902
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Regulation of protein function and degradation by heme, heme responsive motifs, and CO

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 16-47 | Received 17 May 2021, Accepted 26 Jul 2021, Published online: 13 Sep 2021

References

  • Airola MV, Du J, Dawson JH, Crane BR. 2010. Heme binding to the mammalian circadian clock protein period 2 is nonspecific. Biochemistry. 49(20):4327–4338.
  • Andrews NC, Schmidt PJ. 2007. Iron homeostasis. Annu Rev Physiol. 69:69–85.
  • Aono S. 2003. Biochemical and biophysical properties of the CO-sensing transcriptional activator CooA. Acc Chem Res. 36(11):825–831.
  • Appel A, Bercaw J, Bocarsly A, Dobbek H, DuBois D, Dupuis M, Ferry J, Fujita E, Hille R, Kenis P, et al. 2013. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev. 113(8):6621–6658.
  • Atamna H, Brahmbhatt M, Atamna W, Shanower GA, Dhahbi JM. 2015. ApoHRP-based assay to measure intracellular regulatory heme. Metallomics. 7(2):309–321.
  • Atamna H, Killilea DW, Killilea AN, Ames BN. 2002. Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging. Proc Natl Acad Sci USA. 99(23):14807–14812.
  • Ayer A, Zarjou A, Agarwal A, Stocker R. 2016. Heme oxygenases in cardiovascular health and disease. Physiol Rev. 96(4):1449–1508.
  • Bagai I, Sarangi R, Fleischhacker AS, Sharma A, Hoffman BM, Zuiderweg ERP, Ragsdale SW. 2015. Spectroscopic studies reveal that the heme regulatory motifs of heme oxygenase-2 are dynamically disordered and exhibit redox-dependent interaction with heme. Biochemistry. 54(17):2693–2708.
  • Banerjee R. 2017. Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis. Curr Opin Chem Biol. 37:115–121.
  • Banerjee R, Zou CG. 2005. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys. 433(1):144–156.
  • Barr I, Smith AT, Chen YQ, Senturia R, Burstyn JN, Guo F. 2012. Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing. PNAS. 109(6):1919–1924.
  • Barr I, Smith AT, Senturia R, Chen YQ, Scheidemantle BD, Burstyn JN, Guo F. 2011. DiGeorge Critical Region 8 (DGCR8) is a double-cysteine-ligated heme protein. J Biol Chem. 286(19):16716–16725.
  • Bartholomew GW, Alexander M. 1979. Microbial metabolism of carbon monoxide in culture and in soil. Appl Environ Microbiol. 37(5):932–937.
  • Baxter M, Ray DW. 2020. Circadian rhythms in innate immunity and stress responses. Immunology. 161(4):261–267.
  • Berndt C, Lillig CH, Holmgren A. 2008. Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta Mol Cell Res. 1783(4):641–650.
  • Bhakta MN, Wilks A. 2006. The mechanism of heme transfer from the cytoplasmic heme binding protein PhuS to the delta-regioselective heme oxygenase of Pseudomonas aeruginosa †. Biochemistry. 45(38):11642–11649.
  • Bianchetti CM, Yi L, Ragsdale SW, Phillips GN. Jr. 2007. Comparison of apo- and heme-bound crystal structures of a truncated human heme oxygenase-2. J Biol Chem. 282(52):37624–37631.
  • Bistoni G, Rampino S, Scafuri N, Ciancaleoni G, Zuccaccia D, Belpassi L, Tarantelli F. 2016. How π back-donation quantitatively controls the CO stretching response in classical and non-classical metal carbonyl complexes. Chem Sci. 7(2):1174–1184.
  • Brewitz HH, Goradia N, Schubert E, Galler K, Kuhl T, Syllwasschy B, Popp J, Neugebauer U, Hagelueken G, Schiemann O, et al. 2016. Heme interacts with histidine- and tyrosine-based protein motifs and inhibits enzymatic activity of chloramphenicol acetyltransferase from Escherichia coli. Biochim Biophys Acta Gen Subj. 1860(6):1343–1353.
  • Brewitz HH, Kühl T, Goradia N, Galler K, Popp J, Neugebauer U, Ohlenschlager O, Imhof D. 2015. Role of the chemical environment beyond the coordination site: structural insight into Fe(III) protoporphyrin binding to cysteine-based heme-regulatory protein motifs. Chembiochem. 16(15):2216–2224.
  • Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE, Wang F, Jager J, Lazar MA. 2012. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 26(7):657–667.
  • Cáceres L, Necakov AS, Schwartz C, Kimber S, Roberts IJH, Krause HM. 2011. Nitric oxide coordinates metabolism, growth, and development via the nuclear receptor E75. Genes Dev. 25(14):1476–1485.
  • Carter EL, Gupta N, Ragsdale SW. 2016. High affinity heme binding to a heme regulatory motif on the nuclear receptor Rev-erbβ leads to its degradation and indirectly regulates its interaction with nuclear receptor corepressor. J Biol Chem. 291(5):2196–2222.
  • Carter EL, Ragsdale SW. 2014. Modulation of nuclear receptor function by cellular redox poise. J Inorg Biochem. 133:92–103.
  • Carter EL, Ramirez Y, Ragsdale SW. 2017. The heme-regulatory motif of nuclear receptor Rev-erbβ is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism. J Biol Chem. 292(27):11280–11299.
  • Chen JJ, London IM. 1995. Regulation of protein-synthesis by heme-regulated EIF-2a kinase. Trends Biochem Sci. 20(3):105–108.
  • Chiabrando D, Vinchi F, Fiorito V, Mercurio S, Tolosano E. 2014. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharmacol. 5(61):61.
  • Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, Chong L-W, DiTacchio L, Atkins AR, Glass CK, et al. 2012. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature. 485(7396):123–127.
