654
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Pioneer factors: nature or nurture?

, , &
Received 03 Mar 2024, Accepted 13 May 2024, Published online: 22 May 2024

References

  • Arvey A, Agius P, Noble WS, Leslie C. 2012. Sequence and chromatin determinants of cell-type-specific transcription factor binding. Genome Res. 22(9):1723–1734. doi: 10.1101/gr.127712.111.
  • Bai L, Charvin G, Siggia ED, Cross FR. 2010. Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. Dev Cell. 18(4):544–555.
  • Bai L, Ondracka A, Cross FR. 2011. Multiple sequence-specific factors generate the nucleosome-depleted region on CLN2 promoter. Mol Cell. 42(4):465–476.
  • Bellec M, Dufourt J, Hunt G, Lenden-Hasse H, Trullo A, Zine El Aabidine A, Lamarque M, Gaskill MM, Faure-Gautron H, Mannervik M, et al. 2022. The control of transcriptional memory by stable mitotic bookmarking. Nat Commun. 13(1):1176. doi: 10.1038/s41467-022-28855-y.
  • Blythe SA, Wieschaus EF. 2016. Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis. Elife. 5. doi: 10.7554/eLife.20148.
  • Bossard P, Zaret KS. 1998. GATA transcription factors as potentiators of gut endoderm differentiation. Development. 125(24):4909–4917. doi: 10.1242/dev.125.24.4909.
  • Brennan KJ, Weilert M, Krueger S, Pampari A, Liu H-Y, Yang AWH, Morrison JA, Hughes TR, Rushlow CA, Kundaje A, et al. 2023. Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation. Dev Cell. 58(19):1898–1916 e9.
  • Buecker C, Srinivasan R, Wu Z, Calo E, Acampora D, Faial T, Simeone A, Tan M, Swigut T, Wysocka J, et al. 2014. Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell. 14(6):838–853. doi: 10.1016/j.stem.2014.04.003.
  • Caravaca JM, Donahue G, Becker JS, He X, Vinson C, Zaret KS. 2013. Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes Dev. 27(3):251–260. doi: 10.1101/gad.206458.112.
  • Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, et al. 2005. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 122(1):33–43. doi: 10.1016/j.cell.2005.05.008.
  • Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, et al. 2006. Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 38(11):1289–1297. doi: 10.1038/ng1901.
  • Chen J, Chen X, Li M, et al. 2016. Hierarchical Oct4 binding in concert with primed epigenetic rearrangements during somatic cell reprogramming. Cell Rep. 14(6):1540–1554.
  • Chen H, Kharerin H, Dhasarathy A, Kladde M, Bai L. 2022. Partitioned usage of chromatin remodelers by nucleosome-displacing factors. Cell Rep. 40(8):111250.
  • Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, Liang H, Chen Y, Chen J, Wu Y, et al. 2013. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet. 45(1):34–42. doi: 10.1038/ng.2491.
  • Chronis C, Fiziev P, Papp B, Butz S, Bonora G, Sabri S, Ernst J, Plath K. 2017. Cooperative binding of transcription factors orchestrates reprogramming. Cell. 168(3):442–459 e20. doi: 10.1016/j.cell.2016.12.016.
  • Chung YG, Matoba S, Liu Y, Eum JH, Lu F, Jiang W, Lee JE, Sepilian V, Cha KY, Lee DR, et al. 2015. Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell. 17(6):758–766. doi: 10.1016/j.stem.2015.10.001.
  • Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS. 2002. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 9(2):279–289.
  • Cirillo LA, McPherson CE, Bossard P, Stevens K, Cherian S, Shim EY, Clark KL, Burley SK, Zaret KS. 1998. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. Embo J. 17(1):244–254. doi: 10.1093/emboj/17.1.244.
  • Cirillo LA, Zaret KS. 1999. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol Cell. 4(6):961–969. doi: 10.1016/s1097-2765(00)80225-7.
