777
Views
27
CrossRef citations to date
0
Altmetric
Review Articles

RAGE and its ligands: from pathogenesis to therapeutics

, &
Pages 555-575 | Received 27 Apr 2020, Accepted 01 Sep 2020, Published online: 16 Sep 2020

References

  • Abedini A, Cao P, Plesner A, Zhang J, He M, Derk J, Patil SA, Rosario R, Lonier J, Song F, et al. 2018. RAGE binds preamyloid IAPP intermediates and mediates pancreatic beta cell proteotoxicity. J Clin Invest. 128:682–698.
  • Aboushousha T, Mamdouh S, Hamdy H, Helal N, Khorshed F, Safwat G, Seleem M. 2018. Immunohistochemical and biochemical expression patterns of TTF-1, RAGE, GLUT-1 and SOX2 in HCV-associated hepatocellular carcinomas. Asian Pac J Cancer Prev. 19:219–227.
  • Adamopoulos C, Piperi C, Gargalionis AN, Dalagiorgou G, Spilioti E, Korkolopoulou P, Diamanti-Kandarakis E, Papavassiliou AG. 2016. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling pathways. Cell Mol Life Sci. 73:1685–1698.
  • Ahmad S, Khan H, Siddiqui Z, Khan MY, Rehman S, Shahab U, Godovikova T, Silnikov V, Moinuddin  2018. AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin Cancer Biol. 49:44–55.
  • Akirav EM, Henegariu O, Preston-Hurlburt P, Schmidt AM, Clynes R, Herold KC. 2014. The receptor for advanced glycation end products (RAGE) affects T cell differentiation in OVA induced asthma. PLoS One. 9:e95678.
  • Akirav EM, Preston-Hurlburt P, Garyu J, Henegariu O, Clynes R, Schmidt AM, Herold KC. 2012. RAGE expression in human T cells: a link between environmental factors and adaptive immune responses. PLoS One. 7:e34698.
  • Arumugam T, Ramachandran V, Gomez SB, Schmidt AM, Logsdon CD. 2012. S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin Cancer Res. 18:4356–4364.
  • Arumugam T, Simeone DM, Schmidt AM, Logsdon CD. 2004. S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE). J Biol Chem. 279:5059–5065.
  • Arumugam T, Simeone DM, Van Golen K, Logsdon CD. 2005. S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res. 11:5356–5364.
  • Azizan N, Suter MA, Liu Y, Logsdon CD. 2017. RAGE maintains high levels of NFκB and oncogenic Kras activity in pancreatic cancer. Biochem Biophys Res Commun. 493:592–597.
  • Bae CS, Song J. 2017. The Role of Glucagon-Like Peptide 1 (GLP1) in Type 3 Diabetes: GLP-1 Controls Insulin Resistance, Neuroinflammation and Neurogenesis in the Brain. Int J Mol Sci. 18(11)
  • Bangert A, Andrassy M, Müller AM, Bockstahler M, Fischer A, Volz CH, Leib C, Göser S, Korkmaz-Icöz S, Zittrich S, et al. 2016. Critical role of RAGE and HMGB1 in inflammatory heart disease. Proc Natl Acad Sci U S A. 113:E155–E164.
  • Barbezier N, Tessier FJ, Chango A. 2014. Receptor of advanced glycation endproducts RAGE/AGER: an integrative view for clinical applications. Ann Biol Clin. 72:669–680.
  • Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, Kislinger T, Stern DM, Schmidt AM, De Caterina R, et al. 2002. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 105:816–822.
  • Baulmann J, Nürnberger J, Slany J, Schmieder R, Schmidt-Trucksäss A, Baumgart D, Cremerius P, Hess O, Mortensen K, Weber T, et al. 2010. Arterial stiffness and pulse wave analysis. Dtsch Med Wochenschr. 135(1):S4–S14.
  • Bellussi LM, Cocca S, Passali GC, Passali D. 2017. HMGB1 in the pathogenesis of nasal inflammatory diseases and its inhibition as new therapeutic approach: a review from the literature. Int Arch Otorhinolaryngol. 21:390–398.
  • Bertheloot D, Naumovski AL, Langhoff P, Horvath GL, Jin T, Xiao TS, Garbi N, Agrawal S, Kolbeck R, Latz E, et al. 2016. RAGE enhances TLR responses through binding and internalization of RNA. J Immunol. 197:4118–4126.
  • Bettiga A, Fiorio F, Di Marco F, Trevisani F, Romani A, Porrini E, Salonia A, Montorsi F, Vago R. 2019. The modern western diet rich in advanced glycation end-products (AGEs): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 11:1748.
  • Bianchi R, Adami C, Giambanco I, Donato R. 2007. S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol. 81:108–118.
  • Bianchi R, Giambanco I, Donato R. 2010. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging. 31:665–677.
  • Bianchi R, Kastrisianaki E, Giambanco I, Donato R. 2011. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem. 286:7214–7226.
  • Bongarzone S, Savickas V, Luzi F, Gee AD. 2017. Targeting the receptor for advanced glycation endproducts (RAGE): a medicinal chemistry perspective. J Med Chem. 60:7213–7232.
  • Bortolotto V, Grilli M. 2016. Not only a bad guy: potential proneurogenic role of the RAGE/NF-κB axis in Alzheimer’s disease brain. Neural Regen Res. 11:1924–1925.
  • Boyer F, Vidot JB, Dubourg AG, Rondeau P, Essop MF, Bourdon E. 2015. Oxidative stress and adipocyte biology: focus on the role of AGEs. Oxid Med Cell Longev. 2015:534873.
  • Bu DX, Rai V, Shen X, Rosario R, Lu Y, D’Agati V, Yan SF, Friedman RA, Nuglozeh E, Schmidt AM, et al. 2010. Activation of the ROCK1 branch of the transforming growth factor-beta pathway contributes to RAGE-dependent acceleration of atherosclerosis in diabetic ApoE-null mice. Circ Res. 106:1040–1051.