  • Cho Y, Gorina S, Jeffrey P, Pavletich N. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science. 265(5170):346–355.
  • Conger MA, Pokhrel D, Liptak MD. 2017. Tight binding of heme to Staphylococcus aureus IsdG and IsdI precludes design of a competitive inhibitor. Metallomics. 9(5):556–563.
  • Crooks DR, Ghosh MC, Haller RG, Tong WH, Rouault TA. 2010. Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery. Blood. 115(4):860–869.
  • Crumbley C, Burris TP. 2011. Direct regulation of CLOCK expression by REV-ERB. PLoS One. 6(3):e17290.
  • Dai Y, Sweeny EA, Schlanger S, Ghosh A, Stuehr DJ. 2020. GAPDH delivers heme to soluble guanylyl cyclase. J Biol Chem. 295(24):8145–8154.
  • Dailey HA, Finnegan MG, Johnson MK. 1994. Human ferrochelatase is an iron-sulfur protein. Biochemistry. 33(2):403–407.
  • de Villiers KA, Kaschula CH, Egan TJ, Marques HM. 2007. Speciation and structure of ferriprotoporphyrin IX in aqueous solution: spectroscopic and diffusion measurements demonstrate dimerization, but not mu-oxo dimer formation. J Biol Inorg Chem. 12(1):101–117.
  • Dioum EM, Rutter J, Tuckerman JR, Gonzalez G, Gilles-Gonzalez M-A, McKnight SL. 2002. NPAS2: A Gas-Responsive Transcription Factor. Science. 298(5602):2385–2387.
  • Donald JA. 2016. Subchapter 103B – carbon monoxide. In: Takei Y, Ando H, Tsutsui K, editors. Handbook of hormones. San Diego: Academic Press; p. 606-e103B–603.
  • Donegan RK, Moore CM, Hanna DA, Reddi AR. 2019. Handling heme: The mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med. 133:88–100.
  • Duffy SP, Shing J, Saraon P, Berger LC, Eiden MV, Wilde A, Tailor CS. 2010. The Fowler syndrome-associated protein FLVCR2 is an importer of heme. Mol Cell Biol. 30(22):5318–5324.
  • Dutra FF, Bozza MT. 2014. Heme on innate immunity and inflammation. Front Pharmacol. 5:115.
  • Eddy J, Maizels N. 2008. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes. Nucleic Acids Res. 36(4):1321–1333.
  • Eddy J, Maizels N. 2009. Selection for the G4 DNA motif at the 5' end of human genes. Mol Carcinog. 48(4):319–325.
  • Eisenstein RS, Garcia-Mayol D, Pettingell W, Munro HN. 1991. Regulation of ferritin and heme oxygenase synthesis in rat fibroblasts by different forms of iron. Proc Natl Acad Sci USA. 88(3):688–692.
  • Faller M, Matsunaga M, Yin S, Loo JA, Guo F. 2007. Heme is involved in microRNA processing. Nat Struct Mol Biol. 14(1):23–29.
  • Ferris CD, Jaffrey SR, Sawa A, Takahashi M, Brady SD, Barrow RK, Tysoe SA, Wolosker H, Barañano DE, Doré S, et al. 1999. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol. 1(3):152–157.
  • Fleischhacker AS, Carter EL, Ragsdale SW. 2018. Redox regulation of heme oxygenase-2 and the transcription factor, Rev-Erb, through heme regulatory motifs. Antioxid Redox Signal. 29(18):1841–1857.
  • Fleischhacker AS, Gunawan AL, Kochert BA, Liu L, Wales TE, Borowy MC, Engen JR, Ragsdale SW. 2020. The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation. J Biol Chem. 295(16):5177–5191.
  • Fleischhacker AS, Sharma A, Choi M, Spencer AM, Bagai I, Hoffman BM, Ragsdale SW. 2015. The C-terminal heme regulatory motifs of heme oxygenase-2 are redox-regulated heme binding sites. Biochemistry. 54(17):2709–2718.
  • Ford PA, Rokicki A. 1988. Nucleophilic activation of carbon monoxide: Applications to homogeneous catalysis by metal carbonyls of the water gas shift and related reactions. Adv Organometal Chem. 28:139–218.
  • Freeman SL, Kwon H, Portolano N, Parkin G, Venkatraman Girija U, Basran J, Fielding AJ, Fairall L, Svistunenko DA, Moody PCE, et al. 2019. Heme binding to human CLOCK affects interactions with the E-box. Proc Natl Acad Sci USA. 116(40):19911–19916.
  • Furuyama K, Kaneko K, Vargas PD. 2007. Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med. 213(1):1–16.
  • Gallego M, Virshup DM. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol. 8(2):139–148.
  • Galmozzi A, Kok BP, Kim AS, Montenegro-Burke JR, Lee JY, Spreafico R, Mosure S, Albert V, Cintron-Colon R, Godio C, et al. 2019. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature. 576(7785):138–142.
  • George PAA, Lacerda M, Syllwasschy BF, Hopp M-T, Wißbrock A, Imhof D. 2020. HeMoQuest: a webserver for qualitative prediction of transient heme binding to protein motifs. BMC Bioinformatics. 21(1):124.
  • Go YM, Jones DP. 2010. Redox control systems in the nucleus: mechanisms and functions. Antioxid Redox Signal. 13(4):489–509.
  • Gong WM, Hao B, Mansy SS, Gonzalez G, Gilles-Gonzalez MA, Chan MK. 1998. Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc Natl Acad Sci USA. 95(26):15177–15182.
  • Gray LT, Lombardi EP, Verga D, Nicolas A, Teulade-Fichou MP, Londono-Vallejo A, Maizels N. 2019. G-quadruplexes sequester free heme in living cells. Cell Chem Biol. 26(12):1681–1691.e5.
