439
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 28 Nov 2023, Accepted 11 Mar 2024, Published online: 21 May 2024

References

  • Abd Wahab S, Choi M, Bianco PR. 2013. Characterization of the ATPase activity of RecG and RuvAB proteins on model fork structures reveals insight into stalled DNA replication fork repair. J Biol Chem. 288(37):26397–26409. doi: 10.1074/jbc.M113.500223.
  • Acharya N, Varshney U. 2002. Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J Mol Biol. 318(5):1251–1264. doi: 10.1016/s0022-2836(02)00053-0.
  • Alberts BM, Frey L. 1970. T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature. 227(5265):1313–1318. doi: 10.1038/2271313a0.
  • Amundsen SK, Neiman AM, Thibodeaux SM, Smith GR. 1990. Genetic dissection of the biochemical activities of RecBCD enzyme. Genetics. 126(1):25–40. doi: 10.1093/genetics/126.1.25.
  • Anderson DG, Kowalczykowski SC. 1997. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell. 90(1):77–86. doi: 10.1016/s0092-8674(00)80315-3.
  • Anstey-Gilbert CS, Hemsworth GR, Flemming CS, Hodskinson MRG, Zhang J, Sedelnikova SE, Stillman TJ, Sayers JR, Artymiuk PJ. 2013. The structure of Escherichia coli ExoIX-implications for DNA binding and catalysis in flap endonucleases. Nucleic Acids Res. 41(17):8357–8367. doi: 10.1093/nar/gkt591.
  • Antony E, Kozlov AG, Nguyen B, Lohman TM. 2012. Plasmodium falciparum SSB tetramer binds single-stranded DNA only in a fully wrapped mode. J Mol Biol. 420(4-5):284–295. doi: 10.1016/j.jmb.2012.04.022.
  • Antony E, Lohman TM. 2019. Dynamics of E. coli single stranded DNA binding (SSB) protein-DNA complexes. Semin Cell Dev Biol. 86:102–111. doi: 10.1016/j.semcdb.2018.03.017.
  • Antony E, Weiland EA, Korolev S, Lohman TM. 2012. Plasmodium falciparum SSB tetramer wraps single-stranded DNA with similar topology but opposite polarity to E. coli SSB. J Mol Biol. 420(4-5):269–283. doi: 10.1016/j.jmb.2012.04.021.
  • Antony E, Weiland E, Yuan Q, Manhart CM, Nguyen B, Kozlov AG, McHenry CS, Lohman TM. 2013. Multiple C-terminal tails within a single E. coli SSB homotetramer coordinate DNA replication and repair. J Mol Biol. 425(23):4802–4819. doi: 10.1016/j.jmb.2013.08.021.
  • Arad G, Hendel A, Urbanke C, Curth U, Livneh Z. 2008. Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem. 283(13):8274–8282. doi: 10.1074/jbc.M710290200.
  • Aramaki T, Abe Y, Furutani K, Katayama T, Ueda T. 2015. Basic and aromatic residues in the C-terminal domain of PriC are involved in ssDNA and SSB binding. J Biochem. 157(6):529–537. doi: 10.1093/jb/mvv014.
  • Arnold DA, Kowalczykowski SC. 1999. RecBCD helicase/nuclease. Encyclopedia of Life Sciences. London: Nature Publishing Group. (http://www.els.net.).
  • Azeroglu B, Mawer JSP, Cockram CA, White MA, Hasan AMM, Filatenkova M, Leach DRF. 2016. RecG directs DNA synthesis during double-strand break repair. PLoS Genet. 12(2):e1005799. doi: 10.1371/journal.pgen.1005799.
  • Bagchi D, Manosas M, Zhang WT, Manthei KA, Hodeib S, Ducos B, Keck JL, Croquette V. 2018. Single molecule kinetics uncover roles for E. coli RecQ DNA helicase domains and interaction with SSB. Nucleic Acids Res. 46(16):8500–8515. doi: 10.1093/nar/gky647.
  • Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 18(5):285–298. doi: 10.1038/nrm.2017.7.
  • Barre FX, Søballe B, Michel B, Aroyo M, Robertson M, Sherratt D. 2001. Circles: the replication-recombination-chromosome segregation connection. Proc Natl Acad Sci U S A. 98(15):8189–8195. doi: 10.1073/pnas.111008998.
  • Bell JC, Liu B, Kowalczykowski SC. 2015. Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. Elife. 4:e08646. doi: 10.7554/eLife.08646.
  • Bernstein DA, Eggington JM, Killoran MP, Misic AM, Cox MM, Keck JL. 2004. Crystal structure of the D. radiodurans single-stranded DNA binding protein suggests a novel mechanism for coping with DNA damage. Proc Natl Acad Sci U S A. 101(23):8575–8580. doi: 10.1073/pnas.0401331101.
  • Bhattacharyya B, George NP, Thurmes TM, Zhou RB, Jani N, Wessel SR, Sandler SJ, Ha T, Keck JL. 2014. Structural mechanisms of PriA-mediated DNA replication restart. Proc Natl Acad Sci U S A. 111(4):1373–1378. doi: 10.1073/pnas.1318001111.
  • Bianco PR. 2017. The tale of SSB. Prog Biophys Mol Biol. 127:111–118. doi: 10.1016/j.pbiomolbio.2016.11.001.
  • Bianco PR. 2020. DNA helicase-SSB interactions critical to the regression and restart of stalled DNA replication forks in Escherichia coli. Genes (Basel). 11(5):471. doi: 10.3390/genes11050471.
  • Bianco PR. 2021. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Protein Sci. 30(9):1757–1775. doi: 10.1002/pro.4140.
  • Bianco PR, Lyubchenko YL. 2017. SSB and the RecG DNA helicase: an intimate association to rescue a stalled replication fork. Protein Sci. 26(4):638–649. doi: 10.1002/pro.3114.
  • Bianco PR, Pottinger S, Tan HY, Nguyenduc T, Rex K, Varshney U. 2017. The IDL of E. coli SSB links ssDNA and protein binding by mediating protein-protein interactions. Protein Sci. 26(2):227–241. doi: 10.1002/pro.3072.
  • Bobst EV, Bobst AM, Perrino FW, Meyer RR, Rein DC. 1985. Variability in the nucleic acid binding site size and the amount of single-stranded DNA binding protein in Escherichia coli. FEBS Lett. 181(1):133–137. doi: 10.1016/0014-5793(85)81128-5.
  • Bonde NJ, Henry C, Wood EA, Cox MM, Keck JL. 2023. Interaction with the carboxy-terminal tip of SSB is critical for RecG function in E. coli. Nucleic Acids Res. 51(8):3735–3753. doi: 10.1093/nar/gkad162.
  • Bonde NJ, Romero ZJ, Chitteni-Pattu S, Cox MM. 2022. RadD is a RecA-dependent accessory protein that accelerates DNA strand exchange. Nucleic Acids Res. 50(4):2201–2210. doi: 10.1093/nar/gkac041.
  • Bonde NJ, Wood EA, Myers KS, Place M, Keck JL, Cox MM. 2023. Identification of recG genetic interactions in Escherichia coli by transposon sequencing. J Bacteriol. 205(12):e00184-23. doi: 10.1128/jb.00184-23.
  • Bonner CA, Stukenberg PT, Rajagopalan M, Eritja R, O’Donnell M, McEntee K, Echols H, Goodman MF. 1992. Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins. J Biol Chem. 267(16):11431–11438. doi: 10.1016/S0021-9258(19)49928-6.
  • Boubakri H, de Septenville AL, Viguera E, Michel B. 2010. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. Embo J. 29(1):145–157. doi: 10.1038/emboj.2009.308.
  • Brendza KM, Cheng W, Fischer CJ, Chesnik MA, Niedziela-Majka A, Lohman TM. 2005. Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. Proc Natl Acad Sci U S A. 102(29):10076–10081. doi: 10.1073/pnas.0502886102.