  • Cai Z, Liu N, Wang C, Qin B, Zhou Y, Xiao M, Chang L, Yan LJ, Zhao B. 2016. Role of RAGE in Alzheimer's Disease. Cell Mol Neurobiol. 36(4):483–495.
  • Cai L, Wen J, Yao J, Li L, Lin W, Liang J, Lin L, Huang H, Zheng Y, Chen G. 2019. RAGE Gly82Ser polymorphism in patients with type 2 diabetes with comorbid depression. J Pak Med Assoc. 69:828–833.
  • Cai W, Duan XM, Liu Y, Yu J, Tang YL, Liu ZL, Jiang S, Zhang CP, Liu JY, Xu JX, et al. 2017. Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway. Biomed Res Int. 2017:4391920.
  • Campbell DJ, Somaratne JB, Jenkins AJ, Prior DL, Yii M, Kenny JF, Newcomb AE, Schalkwijk CG, Black MJ, Kelly DJ, et al. 2011. Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease. Cardiovasc Diabetol. 10:80.
  • Cao T, Zhang L, Yao LL, Zheng F, Wang L, Yang JY, Guo LY, Li XY, Yan YW, Pan YM, et al. 2017. S100B promotes injury-induced vascular remodeling through modulating smooth muscle phenotype. Biochim Biophys Acta Mol Basis Dis. 1863:2772–2782.
  • Cepas V, Collino M, Mayo JC, Sainz RM. 2020. Redox Signaling and Advanced Glycation Endproducts (AGEs) in Diet-Related Diseases. Antioxidants (Basel). 9:142.
  • Chen RC, Yi PP, Zhou RR, Xiao MF, Huang ZB, Tang DL, Huang Y, Fan XG. 2014. The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines. Mol Cell Biochem. 390:271–280.
  • Chen WW, Guo Q, Zhang ZD, Hu WH. 2017. Effects of RAGE on cell proliferation and tumor growth in pancreatic cancer. Sichuan Da Xue Xue Bao Yi Xue Ban. 48:46–51.
  • Chhipa AS, Borse SP, Baksi R, Lalotra S, Nivsarkar M. 2019. Targeting receptors of advanced glycation end products (RAGE): preventing diabetes induced cancer and diabetic complications. Pathol Res Pract. 215:152643.
  • Chu X, Wei X, Lu S, He P. 2015. Autotaxin-LPA receptor axis in the pathogenesis of lung diseases. Int J Clin Exp Med. 8:17117–17122.
  • Chuah YK, Basir R, Talib H, Tie TH, Nordin N. 2013. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam. 2013:403460.
  • Costa DVS, Bon-Frauches AC, Silva AMHP, Lima-Júnior RCP, Martins CS, Leitão RFC, Freitas GB, Castelucci P, Bolick DT, Guerrant RL, et al. 2019. 5-Fluorouracil induces enteric neuron death and glial activation during intestinal mucositis via a S100B-RAGE-NFκB-dependent pathway. Sci Rep. 9:665.
  • Cunha C, Giovannini G, Pierini A, Bell AS, Sorci G, Riuzzi F, Donato R, Rodrigues F, Velardi A, Aversa F, et al. 2011. Genetically-determined hyperfunction of the S100B/RAGE axis is a risk factor for aspergillosis in stem cell transplant recipients. PLoS One. 6:e27962.
  • Daffu G, del Pozo CH, O’Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM. 2013. Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci. 14:19891–19910.
  • Dahrouj M, Desjardins DM, Liu Y, Crosson CE, Ablonczy Z. 2015. Receptor mediated disruption of retinal pigment epithelium function in acute glycated-albumin exposure. Exp Eye Res. 137:50–56.
  • Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, et al. 2003. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 9:907–913.
  • Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, et al. 2012. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 122:1377–1392.,
  • Deng R, Mo F, Chang B, Zhang Q, Ran H, Yang S, Zhu Z, Hu L, Su Q. 2017. Glucose-derived AGEs enhance human gastric cancer metastasis through RAGE/ERK/Sp1/MMP2 cascade. Oncotarget. 8:104216–104226.
  • Di Carlo M, Giacomazza D, San Biagio PL. 2012. Alzheimer’s disease: biological aspects, therapeutic perspectives and diagnostic tools. J Phys Condens Matter. 24:244102
  • Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL. 2013. Functions of S100 proteins. Curr Mol Med. 13:24–57.
  • Donato R, Sorci G, Giambanco I. 2017. S100A6 protein: functional roles. Cell Mol Life Sci. 74:2749–2760.
  • Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I. 2009. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 1793:1008–1022.
  • Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF, Shekhtman A, Ramasamy R, Schmidt AM. 2020. Receptor for advanced glycation end products (RAGE) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: insights from human subjects and animal models. Front Cardiovasc Med. 7:37.
  • Eleazu C, Omar N, Lim OZ, Yeoh BS, Nik Hussain NH, Mohamed M. 2019. Obesity and comorbidity: could simultaneous targeting of esRAGE and sRAGE be the panacea? Front Physiol. 10:787.
  • El-Far AH, Sroga G, AL Jaouni SK, Mousa S. 2020. Role and mechanisms of RAGE-ligand complexes and RAGE-inhibitors in cancer progression. Int J Mol Sci. 21:3613.
  • Farokhzadian J, Mangolian Shahrbabaki P, Bagheri V. 2019. S100A12-CD36 axis: a novel player in the pathogenesis of atherosclerosis? Cytokine. 122:154104.
  • Fehrenbach H, Kasper M, Tschernig T, Shearman MS, Schuh D, Müller M. 1998. Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol (Noisy-le-Grand). 44:1147–1157.
  • Feig JE, Feig JL. 2012. Macrophages, dendritic cells, and regression of atherosclerosis. Front Physiol. 3:286.
  • Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM. 2010. Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J. 277:4578–4590.
  • Fritz G. 2011. RAGE: a single receptor fits multiple ligands. Trends Biochem Sci. 36:625–632.