  • Gupta N, Ragsdale SW. 2011. Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor rev-erb{beta}. J Biol Chem. 286(6):4392–4403.
  • Hach A, Hon T, Zhang L. 1999. A new class of repression modules is critical for heme regulation of the yeast transcriptional activator Hap1. Mol Cell Biol. 19(6):4324–4333.
  • Hamilton JW, Bement WJ, Sinclair PR, Sinclair JF, Alcedo JA, Wetterhahn KE. 1991. Heme regulates hepatic 5-aminolevulinate synthase mRNA expression by decreasing mRNA half-life and not by altering its rate of transcription. Arch Biochem Biophys. 289(2):387–392.
  • Hanna DA, Harvey RM, Martinez-Guzman O, Yuan XJ, Chandrasekharan B, Raju G, Outten FW, Hamza I, Reddi AR. 2016. Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proc Natl Acad Sci USA. 113(27):7539–7544.
  • Hargrove MS, Barrick D, Olson JS. 1996. The association rate constant for heme binding to globin is independent of protein structure. Biochemistry. 35(35):11293–11299.
  • Hargrove MS, Singleton EW, Quillin ML, Ortiz LA, Phillips GN, Olson JS, Mathews AJ. 1994. His64(E7)->Tyr apomyoglobin as a reagent for measuring rates of hemin dissociation. J Biol Chem. 269(6):4207–4214.
  • Heinemann IU, Jahn M, Jahn D. 2008. The biochemistry of heme biosynthesis. Arch Biochem Biophys. 474(2):238–251.
  • Hentze MW, Muckenthaler MU, Andrews NC. 2004. Balancing acts: molecular control of mammalian iron metabolism. Cell. 117(3):285–297.
  • Hira S, Tomita T, Matsui T, Igarashi K, Ikeda-Saito M. 2007. Bach1, a heme-dependent transcription factor, reveals presence of multiple heme binding sites with distinct coordination structure. Iubmb Life. 59(8–9):542–551.
  • Hou S, Xu R, Heinemann SH, Hoshi T. 2008. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels. Proc Natl Acad Sci. 105(10):4039–4043.
  • Hu RG, Wang HQ, Xia ZX, Varshavsky A. 2008. The N-end rule pathway is a sensor of heme. Proc Natl Acad Sci USA. 105(1):76–81.
  • Igarashi J, Murase M, Iizuka A, Pichierri F, Martinkova M, Shimizu T. 2008. Elucidation of the heme binding site of heme-regulated eukaryotic initiation factor 2alpha kinase and the role of the regulatory motif in heme sensing by spectroscopic and catalytic studies of mutant proteins. J Biol Chem. 283(27):18782–18791.
  • Igarashi K, Watanabe-Matsui M. 2014. Wearing red for signaling: the heme-bach axis in heme metabolism, oxidative stress response and iron immunology. Tohoku J Exp Med. 232(4):229–253.
  • Ikeda R, Tsuchiya Y, Koike N, Umemura Y, Inokawa H, Ono R, Inoue M, Sasawaki Y, Grieten T, Okubo N, et al. 2019. REV-ERBα and REV-ERBβ function as key factors regulating mammalian circadian output. Sci Rep. 9(1):10171.
  • Ikushiro H, Nagami A, Takai T, Sawai T, Shimeno Y, Hori H, Miyahara I, Kamiya N, Yano T. 2018. Heme-dependent inactivation of 5-aminolevulinate synthase from Caulobacter crescentus. Sci Rep. 8(1):14228.
  • Ishikawa H, Kato M, Hori H, Ishimori K, Kirisako T, Tokunaga F, Iwai K. 2005. Involvement of heme regulatory motif in heme-mediated ubiquitination and degradation of IRP2. Mol Cell. 19(2):171–181.
  • Ishikawa H, Nakagaki M, Bamba A, Uchida T, Hori H, O'Brian MR, Iwai K, Ishimori K. 2011. Unusual heme binding in the bacterial iron response regulator protein: spectral characterization of heme binding to the heme regulatory motif. Biochemistry. 50(6):1016–1022.
  • Jager J, O'Brien WT, Manlove J, Krizman EN, Fang B, Gerhart-Hines Z, Robinson MB, Klein PS, Lazar MA. 2014. Behavioral changes and dopaminergic dysregulation in mice lacking the nuclear receptor Rev-erbα. Mol Endocrinol. 28(4):490–498.
  • Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW. 2005. Heme is a carbon monoxide receptor for large-conductance Ca2+-activated K + channels. Circ Res. 97(8):805–812.
  • Kaasik K, Chi Lee C. 2004. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature. 430(6998):467–471.
  • Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, Sugase K, Shimamura T, Ohmura M, Muraoka K, et al. 2016. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 7:11030.
  • Kabil O, Toaka S, LoBrutto R, Shoemaker R, Banerjee R. 2001. Pyridoxal phosphate binding sites are similar in human heme-dependent and yeast heme-independent cystathionine beta-synthases. Evidence from 31P NMR and pulsed EPR spectroscopy that heme and PLP cofactors are not proximal in the human enzyme. J Biol Chem. 276(22):19350–19355.
  • Kabil O, Weeks CL, Carballal S, Gherasim C, Alvarez B, Spiro TG, Banerjee R. 2011. Reversible heme-dependent regulation of human cystathionine β-synthase by a flavoprotein oxidoreductase. Biochemistry. 50(39):8261–8263.
  • Kapetanaki SM, Burton MJ, Basran J, Uragami C, Moody PCE, Mitcheson JS, Schmid R, Davies NW, Dorlet P, Vos MH, et al. 2018. A mechanism for CO regulation of ion channels. Nat Commun. 9(1):907.
  • Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, Knoblaugh S, Kingsley PD, De Domenico I, Vaughn MB, Kaplan J, et al. 2008. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science. 319(5864):825–828.