  • Clark KL, Halay ED, Lai E, Burley SK. 1993. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 364(6436):412–420. doi: 10.1038/364412a0.
  • Cosma MP, Tanaka T, Nasmyth K. 1999. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell. 97(3):299–311. doi: 10.1016/s0092-8674(00)80740-0.
  • Decker T, Pasca di Magliano M, McManus S, Sun Q, Bonifer C, Tagoh H, Busslinger M. 2009. Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity. 30(4):508–520. doi: 10.1016/j.immuni.2009.01.012.
  • Deluz C, Friman ET, Strebinger D, Benke A, Raccaud M, Callegari A, Leleu M, Manley S, Suter DM. 2016. A role for mitotic bookmarking of SOX2 in pluripotency and differentiation. Genes Dev. 30(22):2538–2550. doi: 10.1101/gad.289256.116.
  • Deluz C, Strebinger D, Friman ET, Suter DM. 2017. The elusive role of mitotic bookmarking in transcriptional regulation: insights from Sox2. Cell Cycle. 16(7):601–606. doi: 10.1080/15384101.2017.1288332.
  • Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ. 2007. Dynamics of replication-independent histone turnover in budding yeast. Science. 315(5817):1405–1408. doi: 10.1126/science.1134053.
  • Dodonova SO, Zhu F, Dienemann C, Taipale J, Cramer P. 2020. Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function. Nature. 580(7805):669–672. doi: 10.1038/s41586-020-2195-y.
  • Donaghey J, Thakurela S, Charlton J, Chen JS, Smith ZD, Gu H, Pop R, Clement K, Stamenova EK, Karnik R, et al. 2018. Genetic determinants and epigenetic effects of pioneer-factor occupancy. Nat Genet. 50(2):250–258. doi: 10.1038/s41588-017-0034-3.
  • Donovan BT, Chen H, Eek P, Meng Z, Jipa C, Tan S, Bai L, Poirier MG. 2023. Basic helix-loop-helix pioneer factors interact with the histone octamer to invade nucleosomes and generate nucleosome-depleted regions. Mol Cell. 83(8):1251–1263 e6. doi: 10.1016/j.molcel.2023.03.006.
  • Donovan BT, Chen H, Jipa C, Bai L, Poirier MG. 2019. Dissociation rate compensation mechanism for budding yeast pioneer transcription factors. Elife. 8. doi: 10.7554/eLife.43008.
  • Donovan BT, Luo Y, Meng Z, Poirier MG. 2023. The nucleosome unwrapping free energy landscape defines distinct regions of transcription factor accessibility and kinetics. Nucleic Acids Res. 51(3):1139–1153. doi: 10.1093/nar/gkac1267.
  • Dufourt J, Trullo A, Hunter J, Fernandez C, Lazaro J, Dejean M, Morales L, Nait-Amer S, Schulz KN, Harrison MM, et al. 2018. Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs. Nat Commun. 9(1):5194. doi: 10.1038/s41467-018-07613-z.
  • Echigoya K, Koyama M, Negishi L, Takizawa Y, Mizukami Y, Shimabayashi H, Kuroda A, Kurumizaka H. 2020. Nucleosome binding by the pioneer transcription factor OCT4. Sci Rep. 10(1):11832. doi: 10.1038/s41598-020-68850-1.
  • Espinosa JM, Emerson BM. 2001. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell. 8(1):57–69. doi: 10.1016/s1097-2765(01)00283-0.
  • Felipe C, Shin J, Kolomeisky AB. 2022. How pioneer transcription factors search for target sites on nucleosomal DNA. J Phys Chem B. 126(22):4061–4068.
  • Feng XA, Ness KM, Liu C, Ahmed I, Bowman GD, Ha T, Wu C. 2023. GAGA factor overcomes 1D diffusion barrier by 3d diffusion in search of nucleosomal targets. bioRxiv. doi: 10.1101/2023.07.14.549009.