  • Bujalowski W, Lohman TM. 1986. Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry. 25(24):7799–7802. doi: 10.1021/bi00372a003.
  • Bujalowski W, Lohman TM. 1987. Limited co-operativity in protein-nucleic acid interactions. A thermodynamic model for the interactions of Escherichia coli single strand binding protein with single-stranded nucleic acids in the "beaded", (SSB)65 mode. J Mol Biol. 195(4):897–907. doi: 10.1016/0022-2836(87)90493-1.
  • Bujalowski W, Lohman TM. 1989a. Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions. I. Evidence and a quantitative model. J Mol Biol. 207(1):249–268. doi: 10.1016/0022-2836(89)90454-3.
  • Bujalowski W, Lohman TM. 1989b. Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions. II. Salt, temperature and oligonucleotide length effects. J Mol Biol. 207(1):269–288. doi: 10.1016/0022-2836(89)90455-5.
  • Bujalowski W, Overman LB, Lohman TM. 1988. Binding mode transitions of Escherichia coli single strand binding protein-single-stranded DNA complexes. Cation, anion, pH, and binding density effects. J Biol Chem. 263(10):4629–4640. doi: 10.1016/S0021-9258(18)68829-5.
  • Bunting KA, Roe SM, Pearl LH. 2003. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the β-clamp. Embo J. 22(21):5883–5892. doi: 10.1093/emboj/cdg568.
  • Burckhardt SE, Woodgate R, Scheuermann RH, Echols H. 1988. UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and cleavage by RecA. Proc Natl Acad Sci U S A. 85(6):1811–1815. doi: 10.1073/pnas.85.6.1811.
  • Burdett V, Baitinger C, Viswanathan M, Lovett ST, Modrich P. 2001. In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair. Proc Natl Acad Sci U S A. 98(12):6765–6770. doi: 10.1073/pnas.121183298.
  • Buss JA, Kimura Y, Bianco PR. 2008. RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res. 36(22):7029–7042. doi: 10.1093/nar/gkn795.
  • Cadman CJ, McGlynn P. 2004. PriA helicase and SSB interact physically and functionally. Nucleic Acids Res. 32(21):6378–6387. doi: 10.1093/nar/gkh980.
  • Carrasco B, Seco EM, López-Sanz M, Alonso JC, Ayora S. 2018. Bacillus subtilis RarA modulates replication restart. Nucleic Acids Res. 46(14):7206–7220. doi: 10.1093/nar/gky541.
  • Chang S, Thrall ES, Laureti L, Piatt SC, Pagès V, Loparo JJ. 2022. Compartmentalization of the replication fork by single-stranded DNA-binding protein regulates translesion synthesis. Nat Struct Mol Biol. 29(9):932–941. doi: 10.1038/s41594-022-00827-2.
  • Chao K, Lohman TM. 1990. DNA and nucleotide-induced conformational changes in the Escherichia coli Rep and helicase II (UvrD) proteins. J Biol Chem. 265(2):1067–1076. doi: 10.1016/S0021-9258(19)40159-2.
  • Chen SH, Byrne-Nash RT, Cox MM. 2016. Escherichia coli RadD protein functionally interacts with the single-stranded DNA-binding protein. J Biol Chem. 291(39):20779–20786. doi: 10.1074/jbc.M116.736223.
  • Cheng W, Brendza KM, Gauss GH, Korolev S, Waksman G, Lohman TM. 2002. The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity. Proc Natl Acad Sci U S A. 99(25):16006–16011. doi: 10.1073/pnas.242479399.
  • Cheng ZS, Caillet A, Ren BB, Ding HG. 2012. Stimulation of Escherichia coli DNA damage inducible DNA helicase DinG by the single-stranded DNA binding protein SSB. FEBS Lett. 586(21):3825–3830. doi: 10.1016/j.febslet.2012.09.032.
  • Cheng X, Guinn EJ, Buechel E, Wong R, Sengupta R, Shkel IA, Record MT. 2016. Basis of protein stabilization by K Glutamate: unfavorable interactions with carbon, oxygen groups. Biophys J. 111(9):1854–1865. doi: 10.1016/j.bpj.2016.08.050.
  • Cheng W, Hsieh J, Brendza KM, Lohman TM. 2001. E. coliRep oligomers are required to initiate DNA unwinding in vitro. J Mol Biol. 310(2):327–350. doi: 10.1006/jmbi.2001.4758.
  • Cheng KY, Xu H, Chen XY, Wang LY, Tian B, Zhao Y, Hua YJ. 2016. Structural basis for DNA 5’-end resection by RecJ. Elife. 5:e14294. doi: 10.7554/eLife.14294.
  • Costes A, Lecointe F, McGovern S, Quevillon-Cheruel S, Polard P. 2010. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks. PLoS Genet. 6(12):e1001238. doi: 10.1371/journal.pgen.1001238.
  • Cox MM, Goodman MF, Keck JL, Oijen A, Lovett ST, Robinson A. 2023. Generation and repair of postreplication gaps in Escherichia coli. Microbiol Mol Biol Rev. 87(2):e00078–00022. doi: 10.1128/mmbr.00078-22.
  • Cromie GA, Leach DRF. 2001. Recombinational repair of chromosomal DNA double-strand breaks generated by a restriction endonuclease. Mol Microbiol. 41(4):873–883. doi: 10.1046/j.1365-2958.2001.02553.x.
  • Curth U, Genschel J, Urbanke C, Greipel J. 1996. In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res. 24(14):2706–2711. doi: 10.1093/nar/24.14.2706.
  • Curth U, Greipel J, Urbanke C, Maass G. 1993. Multiple binding modes of the single-stranded DNA binding protein of Escherichia coli as detected by tryptophan fluorescence and site-directed mutagenesis. Biochemistry. 32(10):2585–2591. doi: 10.1021/bi00061a016.
  • Davydova EK, Rothman-Denes LB. 2003. Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci U S A. 100(16):9250–9255. doi: 10.1073/pnas.1133325100.
  • Digate RJ, Marians KJ. 1988. Identification of a potent decatenating enzyme from Escherichia coli. J Biol Chem. 263(26):13366–13373.
  • Dillingham MS, Kowalczykowski SC. 2008. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev. 72(4):642–671, Table of Contents. doi: 10.1128/MMBR.00020-08.
  • Ding WF, Tan HY, Zhang JX, Wilczek LA, Hsieh KR, Mulkin JA, Bianco PR. 2020. The mechanism of Single strand binding protein-RecG binding: implications for SSB interactome function. Protein Sci. 29(5):1211–1227. doi: 10.1002/pro.3855.
  • Dubiel K, Henry C, Spenkelink LM, Kozlov AG, Wood EA, Jergic S, Dixon NE, van Oijen AM, Cox MM, Lohman TM, et al. 2020. Development of a single-stranded DNA-binding protein fluorescent fusion toolbox. Nucleic Acids Res. 48(11):6053–6067. doi: 10.1093/nar/gkaa320.
  • Dubiel K, Myers AR, Kozlov AG, Yang O, Zhang JC, Ha T, Lohman TM, Keck JL. 2019. Structural mechanisms of cooperative DNA binding by bacterial single-stranded DNA-binding proteins. J Mol Biol. 431(2):178–195. doi: 10.1016/j.jmb.2018.11.019.
  • Falco SC, Laan KV, Rothman-Denes LB. 1977. Virion-associated RNA polymerase required for bacteriophage N4 development. Proc Natl Acad Sci U S A. 74(2):520–523. doi: 10.1073/pnas.74.2.520.
  • Fedorov R, Witte G, Urbanke C, Manstein DJ, Curth U. 2006. 3D structure of Thermus aquaticus single-stranded DNA-binding protein gives insight into the functioning of SSB proteins. Nucleic Acids Res. 34(22):6708–6717. doi: 10.1093/nar/gkl1002.