  • Kim HJ, Khalimonchuk O, Smith PM, Winge DR. 2012. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochim Biophys Acta. 1823(9):1604–1616.
  • Kim YS, Dore S. 2005. Catalytically inactive heme oxygenase-2 mutant is cytoprotective. Free Radic Biol Med. 39(4):558–564.
  • King GM, Weber CF. 2007. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria [Research Support, U.S. Gov't, Non-P.H.S. Review]. Nat Rev Microbiol. 5(2):107–118.
  • Kiss G. 2001. Palladium-catalyzed Reppe carbonylation. Chem Rev. 101(11):3435–3456.
  • Kitanishi K, Igarashi J, Hayasaka K, Hikage N, Saiful I, Yamauchi S, Uchida T, Ishimori K, Shimizu T. 2008. Heme-binding characteristics of the isolated PAS-A domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms. Biochemistry. 47(23):6157–6168.
  • Kitatsuji C, Ogura M, Uchida T, Ishimori K, Aono S. 2014. Molecular mechanism for heme-mediated inhibition of 5-aminolevulinic acid synthase 1. BCSJ. 87(9):997–1004.
  • Ko CH, Takahashi JS. 2006. Molecular components of the mammalian circadian clock. Hum Mol Genet. 15(Spec No 2):R271–R277.
  • Kochert BA, Fleischhacker AS, Wales TE, Becker DF, Engen JR, Ragsdale SW. 2019. Dynamic and structural differences between heme oxygenase-1 and -2 are due to differences in their C-terminal regions. J Biol Chem. 294(20):8259–8272.
  • Kojetin DJ, Burris TP. 2014. REV-ERB and ROR nuclear receptors as drug targets. Nat Rev Drug Discov. 13(3):197–216.
  • Kubota Y, Nomura K, Katoh Y, Yamashita R, Kaneko K, Furuyama K. 2016. Novel mechanisms for heme-dependent degradation of ALAS1 protein as a component of negative feedback regulation of heme biosynthesis. J Biol Chem. 291(39):20516–20529.
  • Kühl T, Sahoo N, Nikolajski M, Schlott B, Heinemann SH, Imhof D. 2011. Determination of hemin-binding characteristics of proteins by a combinatorial peptide library approach. Chembiochem. 12(18):2846–2855.
  • Kühl T, Wißbrock A, Goradia N, Sahoo N, Galler K, Neugebauer U, Popp J, Heinemann SH, Ohlenschläger O, Imhof D. 2013. Analysis of Fe(III) heme binding to cysteine-containing heme-regulatory motifs in proteins. ACS Chem Biol. 8(8):1785–1793.
  • Kumar A, Wißbrock A, Goradia N, Bellstedt P, Ramachandran R, Imhof D, Ohlenschläger O. 2018. Heme interaction of the intrinsically disordered N-terminal peptide segment of human cystathionine-β-synthase. Sci Rep. 8(1):2474.
  • Kumar Jha P, Challet E, Kalsbeek A. 2015. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol Cell Endocrinol. 418(Pt 1):74–88.
  • Lad L, Schuller DJ, Shimizu H, Friedman J, Li HY, de Montellano PRO, Poulos TL. 2003. Comparison of the heme-free and -bound crystal structures of human heme oxygenase-1. J Biol Chem. 278(10):7834–7843.
  • Lam MTY, Cho H, Lesch HP, Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C, Kaikkonen MU, Kim AS, Kosaka M, et al. 2013. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature. 498(7455):511–515.
  • Lane AM, McKay JT, Bonkovsky HL. 2016. Advances in the management of erythropoietic protoporphyria - role of afamelanotide. Appl Clin Genet. 9:179–189.
  • Lanzilotta WN, Schuller DJ, Thorsteinsson MV, Kerby RL, Roberts GP, Poulos TL. 2000. Structure of the CO sensing transcription activator CooA. Nat Struct Biol. 7(10):876–880.
  • Lathrop JT, Timko MP. 1993. Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. Science. 259(5094):522–525.
  • Leidgens S, Bullough KZ, Shi HF, Li FM, Shakoury-Elizeh M, Yabe T, Subramanian P, Hsu E, Natarajan N, Nandal A, et al. 2013. Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J Biol Chem. 288(24):17791–17802.
  • Leung GCH, Fung SSP, Dovey NRB, Raven EL, Hudson AJ. 2019. Precise determination of heme binding affinity in proteins. Anal Biochem. 572:45–51.
  • Leung GC-H, Fung SS-P, Gallio AE, Blore R, Alibhai D, Raven EL, Hudson AJ. 2021. Unravelling the mechanisms controlling heme supply and demand. Proc Natl Acad Sci. 118(22). doi:https://doi.org/10.1073/pnas.2104008118.
  • Levitt DG, Levitt MD. 2015. Carbon monoxide: a critical quantitative analysis and review of the extent and limitations of its second messenger function. Clin Pharmacol Adv Appl. 7:37–56.
  • Li YF, Sen D. 1996. A catalytic DNA for porphyrin metallation. Nat Struct Biol. 3(9):743–747.
  • Lin PH, Chiang MT, Chau LY. 2008. Ubiquitin-proteasome system mediates heme oxygenase-1 degradation through endoplasmic reticulum-associated degradation pathway. Biochim Biophys Acta Mol Cell Res. 1783(10):1826–1834.
  • Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, Smith A, Bordner J, Polte T, Gaunitz F, et al. 2007. Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem. 282(28):20621–20633.
  • Linnenbaum M, Busker M, Kraehling JR, Behrends S. 2012. Heme oxygenase isoforms differ in their subcellular trafficking during hypoxia and are differentially modulated by cytochrome P450 reductase. PLOS One. 7(4):e35483.