  • Fuentes MK, Nigavekar SS, Arumugam T, Logsdon CD, Schmidt AM, Park JC, Huang EH. 2007. RAGE activation by S100P in colon cancer stimulates growth, migration, and cell signaling pathways. Dis Colon Rectum. 50(8):1230–1240.
  • Fujiya A, Nagasaki H, Seino Y, Okawa T, Kato J, Fukami A, Himeno T, Uenishi E, Tsunekawa S, Kamiya H, et al. 2014. The role of S100B in the interaction between adipocytes and macrophages. Obesity. 22:371–379.
  • Gao H, Li H, Li W, Shen X, Di B. 2017. Pioglitazone attenuates atherosclerosis in diabetic mice by inhibition of receptor for advanced glycation end-product (RAGE) signaling. Med Sci Monit. 23:6121–6131.
  • Gao H, Zhang IY, Zhang L, Song Y, Liu S, Ren H, Liu H, Zhou H, Su Y, Yang Y, et al. 2018. S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth. Cancer Lett. 439:91–100.
  • Gao X, Zhang H, Schmidt AM, Zhang C. 2008. AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 295:H491–H498.
  • Gasiorowski K, Brokos B, Echeverria V, Barreto GE, Leszek J. 2017. RAGE-TLR crosstalk sustains chronic inflammation in neurodegeneration. Mol Neurobiol. 55:1463–1476.
  • Glade MJ, Smith K. 2015. Phosphatidylserine and the human brain. Nutrition. 31:781–786.
  • Goldin A, Beckman JA, Schmidt AM, Creager MA. 2006. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 114:597–605.
  • Gray SP, Jandeleit-Dahm K. 2014. The pathobiology of diabetic vascular complications-cardiovascular and kidney disease. J Mol Med. 92:441–452.
  • Gross SR, Sin CGT, Barraclough R, Rudland PS. 2014. Joining S100 proteins and migration: for better or for worse, in sickness and in health. Cell Mol Life Sci. 71:1551–1579.
  • Guo Y, Zhang HC, Xue S, Zheng JH. 2019. Receptors for advanced glycation end products is associated with autophagy in the clear cell renal cell carcinoma. J Cancer Res Ther. 15:317–323.
  • Guo ZJ, Niu HX, Hou FF, Zhang L, Fu N, Nagai R, Lu X, Chen BH, Shan YX, Tian JW, et al. 2008. Advanced oxidation protein products activate vascular endothelial cells via a RAGE-mediated signaling pathway. Antioxid Redox Signal. 10:1699–1712.
  • Haider SH, Oskuei A, Crowley G, Kwon S, Lam R, Riggs J, Mikhail M, Talusan A, Veerappan A, Kim JS, et al. 2019. Receptor for advanced glycation end-products and environmental exposure related obstructive airways disease: a systematic review. Eur Respir Rev. 28:180096.
  • Han C, Rice MW, Cai D. 2016. Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab. 311:E32–E41.
  • He M, Kubo H, Morimoto K, Fujino N, Suzuki T, Takahasi T, Yamada M, Yamaya M, Maekawa T, Yamamoto Y, et al. 2011. Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep. 12:358–364.
  • He SJ, Cheng J, Feng X, Yu Y, Tian L, Huang Q. 2017. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget. 8:64534–64550.
  • Henning C, Glomb MA. 2016. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 33:499–512.
  • Herwig N, Belter B, Wolf S, Haase-Kohn C, Pietzsch J. 2016. Interaction of extracellular S100A4 with RAGE prompts prometastatic activation of A375 melanoma cells. J Cell Mol Med. 20:825–835.
  • Hou S, Tian T, Qi D, Sun K, Yuan Q, Wang Z, Qin Z, Wu Z, Chen Z, Zhang J, et al. 2018. S100A4 promotes lung tumor development through β-catenin pathway-mediated autophagy inhibition. Cell Death Dis. 9:277.
  • Hudson BI, Carter AM, Harja E, Kalea AZ, Arriero M, Yang H, Grant PJ, Schmidt AM. 2008. Identification, classification, and expression of RAGE gene splice variants. FASEB J. 22:1572–1580.
  • Hudson BI, Kalea AZ, Del Mar Arriero M, Harja E, Boulanger E, D'Agati V, Schmidt AM. 2008. Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem. 283:34457–34468.
  • Hudson BI, Lippman ME. 2018. Targeting RAGE signaling in inflammatory disease. Annu Rev Med. 69:349–364.
  • Hurtado Del Pozo C, Ruiz HH, Arivazhagan L, Aranda JF, Shim C, Daya P, Derk J, MacLean M, He M, Frye L, et al. 2019. A Receptor of the immunoglobulin superfamily regulates adaptive thermogenesis. Cell Rep. 28:773–791.e7.
  • Iannitti RG, Casagrande A, De Luca A, Cunha C, Sorci G, Riuzzi F, Borghi M, Galosi C, Massi-Benedetti C, Oury TD, et al. 2013. Hypoxia promotes danger-mediated inflammation via receptor for advanced glycation end products in cystic fibrosis. Am J Respir Crit Care Med. 188:1338–1350.
  • Ibrahim ZA, Armour CL, Phipps S, Sukkar MB. 2013. RAGE and TLRs: relatives, friends or neighbours? Mol Immunol. 56:739–744.
  • Jangde N, Ray R, Sinha S, Rana K, Singh SK, Khandagale P, Acharya N, Rai V. 2018. Cysteine mediated disulfide bond formation in RAGE V domain facilitates its functionally relevant dimerization. Biochimie. 154:55–61.
  • Jensen LJ, Flyvbjerg A, Bjerre M. 2015. Soluble receptor for advanced glycation end product: a biomarker for acute coronary syndrome. Biomed Res Int. 2015:815942.
  • Juranek J, Ray R, Banach M, Rai V. 2015. Receptor for advanced glycation end-products in neurodegenerative diseases. Rev Neurosci. 26:691–698.
  • Juranek JK, Kothary P, Mehra A, Hays A, Brannagan TH, Schmidt AM. 2013. Increased expression of the receptor for advanced glycation end-products in human peripheral neuropathies. Brain Behav. 3:701–709.
  • Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, Benjamin EJ, Vasan RS, Mitchell GF. 2012. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 308:875–881.
  • Kalea AZ, Reiniger N, Yang H, Arriero M, Schmidt AM, Hudson BI. 2009. Alternative splicing of the murine receptor for advanced glycation end-products (RAGE) gene. Faseb J. 23:1766–1774.
  • Kan S, Wu J, Sun C, Hao J, Wu Z. 2018. Correlation between RAGE gene promoter methylation and diabetic retinal inflammation. Exp Ther Med. 15(1):242–246.
  • Kay AM, Simpson CL, Stewart JA Jr, 2016. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res. 2016:6809703.
  • Kellow NJ, Coughlan MT. 2015. Effect of diet-derived advanced glycation end products on inflammation. Nutr Rev. 73:737–759.
  • Kierdorf K, Fritz G. 2013. RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol. 94:55–68.
  • Kim J, Waldvogel HJ, Faull RL, Curtis MA, Nicholson LF. 2015. The RAGE receptor and its ligands are highly expressed in astrocytes in a grade-dependant manner in the striatum and subependymal layer in Huntington's disease. J Neurochem. 134(5):927–942.
  • Kindermann A, Baier J, Simm A, Haase R, Bartling B. 2019. Receptor for advanced glycation end-products modulates lung development and lung sensitivity to hyperoxic injury in newborn mice. Pflugers Arch. 471:983–994.
  • Koch M, Chitayat S, Dattilo BM, Schiefner A, Diez J, Chazin WJ, Fritz G. 2010. Structural basis for ligand recognition and activation of RAGE. Structure. 18:1342–1352.
  • Kolonin MG, Sergeeva A, Staquicini DI, Smith TL, Tarleton CA, Molldrem JJ, Sidman RL, Marchiò S, Pasqualini R, Arap W, et al. 2017. Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone. Cancer Res. 77:3144–3150.
  • Kouidrat Y, Amad A, Arai M, Miyashita M, Lalau JD, Loas G, Itokawa M. 2015. Advanced glycation end products and schizophrenia: a systematic review. J Psychiatr Res. 66-67:112–117.
  • Koulis C, Watson AMD, Gray SP, Jandeleit-Dahm KA. 2015. Linking RAGE and Nox in diabetic micro- and macrovascular complications. Diabetes Metab. 41:272–281.
  • Koutsokera A, Kiagia M, Saif MW, Souliotis K, Syrigos KN. 2013. Nutrition habits, physical activity, and lung cancer: an authoritative review. Clin Lung Cancer. 14:342–350.
  • Kumar V, Fleming T, Terjung S, Gorzelanny C, Gebhardt C, Agrawal R, Mall MA, Ranzinger J, Zeier M, Madhusudhan T, et al. 2017. Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair. Nucleic Acids Res. 45:10595–10613.
  • Kwak T, Drews-Elger K, Ergonul A, Miller PC, Braley A, Hwang GH, Zhao D, Besser A, Yamamoto Y, Yamamoto H, et al. 2017. Targeting of RAGE-ligand signaling impairs breast cancer cell invasion and metastasis. Oncogene. 36:1559–1572.
  • Lancefield TF, Patel SK, Freeman M, Velkoska E, Wai B, Srivastava PM, Horrigan M, Farouque O, Burrell LM. 2016. The Receptor for Advanced Glycation End Products (RAGE) Is Associated with Persistent Atrial Fibrillation. PLoS One. 11(9):e0161715.
  • Liang H, Zhong Y, Zhou S, Peng L. 2011. Knockdown of RAGE expression inhibits colorectal cancer cell invasion and suppresses angiogenesis in vitro and in vivo. Cancer Lett. 313(1):91–98.
  • Li J, Schmidt AM. 1997. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem. 272:16498–16506.
  • Li J, Wu PW, Zhou Y, Dai B, Zhang PF, Zhang YH, Liu Y, Shi XL. 2018. Rage induces hepatocellular carcinoma proliferation and sorafenib resistance by modulating autophagy. Cell Death Dis. 9:225.
  • Liu Y, Wang C, Shan X, Wu J, Liu H, Liu H, Zhang J, Xu W, Sha Z, He J, et al. 2017. S100P is associated with proliferation and migration in nasopharyngeal carcinoma. Oncol Lett. 14:525–532.
  • Liu Y, Yu M, Zhang Z, Yu Y, Chen Q, Zhang W, Zhao X. 2016. Blockade of receptor for advanced glycation end products protects against systolic overload-induced heart failure after transverse aortic constriction in mice. Eur J Pharmacol. 791:535–543.
  • Lopez-Diez R, Shekhtman A, Ramasamy R, Schmidt AM. 2016. Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta. 1862:2244–2252.
  • Lu J, Tan M, Cai Q. 2015. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 356:156–164.
  • Luevano-Contreras C, Chapman-Novakofski K. 2010. Dietary advanced glycation end products and aging. Nutrients. 2:1247–1265.
  • Ma W, Rai V, Hudson BI, Song F, Schmidt AM, Barile GR. 2012. RAGE binds C1q and enhances C1q-mediated phagocytosis. Cell Immunol. 274:72–82.
  • MacLean M, Derk J, Ruiz HH, Juranek JK, Ramasamy R, Schmidt AM. 2019. The Receptor for Advanced Glycation End Products (RAGE) and DIAPH1: implications for vascular and neuroinflammatory dysfunction in disorders of the central nervous system. Neurochem Int. 126:154–164.
  • Mahali S, Raviprakash N, Raghavendra PB, Manna SK. 2011. Advanced glycation end products (AGEs) induce apoptosis via a novel pathway: INVOLVEMENT OF Ca2+ mediated by interleukin-8 protein. J Biol Chem. 286:34903–34913.
  • Manigrasso MB, Juranek J, Ramasamy R, Schmidt AM. 2014. Unlocking the biology of RAGE in diabetic microvascular complications. Trends Endocrinol Metab. 25:15–22.