  • Ferrari ME, Bujalowski W, Lohman TM. 1994. Cooperative binding of Escherichia coli SSB to single-stranded DNA in the (SSB)(35) binding mode. J Mol Biol. 236(1):106–123. doi: 10.1006/jmbi.1994.1122.
  • Ferrari ME, Fang J, Lohman TM. 1997. A mutation in E. coli SSB protein (W54S) alters intra-tetramer negative cooperativity and inter-tetramer positive cooperativity for single-stranded DNA binding. Biophys Chem. 64(1-3):235–251. doi: 10.1016/s0301-4622(96)02223-5.
  • Fukushima S, Itaya M, Kato H, Ogasawara N, Yoshikawa H. 2007. Reassessment of the in vivo functions of DNA polymerase I and RNaseH in bacterial cell growth. J Bacteriol. 189(23):8575–8583. doi: 10.1128/JB.00653-07.
  • Furukohri A, Nishikawa Y, Akiyama MT, Maki H. 2012. Interaction between Escherichia coli DNA polymerase IV and single-stranded DNA-binding protein is required for DNA synthesis on SSB-coated DNA. Nucleic Acids Res. 40(13):6039–6048. doi: 10.1093/nar/gks264.
  • Garcia MAO, Satyshur KA, Cox MM, Keck JL. 2022. X-ray crystal structure of the Escherichia coli RadD DNA repair protein bound to ADP reveals a novel zinc ribbon domain. PLoS One. 17(4):10.
  • Garcia MAO, Wood EA, Keck JL, Cox MM. 2023. Interaction with single-stranded DNA-binding protein modulates Escherichia coli RadD DNA repair activities. J Biol Chem. 299(6):104773. doi: 10.1016/j.jbc.2023.104773.
  • Genschel J, Curth U, Urbanke C. 2000. Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol Chem. 381(3):183–192. doi: 10.1515/BC.2000.025.
  • George NP, Ngo KV, Chitteni-Pattu S, Norais CA, Battista JR, Cox MM, Keck JL. 2012. Structure and cellular dynamics of Deinococcus radiodurans single-stranded DNA (ssDNA)-binding protein (SSB)-DNA complexes. J Biol Chem. 287(26):22123–22132. doi: 10.1074/jbc.M112.367573.
  • Gibb B, Ye LF, Gergoudis SC, Kwon YH, Niu HY, Sung P, Greene EC. 2014. Concentration-dependent exchange of replication protein A on single-stranded DNA revealed by single-moleculeimaging. PLoS One. 9(2):e87922. doi: 10.1371/journal.pone.0087922.
  • Glover BP, McHenry CS. 1998. The χψ subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J Biol Chem. 273(36):23476–23484. doi: 10.1074/jbc.273.36.23476.
  • Glucksmann-Kuis MA, Dai X, Markiewicz P, Rothman-Denes LB. 1996. E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition. Cell. 84(1):147–154. doi: 10.1016/s0092-8674(00)81001-6.
  • Green M, Hatter L, Brookes E, Soultanas P, Scott DJ. 2016. Defining the intrinsically disordered C-terminal domain of SSB reveals DNA-mediated compaction. J Mol Biol. 428(2 Pt A):357–364. doi: 10.1016/j.jmb.2015.12.007.
  • Greenberg J, Berends LJ, Donch J, Green MHL. 1974. exrB-malB-linked gene in Excherichia coli B involved in sensitivity to radiation and filament formation. Genet Res. 23(2):175–184. doi: 10.1017/s0016672300014798.
  • Greenberg J, Donch J. 1974. Sensitivity to elevated temperatures in exrB strains of Escherichia coli. Mutat Res. 25(3):403–405. doi: 10.1016/0027-5107(74)90070-0.
  • Griffith JD, Harris LD, Register J. 1984. Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA filaments. Cold Spring Harb Symp Quant Biol. 49(0):553–559. doi: 10.1101/sqb.1984.049.01.062.
  • Hamon L, Pastré D, Dupaigne P, Le Breton C, Le Cam E, Piétrement O. 2007. High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein-DNA complexes. Nucleic Acids Res. 35(8):e58–e58. doi: 10.1093/nar/gkm147.
  • Han ES, Cooper DL, Persky NS, Sutera VA, Whitaker RD, Montello ML, Lovett ST. 2006. RecJ exonuclease: substrates, products and interaction with SSB. Nucleic Acids Res. 34(4):1084–1091. doi: 10.1093/nar/gkj503.
  • Handa P, Acharya N, Varshney U. 2001. Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem. 276(20):16992–16997. doi: 10.1074/jbc.M100393200.
  • Handa N, Morimatsu K, Lovett ST, Kowalczykowski SC. 2009. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev. 23(10):1234–1245. doi: 10.1101/gad.1780709.
  • Harami GM, Kovács ZJ, Pancsa R, Pálinkás J, Baráth V, Tárnok K, Málnási-Csizmadia A, Kovács M. 2020. Phase separation by ssDNA binding protein controlled via protein-protein and protein-DNA interactions. Proc Natl Acad Sci U S A. 117(42):26206–26217. doi: 10.1073/pnas.2000761117.
  • Harami GM, Seol Y, In J, Ferencziová V, Martina M, Gyimesi M, Sarlós K, Kovács ZJ, Nagy NT, Sun Y, et al. 2017. Shuttling along DNA and directed processing of D-loops by RecQ helicase support quality control of homologous recombination. Proc Natl Acad Sci U S A. 114(4):E466–E475. doi: 10.1073/pnas.1615439114.
  • Harmon FG, Brockman JP, Kowalczykowski SC. 2003. RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase III. J Biol Chem. 278(43):42668–42678. doi: 10.1074/jbc.M302994200.
  • Harmon FG, DiGate RJ, Kowalczykowski SC. 1999. RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol Cell. 3(5):611–620. doi: 10.1016/s1097-2765(00)80354-8.
  • Harmon FG, Kowalczykowski SC. 1998. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev. 12(8):1134–1144. doi: 10.1101/gad.12.8.1134.
  • Harmon FG, Kowalczykowski SC. 2001. Biochemical characterization of the DNA helicase activity of the Escherichia coli RecQ helicase. J Biol Chem. 276(1):232–243. doi: 10.1074/jbc.M006555200.
  • Heller RC, Marians KJ. 2005. The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol Cell. 17(5):733–743. doi: 10.1016/j.molcel.2005.01.019.
  • Henry C, Kaur G, Cherry ME, Henrikus SS, Bonde NJ, Sharma N, Beyer HA, Wood EA, Chitteni-Pattu S, van Oijen AM, et al. 2023. RecF protein function in targeting RecFOR to postreplication gaps II: RecF interaction with replisomes. Nucleic Acids Res. 51(11):5714–5742. doi: 10.1093/nar/gkad310.
  • Henry C, Mbele N, Cox MM. 2023. RecF protein function in targeting RecFOR to postreplication gaps I: DNA binding specificities and requirements of RecF and RecFR. Nucleic Acids Res. 51(11):5699–5713. doi: 10.1093/nar/gkad311.
  • Hobbs MD, Sakai A, Cox MM. 2007. SSB protein limits RecOR binding onto single-stranded DNA. J Biol Chem. 282(15):11058–11067. doi: 10.1074/jbc.M611007200.
  • Hodskinson MRG, Allen LM, Thomson DP, Sayers JR. 2007. Molecular interactions of Escherichia coli ExoIX and identification of its associated 3’-5’ exonuclease activity. Nucleic Acids Res. 35(12):4094–4102. doi: 10.1093/nar/gkm396.