  • Liu G, Sil D, Maio N, Tong WH, Bollinger JM, Krebs C, Rouault TA. 2020. Heme biosynthesis depends on previously unrecognized acquisition of iron-sulfur cofactors in human amino-levulinic acid dehydratase. Nat Commun. 11(1):6310.
  • Liu L, Dumbrepatil AB, Fleischhacker AS, Marsh ENG, Ragsdale SW. 2020. Heme oxygenase-2 is post-translationally regulated by heme occupancy in the catalytic site. J Biol Chem. 295(50):17227–17240.
  • Lukat-Rodgers GS, Correia C, Botuyan MV, Mer G, Rodgers KR. 2010. Heme-based sensing by the mammalian circadian protein CLOCK. Inorg Chem. 49(14):6349–6365.
  • Magierowska K, Brzozowski T, Magierowski M. 2018. Emerging role of carbon monoxide in regulation of cellular pathways and in the maintenance of gastric mucosal integrity. Pharmacol Res. 129:56–64.
  • Maines MD. 1997. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 37:517–554.
  • Maines MD, Trakshel GM, Kutty RK. 1986. Characterization of 2 constitutive forms of rat-liver microsomal heme oxygenase - only one molecular-species of the enzyme is inducible. J Biol Chem. 261(1):411–419.
  • Martinez-Guzman O, Willoughby MM, Saini A, Dietz JV, Bohovych I, Medlock AE, Khalimonchuk O, Reddi AR. 2020. Mitochondrial-nuclear heme trafficking in budding yeast is regulated by GTPases that control mitochondrial dynamics and ER contact sites. J Cell Sci. 133(10). doi:https://doi.org/10.1242/jcs.237917
  • Marvin KA, Reinking JL, Lee AJ, Pardee K, Krause HM, Burstyn JN. 2009. Nuclear receptors Homo sapiens Rev-erbbeta and Drosophila melanogaster E75 are thiolate-ligated heme proteins which undergo redox-mediated ligand switching and bind CO and NO. Biochemistry. 48(29):7056–7071.
  • McCoubrey WK, Huang TJ, Maines MD. 1997. Heme oxygenase-2 is a hemoprotein and binds heme through heme regulatory motifs that are not involved in heme catalysis. J Biol Chem. 272(19):12568–12574.
  • Merbitz-Zahradnik T, Wolf E. 2015. How is the inner circadian clock controlled by interactive clock proteins?: Structural analysis of clock proteins elucidates their physiological role. FEBS Lett. 589(14):1516–1529.
  • Mestre-Fos S, Ito C, Moore CM, Reddi AR, Williams LD. 2020. Human ribosomal G-quadruplexes regulate heme bioavailability. J Biol Chem. 295(44):14855–14865.
  • Meyer O, Schlegel HG. 1983. Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol. 37:277–310.
  • Miksanova M, Igarashi J, Minami M, Sagami I, Yamauchi S, Kurokawa H, Shimizu T. 2006. Characterization of heme-regulated eIF2alpha kinase: roles of the N-terminal domain in the oligomeric state, heme binding, catalysis, and inhibition . Biochemistry. 45(32):9894–9905.
  • Minegishi S, Sagami I, Negi S, Kano K, Kitagishi H. 2018. Circadian clock disruption by selective removal of endogenous carbon monoxide. Sci Rep. 8(1):11996.
  • Mogi T, Saiki K, Anraku Y. 1994. Biosynthesis and functional role of haem O and haem A. Mol Microbiol. 14(3):391–398.
  • Mosure SA, Strutzenberg TS, Shang JS, Munoz-Tello P, Solt LA, Griffin PR, Kojetin DJ. 2021. Structural basis for heme-dependent NCoR binding to the transcriptional repressor REV-ERB beta. Sci Adv. 7(5). doi:https://doi.org/10.1126/sciadv.abc6479
  • Motterlini R, Foresti R. 2017. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol Cell Physiol. 312(3):C302–C313.
  • Motterlini R, Otterbein LE. 2010. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 9(9):728–743.
  • Mukaiyama Y, Uchida T, Sato E, Sasaki A, Sato Y, Igarashi J, Kurokawa H, Sagami I, Kitagawa T, Shimizu T. 2006. Spectroscopic and DNA-binding characterization of the isolated heme-bound basic helix–loop–helix-PAS-A domain of neuronal PAS protein 2 (NPAS2), a transcription activator protein associated with circadian rhythms. FEBS J. 273(11):2528–2539.
  • Mulholland SE, Gibney BR, Rabanal F, Dutton PL. 1999. Determination of nonligand amino acids critical to [4Fe-4S]2+/+ assembly in ferredoxin maquettes. Biochemistry. 38(32):10442–10448.
  • Munoz-Sanchez J, Chanez-Cardenas ME. 2014. A review on hemeoxygenase-2: focus on cellular protection and oxygen response. Oxid Med Cell Longev. 2014(10):604981.
  • Nelson DL, Cox MM, Lehninger AL. 2017. Lehninger principles of biochemistry. 7th ed. New York, NY: W.H. Freeman & Company.
  • Nishitani Y, Okutani H, Takeda Y, Uchida T, Iwai K, Ishimori K. 2019. Specific heme binding to heme regulatory motifs in iron regulatory proteins and its functional significance. J Inorg Biochem. 198:110726.
  • Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S, Hayashi N, Yamamoto M, Shibahara S, Fujita H, et al. 2001. Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. Embo J. 20(11):2835–2843.
  • Olmez I, Ozyurt H. 2012. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int. 60(2):208–212.
  • Otterbein LE, Bach FH, Alam J, Soares M, Lu HT, Wysk M, Davis RJ, Flavell RA, Choi AMK. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 6(4):422–428.
  • Otterbein LE, Soares MP, Yamashita K, Bach FH. 2003. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24(8):449–455.