  • Manigrasso MB, Pan J, Rai V, Zhang J, Reverdatto S, Quadri N, DeVita RJ, Ramasamy R, Shekhtman A, Schmidt AM, et al. 2016. Small molecule inhibition of ligand-stimulated RAGE-DIAPH1 signal transduction. Sci Rep. 6:22450.
  • Marenholz I, Heizmann CW, Fritz G. 2004. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun. 322:1111–1122.
  • Matou-Nasri S, Sharaf H, Wang Q, Almobadel N, Rabhan Z, Al-Eidi H, Yahya WB, Trivilegio T, Ali R, Al-Shanti N, et al. 2017. Biological impact of advanced glycation endproducts on estrogen receptor-positive MCF-7 breast cancer cells. Biochim Biophys Acta Mol Basis Dis. 1863:2808–2820.
  • Meneghini V, Bortolotto V, Francese MT, Dellarole A, Carraro L, Terzieva S, Grilli M. 2013. High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-κB axis: relevance for Alzheimer’s disease. J Neurosci. 33:6047–6059.
  • Meyre D, Froguel P, Horber FF, Kral JG. 2014. Comment on: Valette et al. Melanocortin-4 receptor mutations and polymorphisms do not affect weight loss after bariatric surgery. PLOS ONE 2012; 7(11):E48221. PLoS One. 9:e93324.
  • Migrino RQ, Davies HA, Truran S, Karamanova N, Franco DA, Beach TG, Serrano GE, Truong D, Nikkhah M, Madine J. 2017. Amyloidogenic medin induces endothelial dysfunction and vascular inflammation through the receptor for advanced glycation endproducts. Cardiovasc Res. 113(11):1389–1402.
  • Mohammadzadeh F, Tsoporis JN, Izhar S, Desjardins JF, Parker TG. 2018. Deficiency of S100B confers resistance to experimental diabetes in mice. Exp Cell Res. 365:129–137.
  • Monden M, Koyama H, Otsuka Y, Morioka T, Mori K, Shoji T, Mima Y, Motoyama K, Fukumoto S, Shioi A, et al. 2013. Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: involvement of Toll-like receptor 2. Diabetes. 62:478–489.,
  • Morgese MG, Schiavone S, Trabace L. 2017. Emerging role of amyloid beta in stress response: implication for depression and diabetes. Eur J Pharmacol. 817:22–29.
  • Mukherjee TK, Mukhopadhyay S, Hoidal JR. 2008. Implication of receptor for advanced glycation end product (RAGE) in pulmonary health and pathophysiology. Respir Physiol Neurobiol. 162:210–215.
  • Nam MH, Son WR, Lee YS, Lee KW. 2015. Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium. Cell Commun Adhes. 22(2-6):67–78.
  • Nakamura N, Matsui T, Ishibashi Y, Sotokawauchi A, Fukami K, Higashimoto Y, Yamagishi SI. 2017. RAGE-aptamer attenuates the growth and liver metastasis of malignant melanoma in nude mice. Mol Med. 23:295–306.
  • Nicholl ID, Stitt AW, Moore JE, Ritchie AJ, Archer DB, Bucala R. 1998. Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Mol Med. 4:594–601.
  • Oczypok EA, Perkins TN, Oury TD. 2017. All the “RAGE” in lung disease: the receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev. 23:40–49.
  • Oh S, Son M, Choi J, Lee S, Byun K. 2018. sRAGE prolonged stem cell survival and suppressed RAGE-related inflammatory cell and T lymphocyte accumulations in an Alzheimer's disease model. Biochem Biophys Res Commun. 495:807–813.
  • Oktay AA, Akturk HK, Jahangir E. 2016. Diabetes mellitus and hypertension: a dual threat. Curr Opin Cardiol. 31:402–409.
  • Onyeagucha BC, Mercado-Pimentel ME, Hutchison J, Flemington EK, Nelson MA. 2013. S100P/RAGE signaling regulates microRNA-155 expression via AP-1 activation in colon cancer. Exp Cell Res. 319:2081–2090.
  • Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E, Ballantyne CM, Gahmberg CG, Bianchi ME, Nawroth PP, et al. 2007. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J. 26:1129–1139.
  • Park H, Adsit FG, Boyington JC. 2010. The 1.5 Å crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding. J Biol Chem. 285:40762–40770.
  • Perrone L, Peluso G, Melone MA. 2008. RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes. J Cell Physiol. 217:60–71.
  • Ponath G, Schettler C, Kaestner F, Voigt B, Wentker D, Arolt V, Rothermundt M. 2007. Autocrine S100B effects on astrocytes are mediated via RAGE. J Neuroimmunol. 184:214–222.
  • Raghu G, Akileshwari C, Reddy VS, Reddy GB. 2017. Attenuation of diabetic retinopathy in rats by ellagic acid through inhibition of AGE formation. J Food Sci Technol. 54(8):2411–2421.
  • Rai V, Maldonado AY, Burz DS, Reverdatto S, Yan SF, Schmidt AM, Shekhtman A. 2012. Signal transduction in receptor for advanced glycation end products (RAGE): solution structure of C-terminal rage (ctRAGE) and its binding to mDia1. J Biol Chem. 287:5133–5144.
  • Rai V, Touré F, Chitayat S, Pei R, Song F, Li Q, Zhang J, Rosario R, Ramasamy R, Chazin WJ, et al. 2012. Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. J Exp Med. 209:2339–2350.
  • Rajaraman B, Ramadas N, Krishnasamy S, Ravi V, Pathak A, Devasena CS, Swaminathan K, Ganeshprasad A, Kuppuswamy AA, Vedantham S, et al. 2019. Hyperglycaemia cause vascular inflammation through advanced glycation end products/early growth response-1 axis in gestational diabetes mellitus. Mol Cell Biochem. 456:179–190.
  • Ramachandran S, Shida D, Nagahashi M, Fang X, Milstien S, Takabe K, Spiegel S. 2010. Lysophosphatidic acid stimulates gastric cancer cell proliferation via ERK1-dependent upregulation of sphingosine kinase 1 transcription. FEBS Lett. 584:4077–4082.