  • Hormeno S, Wilkinson OJ, Alcart-Ramos C, Moreno-Herrero F. 2022. Human HELB is a processive motor protein that catalyzes RPA clearance from single-stranded DNA. Proc. Natl. Acad. Sci USA. 119(15):e2112376119.
  • Huang YH, Huang CY. 2018. The glycine-rich flexible region in SSB is crucial for PriA stimulation. RSC Adv. 8(61):35280–35288. doi: 10.1039/c8ra07306f.
  • Huang YH, Lin MJ, Huang CY. 2013. Yeast two-hybrid Analysis of PriB-interacting proteins in replication restart primosome: a proposed PriB-SSB interaction model. Protein J. 32(6):477–483. doi: 10.1007/s10930-013-9509-y.
  • Ivancic-Bace I, Salaj-Smic E, Brcic-Kostic K. 2005. Effects of recJ, recQ, and recFOR mutations on recombination in nuclease-deficient recB recD double mutants of Escherichia coli. J Bacteriol. 187(4):1350–1356. doi: 10.1128/JB.187.4.1350-1356.2005.
  • Jain K, Wood EA, Cox MM. 2021. The rarA gene as part of an expanded RecFOR recombination pathway: negative epistasis and synthetic lethality with ruvB, recG, and recQ. PLoS Genet. 17(12):e1009972. doi: 10.1371/journal.pgen.1009972.
  • Jain K, Wood EA, Romero ZJ, Cox MM. 2021. RecA-independent recombination: dependence on the Escherichia coli RarA protein. Mol Microbiol. 115(6):1122–1137. doi: 10.1111/mmi.14655.
  • Johnson BF. 1984. Two-dimensional electrophoretic analysis of the regulation of SOS proteins in three ssb mutants. Arch Microbiol. 138(2):106–112. doi: 10.1007/BF00413009.
  • Kantake N, Madiraju M, Sugiyama T, Kowalczykowski SC. 2002. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: a common step in genetic recombination. Proc Natl Acad Sci U S A. 99(24):15327–15332. doi: 10.1073/pnas.252633399.
  • Kelman Z, Yuzhakov A, Andjelkovic J, O’Donnell M. 1998. Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. Embo J. 17(8):2436–2449. doi: 10.1093/emboj/17.8.2436.
  • Klimova AN, Sandler SJ. 2020. Mutational analysis of residues in PriA and PriC affecting their ability to interact with SSB in Escherichia coli K-12. J Bacteriol. 202(23):14. doi: 10.1128/JB.00404-20.
  • Kornberg T, Gefter ML. 1971. Purification and DNA synthesis in cell-free extracts - properties of DNA polymerase II. Proc Natl Acad Sci U S A. 68(4):761–764. doi: 10.1073/pnas.68.4.761.
  • Kowalczykowski SC, Lonberg N, Newport JW, von Hippel PH. 1981. Interactions of bacteriophage T4-coded Gene 32 protein with nucleic acids. 1. characteriation of the binding interactions. J Mol Biol. 145(1):75–104. doi: 10.1016/0022-2836(81)90335-1.
  • Kowalczykowski SC, Roman LJ. 1990. Reconstitution of homologous pairing activity dependent upon the combined activities of purified E. coli RecA, RecBCD, and SSB proteins. In: Richardson CC, Lehman IR, editors. Molecular mechanisms in DNA replication and recombination. New York: Alan R. Liss; p. 357–373.
  • Kozlov AG, Cheng X, Zhang HS, Shinn MK, Weiland E, Nguyen B, Shkel IA, Zytkiewicz E, Finkelstein IJ, Record MT, et al. 2022. How glutamate promotes liquid-liquid phase separation and DNA binding cooperativity of E. coli SSB protein. J Mol Biol. 434(9):167562. doi: 10.1016/j.jmb.2022.167562.
  • Kozlov AG, Cox MM, Lohman TM. 2010. Regulation of Single-stranded DNA Binding by the C Termini of Escherichia coli Single-stranded DNA-binding (SSB) Protein. J Biol Chem. 285(22):17246–17252. doi: 10.1074/jbc.M110.118273.
  • Kozlov AG, Jezewska MJ, Bujalowski W, Lohman TM. 2010. Binding specificity of Escherichia coli single-stranded DNA binding protein for the χ subunit of DNA pol III holoenzyme and PriA helicase. Biochemistry. 49(17):3555–3566. doi: 10.1021/bi100069s.
  • Kozlov AG, Lohman TM. 2002. Kinetic mechanism of direct transfer of Escherichia coli SSB tetramers between single-stranded DNA molecules. Biochemistry. 41(39):11611–11627. doi: 10.1021/bi020361m.
  • Kozlov AG, Lohman TM. 2021. Probing E. coli SSB protein-DNA topology by reversing DNA backbone polarity. Biophys J. 120(8):1522–1533. doi: 10.1016/j.bpj.2021.02.025.
  • Kozlov AG, Shinn MK, Lohman TM. 2019. Regulation of nearest-neighbor cooperative binding of E. coli SSB protein to DNA. Biophys J. 117(11):2120–2140. doi: 10.1016/j.bpj.2019.09.047.
  • Kozlov AG, Shinn MK, Weiland EA, Lohman TM. 2017. Glutamate promotes SSB protein-protein Interactions via intrinsically disordered regions. J Mol Biol. 429(18):2790–2801. doi: 10.1016/j.jmb.2017.07.021.
  • Kozlov AG, Weiland E, Mittal A, Waldman V, Antony E, Fazio N, Pappu RV, Lohman TM. 2015. Intrinsically disordered C-Terminal tails of E. coli single-stranded DNA binding protein regulate cooperative binding to single-stranded DNA. J Mol Biol. 427(4):763–774. doi: 10.1016/j.jmb.2014.12.020.
  • Kumar NV, Varshney U. 1997. Contrasting effects of single stranded DNA binding protein on the activity of uracil DNA glycosylase from Escherichia coli towards different DNA substrates. Nucleic Acids Res. 25(12):2336–2343. doi: 10.1093/nar/25.12.2336.
  • Kunzelmann S, Morris C, Chavda AP, Eccleston JF, Webb MR. 2010. Mechanism of interaction between single-stranded DNA binding protein and DNA. Biochemistry. 49(5):843–852. doi: 10.1021/bi901743k.
  • Lasken RS, Kornberg A. 1988. The promosomal protein n’ of Escherichia coli is a DNA helicase. J Biol Chem. 263(12):5512–5518.
  • Lecointe F, Sérèna C, Velten M, Costes A, McGovern S, Meile J-C, Errington J, Ehrlich SD, Noirot P, Polard P. 2007. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. Embo J. 26(19):4239–4251. doi: 10.1038/sj.emboj.7601848.
  • Lee EH, Kornberg A. 1991. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n’ protein. Proc Natl Acad Sci U S A. 88(8):3029–3032. doi: 10.1073/pnas.88.8.3029.
  • Lee KS, Marciel AB, Kozlov AG, Schroeder CM, Lohman TM, Ha T. 2014. Ultrafast redistribution of E. coli SSB along long single-stranded DNA via intersegment transfer. J Mol Biol. 426(13):2413–2421. doi: 10.1016/j.jmb.2014.04.023.
  • Lee CM, Wang GS, Pertsinidis A, Marians KJ. 2019. Topoisomerase III acts at the replication fork to remove precatenanes. J Bacteriol. 201(7):e00563–00518. doi: 10.1128/JB.00563-18.
  • Leirmo S, Harrison C, Cayley DS, Burgess RR, Record MT.Jr. 1987. Replacement of potassium chloride by potassium glutamate dramatically enhances protein-DNA interactions in vitro. Biochemistry. 26(8):2095–2101. doi: 10.1021/bi00382a006.
  • Li GW, Burkhardt D, Gross C, Weissman JS. 2014. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell. 157(3):624–635. doi: 10.1016/j.cell.2014.02.033.
