmed S, Tamblyn L, Cho T, Nebb HI, et al. 2018. Characterization of TCDD-inducible poly-ADP-ribose polymerase (TIPARP/ARTD14) catalytic activity. Biochem J. 475(23):3827–3846.
  • Gregor J, Rack M, Perina D, Ahel I. 2016. Macrodomains: structure, function, evolution, and catalytic activities. Ann Rev Biochem. 85(1):431–454.
  • Grimaldi G, Vagaska B, Ievglevskyi O, Kondratskaya E, Glover J, Matthews J. 2019. Loss of tiparp results in aberrant layering of the cerebral cortex. eNeuro. 6(6):ENEURO.0239-19.2019.
  • Grunewald ME, Chen Y, Kuny C, Maejima T, Lease R, Ferraris D, Aikawa M, Sullivan CS, Perlman S, Fehr AR. 2019. The coronavirus macrodomain is required to prevent PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS Pathog. 15(5):e1007756.
  • Guo X, Carroll J-WN, MacDonald MR, Goff SP, Gao G. 2004. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J Virol. 78(23):12781–12787.
  • Guo T, Zuo Y, Qian L, Liu J, Yuan Y, Xu K, Miao Y, Feng Q, Chen X, Jin L, et al. 2019. ADP-ribosyltransferase PARP11 modulates the interferon antiviral response by mono-ADP-ribosylating the ubiquitin E3 ligase β-TrCP. Nat Microbiol. 4(11):1872–1884.
  • Gupte R, Liu Z, Kraus WL. 2017. Parps and adp-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 31(2):101–126.
  • Heer CD, Sanderson DJ, Alhammad YMO, Schmidt MS, Trammell SAJ, Perlman S, Cohen MS, Fehr AR, Brenner C. 2020. Coronavirus infection and PARP expression dysregulate the NAD metabolome: a potentially actionable component of innate immunity. bioRxiv. doi: 10.1101/2020.04.17.047480
  • Huang D, Kim D-S, Kraus WL. 2020. Specific binding of snoRNAs to PARP-1 promotes NAD+-dependent catalytic activation. Biochemistry. 59(16):1559–1564.
  • Huang SMA, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, et al. 2009. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 461(7264):614–620.
  • Hutin D, Tamblyn L, Gomez A, Grimaldi G, Soedling H, Cho T, Ahmed S, Lucas C, Kanduri C, Grant DM, et al. 2018. Hepatocyte-specific deletion of TIPARP, a negative regulator of the Aryl hydrocarbon receptor, is sufficient to increase sensitivity to dioxin-induced wasting syndrome. Toxicol Sci. 165(2):347–360.
  • Jankevicius AAG, Ahel I. 2016. The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. [accessed 2020 Apr 25].
  • Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG. 2013. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol. 20(4):508–514.
  • Jwa M, Chang P. 2012. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1α-mediated unfolded protein response. Nat Cell Biol. 14(11):1223–1230.
  • Kim DS, Camacho CV, Nagari A, Malladi VS, Challa S, Kraus WL. 2019. Activation of PARP-1 by snoRNAs controls ribosome biogenesis and cell growth via the RNA helicase DDX21. Mol Cell. 75(6):1270–1285.e14.
  • Kirby IT, Cohen MS. 2019. Small-molecule inhibitors of PARPS: from tools for investigating ADP-ribosylation to therapeutics. Curr Top Microbiol Immunol. 420:211–231.
  • Kirby IT, Kojic A, Arnold MR, Thorsell A-G, Karlberg T, Vermehren-Schmaedick A, Sreenivasan R, Schultz C, Schüler H, Cohen MS. 2018. A potent and selective PARP11 inhibitor suggests coupling between cellular localization and catalytic activity. Cell Chem Biol. 25(12):1547–1553.e12. bioRxiv. doi: https://doi.org/10.1101/2020.01.07.896977
  • Kirsanov KI, Kotova E, Makhov P, Golovine K, Lesovaya EA, Kolenko VM, Yakubovskaya MG, Tulin AV. 2014. Minor grove binding ligands disrupt PARP-1 activation pathways. Oncotarget. 5(2):428–437.
  • Kozaki T, Komano J, Kanbayashi D, Takahama M, Misawa T, Satoh T, Takeuchi O, Kawai T, Shimizu S, Matsuura Y, et al. 2017. Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response. Proc Natl Acad Sci USA. 114(10):2681–2686.
  • Krieg S, Pott F, Eckei L, Verheirstraeten M, Bütepage M, Lippok B, Goffinet C, Lüscher B, Verheugd P. 2020. Mono-ADP-ribosylation by ARTD10 restricts Chikungunya virus replication by interfering with the proteolytic activity of nsP2. bioRxiv. doi: https://doi.org/10.1101/2020.01.07.896977
  • Krietsch J, Caron M-C, Gagné J-P, Ethier C, Vignard J, Vincent M, Le Rouleau M, Hendzel MJ, Poirier GG, Masson J-Y. 2012. PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Res. 40(20):10287–10301.