  • Fernandez Garcia M, Moore CD, Schulz KN, Alberto O, Donague G, Harrison MM, Zhu H, Zaret KS. 2019. Structural features of transcription factors associating with nucleosome binding. Mol Cell. 75(5):921–932 e6.
  • Festuccia N, Dubois A, Vandormael-Pournin S, Gallego Tejeda E, Mouren A, Bessonnard S, Mueller F, Proux C, Cohen-Tannoudji M, Navarro P, et al. 2016. Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network. Nat Cell Biol. 18(11):1139–1148. doi: 10.1038/ncb3418.
  • Geusz RJ, Wang A, Lam DK, Vinckier NK, Alysandratos K-D, Roberts DA, Wang J, Kefalopoulou S, Ramirez A, Qiu Y, et al. 2021. Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors. Nat Commun. 12(1):6636. doi: 10.1038/s41467-021-26950-0.
  • Gibson TJ, Larson ED, Harrison MM. 2024. Protein-intrinsic properties and context-dependent effects regulate pioneer factor binding and function. Nat Struct Mol Biol. 31(3):548–558. doi: 10.1038/s41594-024-01231-8.
  • Glont SE, Chernukhin I, Carroll JS. 2019. Comprehensive genomic analysis reveals that the pioneering function of FOXA1 is independent of hormonal signaling. Cell Rep. 26(10):2558–2565 e3.
  • Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, et al. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 159(6):1327–1340. doi: 10.1016/j.cell.2014.11.023.
  • Gottesfeld JM, Forbes DJ. 1997. Mitotic repression of the transcriptional machinery. Trends Biochem Sci. 22(6):197–202. doi: 10.1016/s0968-0004(97)01045-1.
  • Gouhier A, Dumoulin-Gagnon J, Lapointe-Roberge V, Harris J, Balsalobre A, Drouin J. 2024. Pioneer factor Pax7 initiates two-step cell-cycle-dependent chromatin opening. Nat Struct Mol Biol. 31(1):92–101. doi: 10.1038/s41594-023-01152-y.
  • Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. 1996. Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev. 10(13):1670–1682. doi: 10.1101/gad.10.13.1670.
  • Guan R, Lian T, Zhou B-R, Wheeler D, Bai Y. 2023. Structural mechanism of LIN28B nucleosome targeting by OCT4. Mol Cell. 83(12):1970–1982 e6.
  • Hall MA, Shundrovsky A, Bai L, Fulbright RM, Lis JT, Wang MD. 2009. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat Struct Mol Biol. 16(2):124–129. doi: 10.1038/nsmb.1526.
  • Hansen JL, Cohen BA. 2022. A quantitative metric of pioneer activity reveals that HNF4A has stronger in vivo pioneer activity than FOXA1. Genome Biol. 23(1):221. doi: 10.1186/s13059-022-02792-x.
  • Hansen JL, Loell KJ, Cohen BA. 2022. A test of the pioneer factor hypothesis using ectopic liver gene activation. Elife. 11. doi: 10.7554/eLife.73358.
  • Heinz S, Benner C, Spann N, et al. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 38(4):576–589.
  • Heinz S, Romanoski CE, Benner C, Allison KA, Kaikkonen MU, Orozco LD, Glass CK. 2013. Effect of natural genetic variation on enhancer selection and function. Nature. 503(7477):487–492. doi: 10.1038/nature12615.
  • Hovland AS, Bhattacharya D, Azambuja AP, Pramio D, Copeland J, Rothstein M, Simoes-Costa M. 2022. Pluripotency factors are repurposed to shape the epigenomic landscape of neural crest cells. Dev Cell. 57(19):2257–2272 e5.