  • Lindahl T. 1974. N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci U S A. 71(9):3649–3653. doi: 10.1073/pnas.71.9.3649.
  • Lindahl T, Ljungquist S, Siegert W, Nyberg B, Sperens B. 1977. DNA N-glycosidases - properties of uracil N-glycosidase from Escherichia coli. J Biol Chem. 252(10):3286–3294.
  • Lo ATY. 2012. Protein dynamics on the lagging strand during DNA synthesis. [dissertation]. Wollongong, Australia: School of Chemistry, University of Wollongong. https://ro.uow.edu.au/theses/3684.
  • Lohman TM. 1984a. Kinetics and mechanism of dissociation of cooperatively bound T4—gene 32-protein-single-strand DNA complexes.1. Irreversible dissociatioin induced by sodium chloride concentration jumps. Biochemistry. 23(20):4656–4665. doi: 10.1021/bi00315a022.
  • Lohman TM. 1984b. Kinetics and mechanism of dissociation of cooperatively bound T4—gene 32-protein-single-strand DNA complexes. 2. Changes in mechanism as a function of sodium chloride concentration and other solution variables. Biochemistry. 23(20):4665–4675. doi: 10.1021/bi00315a023.
  • Lohman TM, Bujalowski W. 1988. Negative cooperativity within individual tetramers of Escherichia coli single strand binding protein is responsible for the transition between the (SSB)35 and (SSB)56 DNA binding modes. Biochemistry. 27(7):2260–2265. doi: 10.1021/bi00407a002.
  • Lohman TM, Bujalowski W. 1994. Effects of base composition on the negatoive cooperativity and binding mode transitions of Escherichia coli SSB-single-stranded DNA complexes. Biochemistry. 33(20):6167–6176. doi: 10.1021/bi00186a016.
  • Lohman TM, Bujalowski W, Overman LB, Wei TF. 1988. Interactions of the Escherichia coli single-strand binding (SSB) protein with SS nucleic acids- binding mode transitions and equilibrium binding studies. Biochem Pharmacol. 37(9):1781–1782. doi: 10.1016/0006-2952(88)90443-1.
  • Lohman TM, Ferrari ME. 1994. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem. 63(1):527–570. doi: 10.1146/annurev.bi.63.070194.002523.
  • Lohman TM, Kowalczykowski SC. 1981. Kinetics and mechanism of the association of the bacteriophage T4 gene 32 (heliz destabilizing) protein with single-stranded nucleic acids - evidence for protein translocation. J Mol Biol. 152(1):67–109. doi: 10.1016/0022-2836(81)90096-6.
  • Lohman TM, Overman LB. 1985. Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem. 260(6):3594–3603.
  • Lohman TM, Overman LB, Datta S. 1986. Salt-dependent changes in the DNA binding co-operativity of Escherichia coli single strand binding protein. J Mol Biol. 187(4):603–615. doi: 10.1016/0022-2836(86)90338-4.
  • Lopper M, Boonsombat R, Sandler SJ, Keck JL. 2007. A hand-off mechanism for primosome assembly in replication restart. Mol Cell. 26(6):781–793. doi: 10.1016/j.molcel.2007.05.012.
  • Lopper M, Holton JM, Keck JL. 2004. Crystal structure of PriB, a component of the Escherichia coli replication restart primosome. Structure. 12(11):1967–1975. doi: 10.1016/j.str.2004.09.004.
  • Lu D, Keck JL. 2008. Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I. Proc Natl Acad Sci U S A. 105(27):9169–9174. doi: 10.1073/pnas.0800741105.
  • Lu D, Myers AR, George NP, Keck JL. 2011. Mechanism of Exonuclease I stimulation by the single-stranded DNA-binding protein. Nucleic Acids Res. 39(15):6536–6545. doi: 10.1093/nar/gkr315.
  • Lu D, Windsor MA, Gellman SH, Keck JL. 2009. Peptide inhibitors identify roles for SSB C-terminal residues in SSB/Exonuclease I complex formation. Biochemistry. 48(29):6764–6771. doi: 10.1021/bi900361r.
  • Marceau AH, Bahng S, Massoni SC, George NP, Sandler SJ, Marians KJ, Keck JL. 2011. Structure of the SSB-DNA polymerase III interface and its role in DNA replication. Embo J. 30(20):4236–4247. doi: 10.1038/emboj.2011.305.
  • Markiewicz P, Malone C, Chase JW, Rothman-Denes LB. 1992. Escherichia coli single-stranded DNA binding protein is a supercoiled template-dependent transcriptional activator of N4 virion RNA-polymerase. Genes Dev. 6(10):2010–2019. doi: 10.1101/gad.6.10.2010.
  • Matsumoto T, Morimoto Y, Shibata N, Kinebuchi T, Shimamoto N, Tsukihara T, Yasuoka N. 2000. Roles of functional loops and the C-terminal segment of a single-stranded DNA binding protein elucidated by x-ray structure analysis. J Biochem. 127(2):329–335. doi: 10.1093/oxfordjournals.jbchem.a022611.
  • McCool JD, Sandler SJ. 2001. Effects of mutations involving cell division, recombination, and chromosome dimer resolution on a priA2: : kan mutant. Proc Natl Acad Sci U S A. 98(15):8203–8210. doi: 10.1073/pnas.121007698.
  • McDonald JP, Maury EE, Levine AS, Woodgate R. 1998. Regulation of UmuD cleavage: role of the amino-terminal tail. J Mol Biol. 282(4):721–730. doi: 10.1006/jmbi.1998.2044.
  • Mersch KN, Sokoloski JE, Nguyen B, Galletto R, Lohman TM. 2023. Helicase" activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. Proc Natl Acad Sci U S A. 120(15):e2216777120. doi: 10.1073/pnas.2216777120.
  • Meyer RR, Laine PS. 1990. The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev. 54(4):342–380. doi: 10.1128/mr.54.4.342-380.1990.
  • Meyer RR, Rein DC, Glassberg J. 1982. The product of the lexC gene of Escherichia coli is single-stranded DNA-binding protein. J Bacteriol. 150(1):433–435. doi: 10.1128/jb.150.1.433-435.1982.
  • Michel B, Sandler SJ. 2017. Replication restart in bacteria. J Bacteriol. 199(13):e00102-17. doi: 10.1128/JB.00102-17.
  • Miller RC, Taylor DM, Mackay K, Smith HW. 1973. Replication of T4 DNA in Escherichia coli treated with toluene. J Virol. 12(6):1195–1203. doi: 10.1128/JVI.12.6.1195-1203.1973.
  • Mills M, Harami GM, Seol Y, Gyimesi M, Martina M, Kovács ZJ, Kovács M, Neuman KC. 2017. RecQ helicase triggers a binding mode change in the SSB-DNA complex to efficiently initiate DNA unwinding. Nucleic Acids Res. 45(20):11878–11890. doi: 10.1093/nar/gkx939.
  • Mishra G, Bigman LS, Levy Y. 2020. ssDNA diffuses along replication protein A via a reptation mechanism. Nucleic Acids Res. 48(4):1701–1714. doi: 10.1093/nar/gkz1202.
  • Molineux IJ, Gefter ML. 1974. Properties of Escherichia coli DNA binding (unwinding) protein - interaction with DNA polymerase and DNA. Proc Natl Acad Sci U S A. 71(10):3858–3862. doi: 10.1073/pnas.71.10.3858.
  • Molineux IJ, Gefter ML. 1975. Properties of the Escherichia coli DNA-binding (unwinding) protein interaction with nucleolytic enzymes and DNA. J Mol Biol. 98(4):811–825. doi: 10.1016/s0022-2836(75)80012-x.