  • Owens CP, Du J, Dawson JH, Goulding CW. 2012. Characterization of heme ligation properties of Rv0203, a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake. Biochemistry. 51(7):1518–1531.
  • Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, Igarashi K. 1996. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol. 16(11):6083–6095.
  • Pan J, Zhang XX, Yuan H, Xu QM, Zhang HJ, Zhou YJ, Huang ZX, Tan XS. 2016. The molecular mechanism of heme loss from oxidized soluble guanylate cyclase induced by conformational change. Biochim Biophys Acta Prot Proteom. 1864(5):488–500.
  • Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J. 2009. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol Cell Biol. 29(4):1007–1016.
  • Pardee KI, Xu X, Reinking J, Schuetz A, Dong A, Liu S, Zhang R, Tiefenbach J, Lajoie G, Plotnikov AN, et al. 2009. The structural basis of gas-responsive transcription by the human nuclear hormone receptor REV-ERBbeta. PLoS Biol. 7(2):e43.
  • Partin AC, Ngo TD, Herrell E, Jeong B-C, Hon G, Nam Y. 2017. Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs. Nat Commun. 8(1):1737.
  • Peek CB, Affinati AH, Ramsey KM, Kuo H-Y, Yu W, Sena LA, Ilkayeva O, Marcheva B, Kobayashi Y, Omura C, et al. 2013. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science. 342(6158):1243417.
  • Peers C. 2011. Ion channels as target effectors for carbon monoxide. Exp Physiol. 96(9):836–839.
  • Peers C, Boyle JP, Scragg JL, Dallas ML, Al-Owais MM, Hettiarachichi NT, Elies J, Johnson E, Gamper N, Steele DS. 2015. Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. Br J Pharmacol. 172(6):1546–1556.
  • Pek RH, Yuan XJ, Rietzschel N, Zhang JB, Jackson L, Nishibori E, Ribeiro A, Simmons W, Jagadeesh J, Sugimoto H, et al. 2019. Hemozoin produced by mammals confers heme tolerance. Elife. 8. doi:https://doi.org/10.7554/eLife.49503
  • Perutz MF. 1990. Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon monoxide. Annu Rev Physiol. 52:1–25.
  • Pfeifer K, Kim K-S, Kogan S, Guarente L. 1989. Functional dissection and sequence of yeast HAP1 activator. Cell. 56(2):291–301.
  • Philpott CC, Patel SJ, Protchenko O. 2020. Management versus miscues in the cytosolic labile iron pool: the varied functions of iron chaperones. Biochim Biophys Acta Mol Cell Res. 1867(11):118830. doi:https://doi.org/10.1016/j.bbamcr.2020.118830.
  • Piel RB, Shiferaw MT, Vashisht AA, Marcero JR, Praissman JL, Phillips JD, Wohlschlegel JA, Medlock AE. 2016. A novel role for progesterone receptor membrane component 1 (PGRMC1): a partner and regulator of ferrochelatase. Biochemistry. 55(37):5204–5217.
  • Qi ZH, Hamza I, O'Brian MR. 1999. Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (IRR) protein. Proc Natl Acad Sci USA. 96(23):13056–13061.
  • Ragsdale SW. 2004. Life with carbon monoxide. Crit Rev Biochem Mol Biol. 39(3):165–195.
  • Ragsdale SW, Yi L. 2011. Thiol/disulfide redox switches in the regulation of heme binding to proteins. Antioxid Redox Signal. 14(6):1039–1047.
  • Rajagopal A, Rao AU, Amigo J, Tian M, Upadhyay SK, Hall C, Uhm S, Mathew MK, Fleming MD, Paw BH, et al. 2008. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature. 453(7198):1127–1131.
  • Reddi AR, Hamza I. 2016. Heme mobilization in animals: a metallolipid's journey. Acc Chem Res. 49(6):1104–1110.
  • Reinking J, Lam MM, Pardee K, Sampson HM, Liu S, Yang P, Williams S, White W, Lajoie G, Edwards A, et al. 2005. The drosophila nuclear receptor e75 contains heme and is gas responsive. Cell. 122(2):195–207.
  • Richardson DR, Lane DJR, Becker EM, Huang MLH, Whitnall M, Rahmanto YS, Sheftel AD, Ponka P. 2010. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci USA. 107(24):10775–10782.
  • Rogers PM, Ying L, Burris TP. 2008. Relationship between circadian oscillations of Rev-erbalpha expression and intracellular levels of its ligand, heme. Biochem Biophys Res Commun. 368(4):955–958.
  • Rouault TA, Maio N. 2017. Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways. J Biol Chem. 292(31):12744–12753.
  • Rubio MXAF, Agostino PV, Ferreyra GA, Golombek DA. 2003. Circadian heme oxygenase actitivy in the hamster suprachiasmatic nuclei. Neurosci Lett. 353(1):9–12.
  • Salkoff L, Butler A, Ferreira G, Santi C, Wei A. 2006. High-conductance potassium channels of the SLO family. Nat Rev Neurosci. 7(12):921–931.
  • Sarkar A, Carter EL, Harland JB, Speelman AL, Lehnert N, Ragsdale SW. 2021. Ferric heme as a CO/NO sensor in the nuclear receptor Rev-Erbß by coupling gas binding to electron transfer. Proc Natl Acad Sci. 118(3):e2016717118.
  • Schaefer B, Moriishi K, Behrends S. 2017. Insights into the mechanism of isoenzyme-specific signal peptide peptidase-mediated translocation of heme oxygenase. PLOS One. 12(11):e0188344.
  • Schubert E, Florin N, Duthie F, Brewitz HH, Kühl T, Imhof D, Hagelueken G, Schiemann O. 2015. Spectroscopic studies on peptides and proteins with cysteine-containing heme regulatory motifs (HRM). J Inorg Biochem. 148:49–56.