  • Ramasamy R, Shekhtman A, Schmidt AM. 2016. The multiple faces of RAGE-opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets. 20:431–446.
  • Ray R, Juranek JK, Rai V. 2016. RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of amyotrophic lateral sclerosis. Neurosci Biobehav Rev. 62:48–55.
  • Ray R, Rai V. 2017. Lysophosphatidic acid converts monocytes into macrophages in both mice and humans. Blood. 129:1177–1183.
  • Remonti LR, Kramer CK, Leitão CB, Pinto LCF, Gross JL. 2015. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid. 25:538–550.
  • Reverdatto S, Rai V, Xue J, Burz DS, Schmidt AM, Shekhtman A. 2013. Combinatorial library of improved peptide aptamers, CLIPs to inhibit RAGE signal transduction in mammalian cells. PLoS One. 8:e65180.
  • Rezaei O, Pakdaman H, Gharehgozli K, Simani L, Vahedian-Azimi A, Asaadi S, Sahraei Z, Hajiesmaeili M. 2017. S100 B: a new concept in neurocritical care. Iran J Neurol. 16:83–89.
  • Richard SA, et al. 2017. Pivotal neuroinflammatory and therapeutic role of high mobility group box 1 in ischemic stroke. Biosci Rep. 37:BSR20171104.
  • Richard SA, Jiang Y, Xiang LH, Zhou S, Wang J, Su Z, Xu H. 2017. Post-translational modifications of high mobility group box 1 and cancer. Am J Transl Res. 9:5181–5196.
  • Riuzzi F, Beccafico S, Sagheddu R, Chiappalupi S, Giambanco I, Bereshchenko O, Riccardi C, Sorci G, Donato R. 2017. Levels of S100B protein drive the reparative process in acute muscle injury and muscular dystrophy. Sci Rep. 7:12537.
  • Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. 2019. S100 proteins in obesity: liaisons dangereuses. Cell Mol Life Sci. 77:129–147.
  • Riuzzi F, Sorci G, Arcuri C, Giambanco I, Bellezza I, Minelli A, Donato R. 2018. Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J Cachexia Sarcopenia Muscle. 9:1255–1268.
  • Riuzzi F, Sorci G, Beccafico S, Donato R. 2012. S100B engages RAGE or bFGF/FGFR1 in myoblasts depending on its own concentration and myoblast density. Implications for muscle regeneration. PLoS One. 7:e28700.
  • Riuzzi F, Sorci G, Donato R. 2007. RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growth. Am J Pathol. 171:947–961.
  • Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. 2018. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle. 9:1213–1234.
  • Riuzzi F, Sorci G, Sagheddu R, Donato R. 2012. HMGB1-RAGE regulates muscle satellite cell homeostasis through p38-MAPK- and myogenin-dependent repression of Pax7 transcription. J Cell Sci. 125:1440–1454.
  • Riuzzi F, Sorci G, Sagheddu R, Sidoni A, Alaggio R, Ninfo V, Donato R. 2014. RAGE signaling deficiency in rhabdomyosarcoma cells causes upregulation of PAX7 and uncontrolled proliferation. J Cell Sci. 127:1699–1711.
  • Ruiz HH, Ramasamy R, Schmidt AM. 2020. Advanced glycation end products: building on the concept of the “common soil” in metabolic disease. Endocrinology. 161:bqz006.
  • Sabbagh MN, Agro A, Bell J, Aisen PS, Schweizer E, Galasko D. 2011. PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Assoc Disord. 25:206–212.
  • Sagheddu R, Chiappalupi S, Salvadori L, Riuzzi F, Donato R, Sorci G. 2018. Targeting RAGE as a potential therapeutic approach to Duchenne muscular dystrophy. Hum Mol Genet. 27:3734–3746.
  • Sakellariou S, Fragkou P, Levidou G, Gargalionis AN, Piperi C, Dalagiorgou G, Adamopoulos C, Saetta A, Agrogiannis G, Theohari I, et al. 2016. Clinical significance of AGE-RAGE axis in colorectal cancer: associations with glyoxalase-I, adiponectin receptor expression and prognosis. BMC Cancer. 16(1).
  • Sakaguchi M, Murata H, Yamamoto KI, Ono T, Sakaguchi Y, Motoyama A, Hibino T, Kataoka K, Huh NH. 2011. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One. 6:e23132.
  • Sakatani S, Seto-Ohshima A, Shinohara Y, Yamamoto Y, Yamamoto H, Itohara S, Hirase H. 2008. Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo. J Neurosci. 28:10928–10936.
  • Sathe K, Maetzler W, Lang JD, Mounsey RB, Fleckenstein C, Martin HL, Schulte C, Mustafa S, Synofzik M, Vukovic Z, et al. 2012. S100B is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. Brain. 135:3336–3347.
  • Sbai O, Devi TS, Melone MAB, Feron F, Khrestchatisky M, Singh LP, Perrone L. 2010. RAGE-TXNIP axis is required for S100B-promoted Schwann cell migration, fibronectin expression and cytokine secretion. J Cell Sci. 123:4332–4339.
  • Scavello F, Zeni F, Tedesco CC, Mensà E, Veglia F, Procopio AD, Bonfigli AR, Olivieri F, Raucci A. 2019. Modulation of soluble receptor for advanced glycation end-products (RAGE) isoforms and their ligands in healthy aging. Aging (Albany NY). 11:1648–1663.
  • Schleicher E, Friess U. 2007. Oxidative stress, AGE, and atherosclerosis. Kidney Int Suppl. 72:S17–S26.
  • Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D. 1994. Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb. 14:1521–1528.
  • Schroter D, Hohn A. 2018. Role of advanced glycation end products in carcinogenesis and their therapeutic implications. Curr Pharm Des. 24:5245–5251.
  • Seguella L, Capuano R, Pesce M, Annunziata G, Pesce M, de Conno B, Sarnelli G, Aurino L, Esposito G. 2019. S100B protein stimulates proliferation and angiogenic mediators release through RAGE/pAkt/mTOR pathway in human colon adenocarcinoma caco-2 cells. Int J Mol Sci. 20:3240.