  • Morimatsu K, Kowalczykowski SC. 2014. RecQ helicase and RecJ nuclease provide complementary functions to resect DNA for homologous recombination. Proc Natl Acad Sci U S A. 111(48):E5133–E5142. doi: 10.1073/pnas.1420009111.
  • Morse M, Navarro Roby F, Kinare M, McIsaac J, Williams MC, Beuning PJ. 2023. DNA damage alters binding conformations of E. coli single-stranded DNA-binding protein. Biophys J. 122(19):3950–3958. doi: 10.1016/j.bpj.2023.08.018.
  • Naue N, Beerbaum M, Bogutzki A, Schmieder P, Curth U. 2013. The helicase-binding domain of Escherichia coli DnaG primase interacts with the highly conserved C-terminal region of single-stranded DNA-binding protein. Nucleic Acids Res. 41(8):4507–4517. doi: 10.1093/nar/gkt107.
  • Naue N, Fedorov R, Pich A, Manstein DJ, Curth U. 2011. Site-directed mutagenesis of the χ subunit of DNA polymerase III and single-stranded DNA-binding protein of E. coli reveals key residues for their interaction. Nucleic Acids Res. 39(4):1398–1407. doi: 10.1093/nar/gkq988.
  • Naufer MN, Morse M, Möller GB, McIsaac J, Rouzina I, Beuning PJ, Williams MC. 2021. Multiprotein E. coli SSB ssDNA complex shows both stable binding and rapid dissociation due to interprotein interactions. Nucleic Acids Res. 49(3):1532–1549. doi: 10.1093/nar/gkaa1267.
  • Newcomb ESP, Douma LG, Morris LA, Bloom LB. 2022. The Escherichia coli clamp loader rapidly remodels SSB on DNA to load clamps. Nucleic Acids Res. 50(22):12872–12884. doi: 10.1093/nar/gkac1169.
  • Nguyen B, Shinn MK, Weiland E, Lohman TM. 2021. Regulation of E. coli Rep helicase activity by PriC. J Mol Biol. 433(15):167072. doi: 10.1016/j.jmb.2021.167072.
  • Nguyen B, Sokoloski J, Galletto R, Elson EL, Wold MS, Lohman TM. 2014. Diffusion of human replication protein A along single-stranded DNA. J Mol Biol. 426(19):3246–3261. doi: 10.1016/j.jmb.2014.07.014.
  • Nigam R, Mohan M, Shivange G, Dewangan PK, Anindya R. 2018. Escherichia coli AlkB interacts with single-stranded DNA binding protein SSB by an intrinsically disordered region of SSB. Mol Biol Rep. 45(5):865–870. doi: 10.1007/s11033-018-4232-6.
  • Nohmi T, Battista JR, Dodson LA, Walker GC. 1988. RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc Natl Acad Sci U S A. 85(6):1816–1820. doi: 10.1073/pnas.85.6.1816.
  • Nurse P, Zavitz KH, Marians KJ. 1991. Inactivation of the Escherichia coli priA DNA replication protein induces the SOS response. J Bacteriol. 173(21):6686–6693. doi: 10.1128/jb.173.21.6686-6693.1991.
  • Ogawa T, Okazaki T. 1984. Function of RNase H in DNA replication revealed by RNase H defective mutants of Escherichia coli. Mol Gen Genet. 193(2):231–237. doi: 10.1007/BF00330673.
  • Ogawa T, Pickett GG, Kogoma T, Kornberg A. 1984. RNase H confers specificity in the DnaA-dependent intitiation of replication at the unique origin of the Escherichia coli chromosome in vivo and in vitro. Proc Natl Acad Sci U S A. 81(4):1040–1044. doi: 10.1073/pnas.81.4.1040.
  • Overman LB, Bujalowski W, Lohman TM. 1988. Equilibrium binding of Escherichia coli single strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode - cation and anion effects and polynucleotide specificity. Biochemistry. 27(1):456–471. doi: 10.1021/bi00401a067.
  • Page AN. 2012. Structural and biochemical studies on the Escherichia coli protein MgsA [dissertation]. Madison, Wisconsin: University of Wisconsin-Madison.
  • Page AN, George NP, Marceau AH, Cox MM, Keck JL. 2011. Structure and biochemical activities of Escherichia coli MgsA. J Biol Chem. 286(14):12075–12085. doi: 10.1074/jbc.M110.210187.
  • Pappu RV, Cohen SR, Dar F, Farag M, Kar M. 2023. Phase transitions of associative biomacromolecules. Chem Rev. 123(14):8945–8987. doi: 10.1021/acs.chemrev.2c00814.
  • Petzold C, Marceau AH, Miller KH, Marqusee S, Keck JL. 2015. Interaction with single-stranded DNA-binding protein stimulates Escherichia coli ribonuclease HI enzymatic activity. J Biol Chem. 290(23):14626–14636. doi: 10.1074/jbc.M115.655134.
  • Pham P, Shao J, Cox MM, Goodman MF. 2022. Genomic landscape of single-stranded DNA gapped intermediates in Escherichia coli. Nucleic Acids Res. 50(2):937–951. doi: 10.1093/nar/gkab1269.
  • Pham P, Wood EA, Cox MM, Goodman MF. 2023. RecA and SSB genome-wide distribution in ssDNA gaps and ends in Escherichia coli. Nucleic Acids Res. 51(11):5527–5546. doi: 10.1093/nar/gkad263.
  • Ponomarev VA, Makarova KS, Aravind L, Koonin EV. 2003. Gene duplication with displacement and rearrangement: origin of the bacterial replication protein PriB from the single-stranded DNA-Binding protein SSB. J Mol Microbiol Biotechnol. 5(4):225–229. doi: 10.1159/000071074.
  • Purnapatre K, Handa P, Venkatesh J, Varshney U. 1999. Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria. Nucleic Acids Res. 27(17):3487–3492. doi: 10.1093/nar/27.17.3487.
  • Raghunathan S, Kozlov AG, Lohman TM, Waksman G. 2000. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol. 7(8):648–652. doi: 10.1038/77943.
  • Raghunathan S, Ricard CS, Lohman TM, Waksman G. 1997. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proc Natl Acad Sci U S A. 94(13):6652–6657. doi: 10.1073/pnas.94.13.6652.
  • Richey B, Cayley DS, Mossing MC, Kolka C, Anderson CF, Farrar TC, Record MT.Jr. 1987. Variability of the intracellular ionic environment of Escherichia coli. Differences between in vitro and in vivo effects of ion concentrations on protein-DNA interactions and gene expression. J Biol Chem. 262(15):7157–7164. doi: 10.1016/S0021-9258(18)48218-X.
  • Römer R, Schomburg U, Krauss G, Maass G. 1984. Escherichia coli single-stranded DNA binding proteins is mobile on DNA- H1-NMR study of its interaction with oligonucleotide and polynucleotide. Biochemistry. 23(25):6132–6137. doi: 10.1021/bi00320a036.
  • Romero ZJ, Chen SH, Armstrong T, Wood EA, van Oijen A, Robinson A, Cox MM. 2020. Resolving Toxic DNA repair intermediates in every E. coli replication cycle: critical roles for RecG, Uup and RadD. Nucleic Acids Res. 48(15):8445–8460. doi: 10.1093/nar/gkaa579.
  • Rowen L, Kornberg A. 1978. Primase DnaG protein of Escherichia coli - enzyme which starts DNA chains. J Biol Chem. 253(3):758–764.
  • Roy R, Kozlov AG, Lohman TM, Ha T. 2007. Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J Mol Biol. 369(5):1244–1257. doi: 10.1016/j.jmb.2007.03.079.
  • Roy R, Kozlov AG, Lohman TM, Ha T. 2009. SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature. 461(7267):1092–1097. doi: 10.1038/nature08442.
  • Rudolph CJ, Upton AL, Briggs GS, Lloyd RG. 2010. Is RecG a general guardian of the bacterial genome? DNA Repair (Amst). 9(3):210–223. doi: 10.1016/j.dnarep.2009.12.014.