  • Langelier MF, Planck JL, Roy S, Pascal JM. 2011. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J Biol Chem. 286(12):10690–10701.
  • Langelier M-F, Riccio AA, Pascal JM. 2014. PARP-2 and PARP-3 are selectively activated by 5' phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res. 42(12):7762–7775.
  • Langelier MF, Zandarashvili L, Aguiar PM, Black BE, Pascal JM. 2018. NAD + analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains. Nat Commun. 9(1):1–13.
  • Law LMJ, Razooky BS, Li MMH, You S, Jurado A, Rice CM, MacDonald MR. 2019. ZAP's stress granule localization is correlated with its antiviral activity and induced by virus replication. PLoS Pathog. 15(5):e1007798.
  • Leung AKL. 2020. Poly(ADP-ribose): a dynamic trigger for biomolecular condensate formation. Trends Cell Biol. 30:370–383.
  • Leung AKL, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P. 2011. Poly(ADP-Ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol Cell. 42(4):489–499.
  • Li L, Zhao H, Liu P, Li C, Quanquin N, Ji X, Sun N, Du P, Qin CF, Lu N, et al. 2018. PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins. Sci Signal. 11(535):eaas9332.
  • Luo X, Kraus WL. 2011. A one and a two expanding roles for poly(ADP-ribose) polymerases in metabolism. Cell Metab. 13(4):353–355.
  • Luo X, Kraus WL. 2012. On par with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26(5):417–432.
  • Luo X, Wang X, Gao Y, Zhu J, Liu S, Gao G, Gao P. 2020. Molecular mechanism of RNA recognition by zinc-finger antiviral protein. Cell Rep. 30(1):46–52.e4..
  • Ma Q, Baldwin KT, Renzelli AJ, McDaniel A, Dong L. 2001. TCDD-inducible poly(ADP-ribose) polymerase: a novel response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Biophys Res Commun. 289(2):499–506.
  • Ma L, Wang X, Jia T, Wei W, Chua MS, So S. 2015. Tankyrase inhibitors attenuate WNT/ß-catenin signaling and inhibit growth of hepatocellular carcinoma cells. Oncotarget. 6(28):25390–25401.
  • MacPherson L, Tamblyn L, Rajendra S, Bralha F, McPherson JP, Matthews J. 2013. 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation. Nucleic Acids Res. 41(3):1604–1621.
  • Mariotti L, Templeton CM, Ranes M, Paracuellos P, Cronin N, Beuron F, Morris E, Guettler S. 2016. Tankyrase requires SAM domain-dependent polymerization to support Wnt-β-catenin signaling. Mol Cell. 63(3):498–513.
  • Matta E, Kiribayeva A, Khassenov B, Matkarimov BT, Ishchenko AA. 2020. Insight into DNA substrate specificity of PARP1-catalysed DNA poly(ADP-ribosyl)ation. Sci Rep. 10(1):1–11.
  • McPherson RL, Abraham R, Sreekumar E, Ong SE, Cheng SJ, Baxter VK, Kistemaker HAV, Filippov DV, Griffin DE, Leung AKL. 2017. ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence. Proc Natl Acad Sci USA. 114(7):1666–1671.
  • Meagher JL, Takata M, Gonçalves-Carneiro D, Keane SC, Rebendenne A, Ong H, Orr VK, MacDonald MR, Stuckey JA, Bieniasz PD, et al. 2019. Structure of the zinc-finger antiviral protein in complex with RNA reveals a mechanism for selective targeting of CG-rich viral sequences. Proc Natl Acad Sci USA. 116(48):24303–24309.
  • Meyer-Ficca ML, Ihara M, Bader JJ, Leu NA, Beneke S, Meyer RG. 2015. Spermatid head elongation with normal nuclear shaping requires ADP-ribosyltransferase PARP11 (ARTD11) in mice1. Biol Reprod. 92(3):1–13.
  • Mikule K, Wang Z. 2016. WO2016116602 – treatment of cancer. This is an astrazeneca patent.
  • Munnur D, Ahel I. 2017. Reversible mono-ADP-ribosylation of DNA breaks. Febs J. 284(23):4002–4016.
  • Munnur D, Bartlett E, Mikolčeví P, Kirby IT, Gregor J, Rack M, Mikoč A, Mikoč M, Cohen MS, Ahel I. 2019. Reversible ADP-ribosylation of RNA. Nucleic Acids Res. 47(11):5658–5669.
  • Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Pääbo S, Mann M. 2011. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol. 7:548.
  • Nakamoto MY, Rudolph J, Wuttke DS, Luger K. 2019. Nonspecific binding of RNA to PARP1 and PARP2 does not lead to catalytic activation. Biochemistry. 58(51):5107–5111.