  • Senturia R, Faller M, Yin S, Loo JA, Cascio D, Sawaya MR, Hwang D, Clubb RT, Guo F. 2010. Structure of the dimerization domain of DiGeorge Critical Region 8. Protein Sci. 19(7):1354–1365.
  • Shelver D, Kerby RL, He Y, Roberts GP. 1995. Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulators. J Bacteriol. 177(8):2157–2163.
  • Shen J, Sheng X, Chang Z, Wu Q, Wang S, Xuan Z, Li D, Wu Y, Shang Y, Kong X, et al. 2014. Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep. 7(1):180–193.
  • Sher EA, Shaklai M, Shaklai N. 2012. Carbon monoxide promotes respiratory hemoproteins iron reduction using peroxides as electron donors. PLOS One. 7(3):e33039.
  • Shimizu T, Huang DY, Yan F, Stranava M, Bartosova M, Fojtikova V, Martinkova M. 2015. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev. 115(13):6491–6533.
  • Shimizu T, Lengalova A, Martínek V, Martínková M. 2019. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev. 48(24):5624–5657.
  • Sigfridsson E, Ryde U. 2002. Theoretical study of the discrimination between O(2) and CO by myoglobin. J Inorg Biochem. 91(1):101–115.
  • Singh S, Madzelan P, Banerjee R. 2007. Properties of an unusual heme cofactor in PLP-dependent cystathionine beta-synthase. Nat Prod Rep. 24(3):631–639.
  • Singh S, Madzelan P, Stasser J, Weeks CL, Becker D, Spiro TG, Penner-Hahn J, Banerjee R. 2009. Modulation of the heme electronic structure and cystathionine beta-synthase activity by second coordination sphere ligands: the role of heme ligand switching in redox regulation. J Inorg Biochem. 103(5):689–697.
  • Smith AT, Pazicni S, Marvin KA, Stevens DJ, Paulsen KM, Burstyn JN. 2015. Functional divergence of heme-thiolate proteins: a classification based on spectroscopic attributes. Chem Rev. 115(7):2532–2558.
  • Solioz M, Vulpe C. 1996. CPx-type ATPases: a class of p-type ATPases that pump heavy metals. Trends Biochem Sci. 21(7):237–241.
  • Song YQ, Yang MY, Wegner SV, Zhao JY, Zhu RF, Wu Y, He C, Chen PR. 2015. A genetically encoded FRET sensor for intracellular heme. ACS Chem Biol. 10(7):1610–1615.
  • Springer BA, Egeberg KD, Sligar SG, Rohlfs RJ, Mathews AJ, Olson JS. 1989. Discrimination between oxygen and carbon monoxide and inhibition of autooxidation by myoglobin. Site-directed mutagenesis of the distal histidine. J Biol Chem. 264(6):3057–3060.
  • Springer BA, Sligar SG, Olson JS, Phillips GN. Jr. 1994. Mechanisms of ligand recognition in myoglobin. Chem Rev. 94(3):699–714.
  • Sun JY, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H, Tashiro S, Takahashi S, Shibahara S, Alam J, et al. 2002. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. Embo J. 21(19):5216–5224.
  • Suzuki H, Tashiro S, Hira S, Sun JY, Yamazaki C, Zenke Y, Ikeda-Saito M, Yoshida M, Igarashi K. 2004. Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1. Embo J. 23(13):2544–2553.
  • Sweeny EA, Singh AB, Chakravarti R, Martinez-Guzman O, Saini A, Haque MM, Garee G, Dans PD, Hannibal L, Reddi AR, et al. 2018. Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells. J Biol Chem. 293(37):14557–14568.
  • Syllwasschy BF, Beck MS, Druzeta I, Hopp MT, Ramoji A, Neugebauer U, Nozinovic S, Menche D, Willbold D, Ohlenschlager O, et al. 2020. High-affinity binding and catalytic activity of His/Tyr-based sequences: extending heme-regulatory motifs beyond CP. Biochim Biophys Acta Gen Subj. 1864(7).
  • Tang XD, Xu R, Reynolds MF, Garcia ML, Heinemann SH, Hoshi T. 2003. Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature. 425(6957):531–535.
  • Taoka S, Ohja S, Shan X, Kruger WD, Banerjee R. 1998. Evidence for heme-mediated redox regulation of human cystathionine beta-synthase activity. J Biol Chem. 273(39):25179–25184.
  • Tenhunen R, Marver HS, Schmid R. 1968. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 61(2):748–755.
  • Tenhunen R, Marver HS, Schmid R. 1969. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem. 244(23):6388–6394.
  • Tian Q, Li T, Hou WH, Zheng JY, Schrum LW, Bonkovsky HL. 2011. Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem. 286(30):26424–26430.
  • Uchida T, Sato E, Sato A, Sagami I, Shimizu T, Kitagawa T. 2005. CO-dependent activity-controlling mechanism of heme-containing CO-sensor protein, neuronal PAS domain protein 2. J Biol Chem. 280(22):21358–21368.
  • Vallee BL, Coleman JE, Auld DS. 1991. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc Natl Acad Sci USA. 88(3):999–1003.
  • Vile GF, Tyrrell RM. 1993. Oxidative stress resulting from ultraviolet-a irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem. 268(20):14678–14681.
  • Walden WE, Selezneva AI, Dupuy J, Volbeda A, Fontecilla-Camps JC, Theil EC, Volz K. 2006. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science. 314(5807):1903–1908.
  • Waltz PK, Kautza B, Luciano J, Dyer M, Stolz DB, Loughran P, Neal MD, Sperry JL, Rosengart MR, Zuckerbraun BS. 2018. Heme oxygenase-2 localizes to mitochondria and regulates hypoxic responses in hepatocytes. Oxid Med Cell Longev. 2018:2021645.