  • Rudolph CJ, Upton AL, Harris L, Lloyd RG. 2009. Pathological replication in cells lacking RecG DNA translocase. Mol Microbiol. 73(3):352–366. doi: 10.1111/j.1365-2958.2009.06773.x.
  • Rudolph CJ, Upton AL, Lloyd RG. 2008. Maintaining replication fork integrity in UV-irradiated Escherichia coli cells. DNA Repair (Amst). 7(9):1589–1602. doi: 10.1016/j.dnarep.2008.06.012.
  • Rudolph CJ, Upton AL, Stockum A, Nieduszynski CA, Lloyd RG. 2013. Avoiding chromosome pathology when replication forks collide. Nature. 500(7464):608–611. doi: 10.1038/nature12312.
  • Ryzhikov M, Koroleva O, Postnov D, Tran A, Korolev S. 2011. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res. 39(14):6305–6314. doi: 10.1093/nar/gkr199.
  • Sakai A, Cox MM. 2009. RecFOR and RecOR as distinct RecA loading pathways. J Biol Chem. 284(5):3264–3272. doi: 10.1074/jbc.M807220200.
  • Sandigursky M, Mendez F, Bases RE, Matsumoto T, Franklin WA. 1996. Protein-protein interactions between the Escherichia coli single-stranded DNA-binding protein and exonuclease I. Radiat Res. 145(5):619–623. doi: 10.2307/3579281.
  • Sandler SJ. 1996. Overlapping functions for recF and priA in cell viability and UV-inducible SOS expression are distinguished by dnaC809 in Escherichia coli K-12. Mol Microbiol. 19(4):871–880. doi: 10.1046/j.1365-2958.1996.429959.x.
  • Sandler SJ, Bonde NJ, Wood EA, Cox MM, Keck JL. 2024. The intrinsically disordered linker in the single-stranded DNA-binding protein influences DNA replication restart and recombination pathways in Escherichia coli K-12. J Bacteriol. In press.
  • Sandler SJ, McCool JD, Do TT, Johansen RU. 2001. PriA mutations that affect PriA-PriC function during replication restart. Mol Microbiol. 41(3):697–704. doi: 10.1046/j.1365-2958.2001.02547.x.
  • Sarov-Blat L, Livneh Z. 1998. The mutagenesis protein MucB interactions with single strand DNA binding protein and induces a major conformational change in its complex with single-stranded DNA. J Biol Chem. 273(10):5520–5527. doi: 10.1074/jbc.273.10.5520.
  • Savvides SN, Raghunathan S, Fütterer K, Kozlov AG, Lohman TM, Waksman G. 2004. The C-terminal domain of full-length E. coli SSB is disordered even when bound to DNA. Protein Sci. 13(7):1942–1947. doi: 10.1110/ps.04661904.
  • Schneider RJ, Wetmur JG. 1982. Kinetics of transfer of Escherichia coli single-strand deoxynucleic acid binding protein between single-stranded deoxynucleic acid molecules. Biochemistry. 21(4):608–615. doi: 10.1021/bi00533a002.
  • Scotland MK, Heltzel JMH, Kath JE, Choi JS, Berdis AJ, Loparo JJ, Sutton MD. 2015. A genetic selection for dinB mutants reveals an interaction between DNA polymerase IV and the replicative polymerase that Is required for translesion synthesis. PLoS Genet. 11(9):e1005507. doi: 10.1371/journal.pgen.1005507.
  • Scotland MK, Homiski C, Sutton MD. 2022. During translesion synthesis, Escherichia coli DinB89 (T120P) alters interactions of DinB (Pol IV) with Pol III subunit assemblies and SSB, but not with the β clamp. J Bacteriol. 204(4):e00611–00621. doi: 10.1128/jb.00611-21.
  • Sengupta R, Pantel A, Cheng X, Shkel I, Peran I, Stenzoski N, Raleigh DP, Record MT. 2016. Positioning the intracellular salt potassium glutamate in the Hofmeister Series by chemical unfolding studies of NTL9. Biochemistry. 55(15):2251–2259. doi: 10.1021/acs.biochem.6b00173.
  • Shereda RD, Bernstein DA, Keck JL. 2007. A central role for SSB in Escherichia coli RecQ DNA helicase function. J Biol Chem. 282(26):19247–19258. doi: 10.1074/jbc.M608011200.
  • Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. 2008. SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol. 43(5):289–318. doi: 10.1080/10409230802341296.
  • Shereda RD, Reiter NJ, Butcher SE, Keck JL. 2009. Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB’s C-terminus. J Mol Biol. 386(3):612–625. doi: 10.1016/j.jmb.2008.12.065.
  • Sherratt DJ, Søballe B, Barre F-X, Filipe S, Lau I, Massey T, Yates J. 2004. Recombination and chromosome segregation. Philos Trans R Soc Lond B Biol Sci. 359(1441):61–69. doi: 10.1098/rstb.2003.1365.
  • Shibata T, Hishida T, Kubota Y, Han YW, Iwasaki H, Shinagawa H. 2005. Functional overlap between RecA and MgsA (RarA) in the rescue of stalled replication forks in Escherichia coli. Genes Cells. 10(3):181–191. doi: 10.1111/j.1365-2443.2005.00831.x.
  • Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science. 357(6357):eaaf4382. doi: 10.1126/science.aaf4382.
  • Shinagawa H, Iwasaki H, Kato T, Nakata A. 1988. RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc Natl Acad Sci U S A. 85(6):1806–1810. doi: 10.1073/pnas.85.6.1806.
  • Shinn MK, Chaturvedi SK, Kozlov AG, Lohman TM. 2023. Allosteric effects of E. coli SSB and RecR proteins on RecO protein binding to DNA. Nucleic Acids Res. 51(5):2284–2297. doi: 10.1093/nar/gkad084.
  • Shinn MK, Kozlov AG, Lohman TM. 2021. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res. 49(4):1987–2004. doi: 10.1093/nar/gkaa1291.
  • Shinn MK, Kozlov AG, Nguyen B, Bujalowski WM, Lohman TM. 2019. Are the intrinsically disordered linkers involved in SSB binding to accessory proteins? Nuc Acids Res. 47(16):8581–8594.
  • Shlomai J, Kornberg A. 1980a. A prepriming DNA replication enzyme of Escherichia coli. I. Purification of protein n’: a sequence-specific, DNA-dependent ATPase. J Biol Chem. 255(14):6789–6793. doi: 10.1016/S0021-9258(18)43641-1.
  • Shlomai J, Kornberg A. 1980b. A prepriming DNA replication enzyme of Escherichia coli. II. Actions of protein n’: a sequence-specific, DNA-dependent ATPase. J Biol Chem. 255(14):6794–6798. doi: 10.1016/S0021-9258(18)43642-3.
  • Sigal N, Delius H, Kornberg T, Gefter ML, Alberts B. 1972. A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. Proc Natl Acad Sci U S A. 69(12):3537–3541. doi: 10.1073/pnas.69.12.3537.
  • Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB. 2004. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature. 432(7014):187–193. doi: 10.1038/nature02988.
  • Slocum SL, Buss JA, Kimura Y, Bianco PR. 2007. Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA. J Mol Biol. 367(3):647–664. doi: 10.1016/j.jmb.2007.01.007.
  • Sokoloski JE, Kozlov AG, Galletto R, Lohman TM. 2016. Chemo-mechanical pushing of proteins along single-stranded DNA. Proc Natl Acad Sci U S A. 113(22):6194–6199. doi: 10.1073/pnas.1602878113.
  • Spenkelink LM, Lewis JS, Jergic S, Xu ZQ, Robinson A, Dixon NE, van Oijen AM. 2019. Recycling of single-stranded DNA-binding protein by the bacterial replisome. Nucleic Acids Res. 47(8):4111–4123. doi: 10.1093/nar/gkz090.