  • Sell DR, Monnier VM. 2012. Molecular basis of arterial stiffening: role of glycation – a mini-review. Gerontology. 58:227–237.
  • Semba RD, Sun K, Schwartz AV, Varadhan R, Harris TB, Satterfield S, Garcia M, Ferrucci L, Newman AB, Health ABC Study 2015. Serum carboxymethyl-lysine, an advanced glycation end product, is associated with arterial stiffness in older adults. J Hypertens. 33:797–803.
  • Senatus LM, Schmidt AM. 2017. The AGE-RAGE axis: implications for age-associated arterial diseases. Front Genet. 8:187.
  • Sessa L, Gatti E, Zeni F, Antonelli A, Catucci A, Koch M, Pompilio G, Fritz G, Raucci A, Bianchi ME, et al. 2014. The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of Cell Adhesion Molecules (CAMs). PLoS One. 9:e86903.
  • Sever R, Brugge JS. 2015. Signal transduction in cancer. Cold Spring Harb Perspect Med. 5: a006098.
  • Shen D, Podolnikova NP, Yakubenko VP, Ardell CL, Balabiyev A, Ugarova TP, Wang X. 2017. Pleiotrophin, a multifunctional cytokine and growth factor, induces leukocyte responses through the integrin Mac-1. J Biol Chem. 292:18848–18861.
  • Siddique HR, Adhami VM, Parray A, Johnson JJ, Siddiqui IA, Shekhani MT, Murtaza I, Ambartsumian N, Konety BR, Mukhtar H, et al. 2013. The S100A4 oncoprotein promotes prostate tumorigenesis in a transgenic mouse model: regulating NFkappaB through the RAGE receptor. Genes Cancer. 4:224–234.
  • Somensi N, Brum PO, de Miranda Ramos V, Gasparotto J, Zanotto-Filho A, Rostirolla DC, da Silva Morrone M, Moreira JCF, Pens Gelain D. 2017. Extracellular HSP70 activates ERK1/2, NF-kB and pro-inflammatory gene transcription through binding with RAGE in A549 human lung cancer cells. Cell Physiol Biochem. 42:2507–2522.
  • Song F, Hurtado del Pozo C, Rosario R, Zou YS, Ananthakrishnan R, Xu X, Patel PR, Benoit VM, Yan SF, Li H, et al. 2014. RAGE regulates the metabolic and inflammatory response to high-fat feeding in mice. Diabetes. 63:1948–1965.
  • Sorci G, Giovannini G, Riuzzi F, Bonifazi P, Zelante T, Zagarella S, Bistoni F, Donato R, Romani L. 2011. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog. 7:e1001315.
  • Sorci G, Riuzzi F, Arcuri C, Tubaro C, Bianchi R, Giambanco I, Donato R. 2013. S100B protein in tissue development, repair and regeneration. World J Biol Chem. 4:1–12.
  • Sorci G, Riuzzi F, Giambanco I, Donato R. 2013. RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta. 1833:101–109.
  • Srikrishna G, Nayak J, Weigle B, Temme A, Foell D, Hazelwood L, Olsson A, Volkmann N, Hanein D, Freeze HH, et al. 2010. Carboxylated N-glycans on RAGE promote S100A12 binding and signaling. J Cell Biochem. 110:645–659.
  • Steiner J, Walter M, Wunderlich MT, Bernstein HG, Panteli B, Brauner M, Jacobs R, Gos T, Rothermundt M, Bogerts B, et al. 2009. A new pathophysiological aspect of S100B in schizophrenia: potential regulation of S100B by its scavenger soluble RAGE. Biol Psychiatry. 65:1107–1110.
  • Syed DN, Aljohani A, Waseem D, Mukhtar H. 2018. Ousting RAGE in melanoma: a viable therapeutic target? Semin Cancer Biol. 49:20–28.
  • Tan AL, Forbes JM, Cooper ME. 2007. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol. 27:130–143.
  • Taub CJ, Lippman ME, Hudson BI, Blomberg BB, Diaz A, Fisher HM, Nahin ER, Lechner SC, Kwak T, Hwang GH, et al. 2019. The effects of a randomized trial of brief forms of stress management on RAGE-associated S100A8/A9 in patients with breast cancer undergoing primary treatment. Cancer. 125:1717–1725.
  • Teh BK, Yeo JG, Chern LM, Lu J. 2011. C1q regulation of dendritic cell development from monocytes with distinct cytokine production and T cell stimulation. Mol Immunol. 48:1128–1138.
  • Teissier T, Boulanger E. 2019. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 20:279–301.
  • Tekabe Y, Anthony T, Li Q, Ray R, Rai V, Zhang G, Schmidt AM, Johnson LL. 2015. Treatment effect with anti-RAGE F(ab')2 antibody improves hind limb angiogenesis and blood flow in type 1 diabetic mice with left femoral artery ligation. Vasc Med. 20:212–218.
  • Touré F, Fritz G, Li Q, Rai V, Daffu G, Zou YS, Rosario R, Ramasamy R, Alberts AS, Yan SF, et al. 2012. Formin mDia1 mediates vascular remodeling via integration of oxidative and signal transduction pathways. Circ Res. 110:1279–1293.
  • Tsoporis JN, Izhar S, Leong-Poi H, Desjardins JF, Huttunen HJ, Parker TG. 2010. S100B interaction with the receptor for advanced glycation end products (RAGE): a novel receptor-mediated mechanism for myocyte apoptosis postinfarction. Circ Res. 106:93–101.
  • Tsoi H, Lau TC, Tsang SY, Lau KF, Chan HY. 2012. CAG expansion induces nucleolar stress in polyglutamine diseases. Proc Natl Acad Sci Usa. 109(33):13428–13433.
  • Ueda H. 2020. LPA receptor signaling as a therapeutic target for radical treatment of neuropathic pain and fibromyalgia. Pain Manag. 10:43–53.
  • Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macías-Cervantes MH, Markowicz Bastos DH, Medrano A, Menini T, et al. 2015. Dietary advanced glycation end products and their role in health and disease. Adv Nutr. 6:461–473.
  • VanPatten S, Al-Abed Y. 2018. High mobility group box-1 (HMGb1): current wisdom and advancement as a potential drug target. J Med Chem. 61:5093–5107.[AQ8]
  • Villarreal A, Seoane R, González Torres A, Rosciszewski G, Angelo MF, Rossi A, Barker PA, Ramos AJ. 2014. S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem. 131:190–205.
  • Wang Y, Wang H, Piper MG, McMaken S, Mo X, Opalek J, Schmidt AM, Marsh CB. 2010. sRAGE induces human monocyte survival and differentiation. J Immunol. 185:1822–1835.
  • Warboys CM, Toh HB, Fraser PA. 2009. Role of NADPH oxidase in retinal microvascular permeability increase by RAGE activation. Invest Ophthalmol Vis Sci. 50:1319–1328.
  • Wei Q, Ren X, Jiang Y, Jin H, Liu N, Li J. 2013. Advanced glycation end products accelerate rat vascular calcification through RAGE/oxidative stress. BMC Cardiovasc Disord. 13:13.
  • Williams NR, Okun MS. 2013. Deep brain stimulation (DBS) at the interface of neurology and psychiatry. J Clin Invest. 123:4546–4556.
  • Wu L, Ma L, Nicholson LFB, Black PN. 2011. Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Respir Med. 105:329–336.
  • Wu Y, Liu X, Guo LY, Zhang L, Zheng F, Li S, Li XY, Yuan Y, Liu Y, Yan YW, et al. 2019. S100B is required for maintaining an intermediate state with double-positive Sca-1+ progenitor and vascular smooth muscle cells during neointimal formation. Stem Cell Res Ther. 10:294.
  • Xu Y, Toure F, Qu W, Lin L, Song F, Shen X, Rosario R, Garcia J, Schmidt AM, Yan SF, et al. 2010. Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J Biol Chem. 285:23233–23240.
  • Xu YD, Wang Y, Yin LM, Peng LL, Park GH, Yang YQ. 2017. S100A8 inhibits PDGF-induced proliferation of airway smooth muscle cells dependent on the receptor for advanced glycation end-products. Biol Res. 50:23.
  • Xue J, Manigrasso M, Scalabrin M, Rai V, Reverdatto S, Burz DS, Fabris D, Schmidt AM, Shekhtman A. 2016. Change in the molecular dimension of a RAGE-ligand complex triggers RAGE signaling. Structure. 24:1509–1522.
  • Xue J, Rai V, Singer D, Chabierski S, Xie J, Reverdatto S, Burz DS, Schmidt AM, Hoffmann R, Shekhtman A, et al. 2011. Advanced glycation end product recognition by the receptor for AGEs. Structure. 19:722–732.
  • Xue J, Ray R, Singer D, Böhme D, Burz DS, Rai V, Hoffmann R, Shekhtman A. 2014. The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry. 53:3327–3335.
  • Xu XC, Abuduhadeer X, Zhang WB, Li T, Gao H, Wang YH. 2013. Knockdown of RAGE inhibits growth and invasion of gastric cancer cells. Eur J Histochem. 57(4):e36.
  • Yamagishi SI, Matsui T. 2018. Therapeutic potential of DNA-aptamers raised against AGE-RAGE axis in diabetes-related complications. Curr Pharm Des. 24:2802–2809.
  • Yan SF, Ramasamy R, Schmidt AM. 2009. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev Mol Med. 11:e9.
  • Yang H, Nie Y, Chen Z, Ye L, Wang Q, Wang Z. 2017. Genetic variants of the receptor for advanced glycation end-products in susceptibility to type 2 diabetes mellitus in primary hypertensive patients. Sci Rep. 7:17207.
  • Yu YX, Pan WC, Cheng YF. 2017. Silencing of advanced glycosylation and glycosylation and product-specific receptor (RAGE) inhibits the metastasis and growth of non-small cell lung cancer. Am J Transl Res. 9:2760–2774.
  • Yamagishi S, Nakamura K, Matsui T. 2006. Advanced glycation end products (AGEs) and their receptor (RAGE) system in diabetic retinopathy. Curr Drug Discov Technol. 3(1):83–88.
  • Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, et al. 1996. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature. 382(6593):685–691.
  • Zhang J, Jiao Y, Hou S, Tian T, Yuan Q, Hao H, Wu Z, Bao X. 2017. S100A4 contributes to colitis development by increasing the adherence of Citrobacter rodentium in intestinal epithelial cells. Sci Rep. 7:12099.
  • Zhang L, Liu W, Alizadeh D, Zhao D, Farrukh O, Lin J, Badie SA, Badie B. 2011. S100B attenuates microglia activation in gliomas: possible role of STAT3 pathway. Glia. 59:486–498.
  • Zhang X, Cao X, Dang M, Wang H, Chen B, Du F, Li H, Zeng X, Guo C. 2019. Soluble receptor for advanced glycation end-products enhanced the production of IFN-γ through the NF-κB pathway in macrophages recruited by ischemia/reperfusion. Int J Mol Med. 43:2507–2515.
  • Zhang Z, Yang L, Lei L, Chen R, Chen H, Zhang H. 2016. Glucagon-like peptide-1 attenuates advanced oxidation protein product-mediated damage in islet microvascular endothelial cells partly through the RAGE pathway. Int J Mol Med. 38:1161–1169.
  • Zitvogel L, Kepp O, Kroemer G. 2010. Decoding cell death signals in inflammation and immunity. Cell. 140:798–804.
  • Zong H, Ward M, Madden A, Yong PH, Limb GA, Curtis TM, Stitt AW. 2010. Hyperglycaemia-induced pro-inflammatory responses by retinal Müller glia are regulated by the receptor for advanced glycation end-products (RAGE)). Diabetologia. 53:2656–2666.
  • Zong H, Ward M, Stitt AW. 2011. AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep. 11(4):244–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.