  • Nicolae CM, Aho ER, Vlahos AHS, Choe KN, De S, Karras GI, Moldovan GL. 2014. The ADP-ribosyltransferase PARP10/ARTD10 interacts with proliferating cell nuclear antigen (PCNA) and is required for DNA damage tolerance. J Biol Chem. 289(19):13627–13637.
  • Perina D, Mikoč A, Ahel J, Ćetković H, Žaja R, Ahel I. 2014. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair (Amst). 23:4–16.
  • Pollock K, Liu M, Zaleska M, Meniconi M, Pfuhl M, Collins I, Guettler S. 2019. Fragment-based screening identifies molecules targeting the substrate-binding ankyrin repeat domains of tankyrase. Sci Rep. 9(1):1–20.
  • Rajakulendran T, Sicheri F. 2010. Allosteric protein kinase regulation by pseudokinases: insights from STRAD. Sci Signal. 3(111):pe8.
  • Riccio AA, McCauley M, Langelier MF, Pascal JM. 2016. Tankyrase sterile α Motif domain polymerization is required for its role in Wnt signaling. Structure. 24(9):1573–1581.
  • Rosenthal F, Feijs KLH, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC, Fischer D, Caflisch A, Hassa PO, et al. 2013. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol. 20(4):502–507.
  • Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, Chapman R, Hertzog PJ. 2013. INTERFEROME v2.0: an updated database of annotated interferon-regulated genes. [accessed 2020 Jun 1]. http://tomcat.apache.org/
  • Schuller M, Riedel K, Gibbs-Seymour I, Uth K, Sieg C, Gehring AP, Ahel I, Bracher F, Kessler BM, Elkins JM, et al. 2017. Discovery of a selective allosteric inhibitor targeting macrodomain 2 of polyadenosine-diphosphate-ribose polymerase 14. ACS Chem Biol. 12(11):2866–2874.
  • Schwerk J, Soveg FW, Ryan AP, Thomas KR, Hatfield LD, Ozarkar S, Forero A, Kell AM, Roby JA, So L, et al. 2019. RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nat Immunol. 20(12):1610–1620.
  • Sharifi R, Morra R, Denise Appel C, Tallis M, Chioza B, Jankevicius G, Simpson MA, Matic I, Ozkan E, Golia B, et al. 2013. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. Embo J. 32(9):1225–1237.
  • Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I. 2011. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature. 477(7366):616–622.
  • Suskiewicz MJ, Zobel F, Ogden TEH, Fontana P, Ariza A, Yang J-C, Zhu K, Bracken L, Hawthorne WJ, Ahel D, et al. 2020. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature. 579(7800):598–599.
  • Takamura-Enya T, Watanabe M, Totsuka Y, Kanazawa T, Matsushima-Hibiya Y, Koyama K, Sugimura T, Wakabayashi K. 2001. Mono(ADP-ribosyl)ation of 2'-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly. Proc Natl Acad Sci USA. 98(22):12414–12419.
  • Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B, Colombelli J, Altmeyer M, Stelzer EHK, Scheffzek K, et al. 2009. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol. 16(9):923–929.
  • Todorova T, Bock FJ, Chang P. 2014. PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript. Nat Commun. 5(1):5362.
  • Veleva-Rotse BO, Smart JL, Baas AF, Edmonds B, Zhao Z. m, Brown A, Klug LR, Hansen K, Reilly G, Gardner AP, et al. 2014. STRAD pseudokinases regulate axogenesis and LKB1 stability. Neural Dev. 9(1):5.
  • Verheugd P, Forst AH, Milke L, Herzog N, Feijs KLH, Kremmer E, Kleine H, Lüscher B. 2013. Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat Commun. 4(1):1683.
  • Vyas S, Chesarone-Cataldo M, Todorova T, Huang YH, Chang P. 2013. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat Commun. 4(1):1–13.
  • Vyas S, Matic I, Uchima L, Rood J, Zaja R, Hay RT, Ahel I, Chang P. 2014. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun. 5(1):4426.
  • Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E, Cong F, Xu W. 2012. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev. 26(3):235–240.
  • Yang CS, Jividen K, Spencer A, Dworak N, Ni L, Oostdyk LT, Chatterjee M, Kuśmider B, Reon B, Parlak M, et al. 2017. Ubiquitin modification by the E3 Ligase/ADP-ribosyltransferase Dtx3L/Parp9. Mol Cell. 66(4):503–516.e5.
  • Zarkovic G, Belousova EA, Talhaoui I, Saint-Pierre C, Kutuzov MM, Matkarimov BT, Biard D, Gasparutto D, Lavrik OI, Ishchenko AA. 2018. Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. Nucleic Acids Res. 46(5):2417–2431.
  • Zhang L, Cao J, Dong L, Lin H. 2020. TiPARP forms nuclear condensates to degrade HIF-1α and suppress tumorigenesis. Proc Natl Acad Sci USA. 117(24):13447–13456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.