  • Stanage TH, Page AN, Cox MM. 2017. DNA flap creation by the RarA/MgsA protein of Escherichia coli. Nuc Acids Res. 45(5):2724–2735.
  • Suksombat S, Khafizov R, Kozlov AG, Lohman TM, Chemla YR. 2015. Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. Elife. 4:e08193. doi: 10.7554/eLife.08193.
  • Sun ZQ, Tan HY, Bianco PR, Lyubchenko YL. 2015. Remodeling of RecG helicase at the DNA replication fork by SSB protein. Sci Rep. 5(1):9625. doi: 10.1038/srep09625.
  • Suski C, Marians KJ. 2008. Resolution of converging replication forks by RecQ and topoisomerase III. Mol Cell. 30(6):779–789. doi: 10.1016/j.molcel.2008.04.020.
  • Takahashi NK, Kusano K, Yokochi T, Kitamura Y, Yoshikura H, Kobayashi I. 1993. Genetic analysis of double-strand break repair in Escherichia coli. J Bacteriol. 175(16):5176–5185. doi: 10.1128/jb.175.16.5176-5185.1993.
  • Tan HY, Bianco PR. 2021. SSB facilitates fork-substrate discrimination by the PriA DNA helicase. ACS Omega. 6(25):16324–16335. doi: 10.1021/acsomega.1c00722.
  • Thrall ES, Piatt SC, Chang S, Loparo JJ. 2022. Replication stalling activates SSB for recruitment of DNA damage tolerance factors. Proc Natl Acad Sci U S A. 119(41):e2208875119. doi: 10.1073/pnas.2208875119.
  • Tian LF, Kuang XL, Ding K, Gao HW, Tang Q, Yan XX, Xu WQ. 2023. Biochemical and structural analyses shed light on the mechanisms of RadD DNA bnding and Its ATPase from Escherichia coli. Int J Mol Sci. 24(1):12.
  • Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B. 2002. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature. 419(6903):174–178. doi: 10.1038/nature00908.
  • Umezu K, Chi NW, Kolodner RD. 1993. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci U S A. 90(9):3875–3879. doi: 10.1073/pnas.90.9.3875.
  • Umezu K, Kolodner RD. 1994. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem. 269(47):30005–30013. doi: 10.1016/S0021-9258(18)43981-6.
  • Umezu K, Nakayama H. 1993. RecQ DNA helicase of Escherichia coli. Characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein. J Mol Biol. 230(4):1145–1150. doi: 10.1006/jmbi.1993.1231.
  • Voloshin ON, Camerini-Otero RD. 2007. The DinG protein from Escherichia coli is a structure-specific helicase. J Biol Chem. 282(25):18437–18447. doi: 10.1074/jbc.M700376200.
  • Waldman VM, Weiland E, Kozlov AG, Lohman TM. 2016. Is a fully wrapped SSB-DNA complex essential for Escherichia coli survival? Nucleic Acids Res. 44(9):4317–4329. doi: 10.1093/nar/gkw262.
  • Wang TC, Smith KC. 1982. Effects of the ssb-1 and ssb-113 mutations on survival and DNA repair in UV-irradiated delta uvrB strains of Escherichia coli K-12. J Bacteriol. 151(1):186–192. doi: 10.1128/jb.151.1.186-192.1982.
  • Wei TF, Bujalowski W, Lohman TM. 1992. Cooperative binding of polyamines induces the Escherichia coli single-strand binding protein-DNA binding mode transitions. Biochemistry. 31(26):6166–6174. doi: 10.1021/bi00141a029.
  • Weiner JH, Bertsch LL, Kornberg A. 1975. The deoxyribonucleic acid unwinding protein of Escherichia coli. Properties and functions in replication. J Biol Chem. 250(6):1972–1980.
  • Wendel BM, Cole JM, Courcelle CT, Courcelle J. 2018. SbcC-SbcD and Exol process convergent forks to complete chromosome replication. Proc Natl Acad Sci U S A. 115(2):349–354. doi: 10.1073/pnas.1715960114.
  • Wessel SR, Marceau AH, Massoni SC, Zhou RB, Ha T, Sandler SJ, Keck JL. 2013. PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein. J Biol Chem. 288(24):17569–17578. doi: 10.1074/jbc.M113.478156.
  • Whitby MC, Lloyd RG. 1995. Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3’-tailed duplex DNA. Embo J. 14(14):3302–3310. doi: 10.1002/j.1460-2075.1995.tb07337.x.
  • Whitby MC, Ryder L, Lloyd RG. 1993. Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair. Cell. 75(2):341–350. doi: 10.1016/0092-8674(93)80075-p.
  • Whitby MC, Vincent SD, Lloyd RG. 1994. Branch migration of Holliday junctions: identification of RecG protein as a junction specific DNA helicase. Embo J. 13(21):5220–5228. doi: 10.1002/j.1460-2075.1994.tb06853.x.
  • Wickner S, Hurwitz J. 1975. Association of phiX174 DNA-dependent ATPase activity with an Escherichia coli protein, replication factor Y, required for in vitro synthesis of phiX174 DNA. Proc Natl Acad Sci U S A. 72(9):3342–3346. doi: 10.1073/pnas.72.9.3342.
  • Windgassen TA, Leroux M, Satyshur KA, Sandler SJ, Keck JL. 2018. Structure-specific DNA replication-fork recognition directs helicase and replication restart activities of the PriA helicase. Proc Natl Acad Sci U S A. 115(39):E9075–E9084. doi: 10.1073/pnas.1809842115.
  • Windgassen TA, Wessel SR, Bhattacharyya B, Keck JL. 2018. Mechanisms of bacterial DNA replication restart. Nucleic Acids Res. 46(2):504–519. doi: 10.1093/nar/gkx1203.
  • Witte G, Urbanke C, Curth U. 2003. DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids Res. 31(15):4434–4440. doi: 10.1093/nar/gkg498.
  • Wolak C, Jun H, Soubry N, Sandler SJ, Reyes-Lamothe R, Keck JL. 2020. Interaction with single-stranded DNA-binding protein localizes ribonuclease HI to DNA replication forks and facilitates R-loop removal. Mol Microbiol. 114(3):495–509. doi: 10.1111/mmi.14529.
  • Yamaguchi H, Hanada K, Asami Y, Kato J, Ikeda H. 2000. Control of genetic stability in Escherichia coli: the SbcB 3′-5′ exonuclease suppresses illegitimate recombination promoted by the RecE 5′-3′ exonuclease. Genes Cells. 5(2):101–109. doi: 10.1046/j.1365-2443.2000.00309.x.
  • Yu C, Tan HY, Choi M, Stanenas AJ, Byrd AK, Raney KD, Cohan CS, Bianco PR. 2016. SSB binds to the RecG and PriA helicases in vivo in the absence of DNA. Genes Cells. 21(2):163–184. doi: 10.1111/gtc.12334.
  • Yuzhakov A, Kelman Z, O’Donnell M. 1999. Trading places on DNA–a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell. 96(1):153–163. doi: 10.1016/s0092-8674(00)80968-x.
  • Zhao TY, Liu Y, Wang ZL, He RY, Zhang JX, Xu F, Lei M, Deci MB, Nguyen J, Bianco PR. 2019. Super-resolution imaging reveals changes in Escherichia coli SSB localization in response to DNA damage. Genes Cells. 24(12):814–826. doi: 10.1111/gtc.12729.
  • Zhou RB, Kozlov AG, Roy R, Zhang JC, Korolev S, Lohman TM, Ha T. 2011. SSB functions as a sliding platform that migrates on DNA via reptation. Cell. 146(2):222–232. doi: 10.1016/j.cell.2011.06.036.