  • Wang TA, Yu YV, Govindaiah G, Ye X, Artinian L, Coleman TP, Sweedler JV, Cox CL, Gillette MU. 2012. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science. 337(6096):839–842.
  • Watanabe-Matsui M, Matsumoto T, Matsui T, Ikeda-Saito M, Muto A, Murayama K, Igarashi K. 2015. Heme binds to an intrinsically disordered region of Bach2 and alters its conformation. Arch Biochem Biophys. 565:25–31.
  • Weeks CL, Singh S, Madzelan P, Banerjee R, Spiro TG. 2009. Heme regulation of human cystathionine beta-synthase activity: insights from fluorescence and Raman spectroscopy. J Am Chem Soc. 131(35):12809–12816.
  • Weitz SH, Gong M, Barr I, Weiss S, Guo F. 2014. Processing of microRNA primary transcripts requires heme in mammalian cells. Proc Natl Acad Sci USA. 111(5):1861–1866.
  • Weitz SH, Quick-Cleveland J, Jacob J, Barr I, Senturia R, Koyano K, Xiao X, Weiss S, Guo F. 2020. Fe(III) heme sets an activation threshold for processing distinct groups of pri-miRNAs in mammalian cells. bioRxiv.
  • Wilkinson WJ, Kemp PJ. 2011. Carbon monoxide: an emerging regulator of ion channels. J Physiol. 589(Pt 13):3055–3062.
  • Wissbrock A, George AAP, Brewitz HH, Kuhl T, Imhof D. 2019. The molecular basis of transient heme-protein interactions: analysis, concept and implementation. Biosci Rep. 9(1):16893. doi:https://doi.org/10.1038/s41598-019-53231-0.
  • Wißbrock A, Goradia NB, Kumar A, Paul George AA, Kühl T, Bellstedt P, Ramachandran R, Hoffmann P, Galler K, Popp J, et al. 2019. Structural insights into heme binding to IL-36α proinflammatory cytokine. Sci Rep. 9(1):16893.
  • Woo E-J, Jeong DG, Lim M-Y, Kim SJ, Kim K-J, Yoon S-M, Park B-C, Ryu SE. 2007. Structural insight into the constitutive repression function of the nuclear receptor Rev-erbbeta. J Mol Biol. 373(3):735–744.
  • Wu L, Wang R. 2005. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 57(4):585–630.
  • Wu ZM, Geng Y, Lu XJ, Shi YY, Wu GW, Zhang MM, Shan B, Pan HL, Yuan JY. 2019. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 116(8):2996–3005.
  • Yamamoto M, Hayashi N, Kikuchi G. 1982. Evidence for the transcriptional inhibition by heme of the synthesis of delta-aminolevulinate synthase in rat liver . Biochem Biophys Res Commun. 105(3):985–990.
  • Yamamoto M, Hayashi N, Kikuchi G. 1983. Translational inhibition by heme of the synthesis of hepatic δ-aminolevulinate synthase in a cell-free system. Biochem Biophys Res Commun. 115(1):225–231.
  • Yamanaka K, Ishikawa H, Megumi Y, Tokunaga F, Kanie M, Rouault TA, Morishima I, Minato N, Ishimori K, Iwai K. 2003. Identification of the ubiquitin-protein ligase that recognizes oxidized IRP2. Nat Cell Biol. 5(4):336–340.
  • Yanatori I, Richardson DR, Imada K, Kishi F. 2016. Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2. J Biol Chem. 291(33):17303–17318.
  • Yanatori I, Richardson DR, Toyokuni S, Kishi F. 2017. The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J Biol Chem. 292(32):13205–13229.
  • Yang J, Kim KD, Lucas A, Drahos KE, Santos CS, Mury SP, Capelluto DGS, Finkielstein CV. 2008. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol Cell Biol. 28(15):4697–4711.
  • Yang JH, Ishimori K, O'Brian MR. 2005. Two heme binding sites are involved in the regulated degradation of the bacterial iron response regulator (Irr) protein. J Biol Chem. 280(9):7671–7676.
  • Yi L, Jenkins PM, Leichert LI, Jakob U, Martens JR, Ragsdale SW. 2009. Heme regulatory motifs in heme oxygenase-2 form a thiol/disulfide redox switch that responds to the cellular redox state. J Biol Chem. 284(31):20556–20561.
  • Yi L, Morgan JT, Ragsdale SW. 2010. Identification of a thiol/disulfide redox switch in the human BK channel that controls its affinity for heme and CO. J Biol Chem. 285(26):20117–20127.
  • Yi L, Ragsdale SW. 2007. Evidence that the heme regulatory motifs in heme oxygenase-2 serve as a thiol/disulfide redox switch regulating heme binding. J Biol Chem. 282(29):21056–21067.
  • Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, et al. 2007. Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science. 318(5857):1786–1789.
  • Yoon T, Cowan JA. 2003. Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J Am Chem Soc. 125(20):6078–6084.
  • Yoon T, Cowan JA. 2004. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem. 279(25):25943–25946.
  • Yuan Y, Tam MF, Simplaceanu V, Ho C. 2015. New Look at Hemoglobin Allostery. Chem Rev. 115(4):1702–1724.
  • Zenke-Kawasaki Y, Dohi Y, Katoh Y, Ikura T, Ikura M, Asahara T, Tokunaga F, Iwai K, Igarashi K. 2007. Heme induces ubiquitination and degradation of the transcription factor Bach1. Mol Cell Biol. 27(19):6962–6971.
  • Zhang L, Guarente L. 1995. Heme binds to a short sequence that serves a regulatory function in diverse proteins. Embo J. 14(2):313–320.
  • Zhou M, Wang W, Karapetyan S, Mwimba M, Marqués J, Buchler NE, Dong X. 2015. Redox rhythm reinforces the circadian clock to gate immune response. Nature. 523(7561):472–476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.