  • Hsiung CC-S, Bartman CR, Huang P, Ginart P, Stonestrom AJ, Keller CA, Face C, Jahn KS, Evans P, Sankaranarayanan L, et al. 2016. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition. Genes Dev. 30(12):1423–1439. doi: 10.1101/gad.280859.116.
  • Hsiung CC-S, Morrissey CS, Udugama M, Frank CL, Keller CA, Baek S, Giardine B, Crawford GE, Sung M-H, Hardison RC, et al. 2015. Genome accessibility is widely preserved and locally modulated during mitosis. Genome Res. 25(2):213–225. doi: 10.1101/gr.180646.114.
  • Huang J, Zhang H, Yao J, Qin G, Wang F, Wang X, Luo A, Zheng Q, Cao C, Zhao J, et al. 2016. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei. Reproduction. 151(1):39–49. doi: 10.1530/REP-15-0460.
  • Huertas J, MacCarthy CM, Schöler HR, Cojocaru V. 2020. Nucleosomal DNA dynamics mediate Oct4 pioneer factor binding. Biophys J. 118(9):2280–2296.
  • Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. 2011. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 43(1):27–33. doi: 10.1038/ng.730.
  • Iurlaro M, Stadler MB, Masoni F, Jagani Z, Galli GG, Schübeler D. 2021. Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nat Genet. 53(3):279–287. doi: 10.1038/s41588-020-00768-w.
  • Iwafuchi M, Cuesta I, Donahue G, Takenaka N, Osipovich AB, Magnuson MA, Roder H, Seeholzer SH, Santisteban P, Zaret KS, et al. 2020. Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nat Genet. 52(4):418–427. doi: 10.1038/s41588-020-0591-8.
  • Iwafuchi-Doi M, Donahue G, Kakumanu A, Watts JA, Mahony S, Pugh BF, Lee D, Kaestner KH, Zaret KS. 2016. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol Cell. 62(1):79–91.
  • Iwafuchi-Doi M, Zaret KS. 2014. Pioneer transcription factors in cell reprogramming. Genes Dev. 28(24):2679–2692. doi: 10.1101/gad.253443.114.
  • Jacobs J, Atkins M, Davie K, Imrichova H, Romanelli L, Christiaens V, Hulselmans G, Potier D, Wouters J, Taskiran II, et al. 2018. The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes. Nat Genet. 50(7):1011–1020. doi: 10.1038/s41588-018-0140-x.
  • Ji D, Shao C, Yu J, Hou Y, Gao X, Wu Y, Wang L, Chen P. 2024. FOXA1 forms biomolecular condensates that unpack condensed chromatin to function as a pioneer factor. Mol Cell. 84(2):244–260 e7.
  • Judd J, Duarte FM, Lis JT. 2021. Pioneer-like factor GAF cooperates with PBAP (SWI/SNF) and NURF (ISWI) to regulate transcription. Genes Dev. 35(1–2):147–156. doi: 10.1101/gad.341768.120.
  • Kadauke S, Udugama MI, Pawlicki JM, Achtman JC, Jain DP, Cheng Y, Hardison RC, Blobel GA. 2012. Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1. Cell. 150(4):725–737. doi: 10.1016/j.cell.2012.06.038.
  • Kim JM, Visanpattanasin P, Jou V, Liu S, Tang X, Zheng Q, Li KY, Snedeker J, Lavis LD, Lionnet T, et al. 2021. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. Elife. 10. doi: 10.7554/eLife.69387.
  • King HW, Klose RJ. 2017. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. Elife. 6. doi: 10.7554/eLife.22631.
  • Koerber RT, Rhee HS, Jiang C, Pugh BF. 2009. Interaction of transcriptional regulators with specific nucleosomes across the Saccharomyces genome. Mol Cell. 35(6):889–902. doi: 10.1016/j.molcel.2009.09.011.
  • Kubik S, Bruzzone MJ, Challal D, Dreos R, Mattarocci S, Bucher P, Libri D, Shore D. 2019. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat Struct Mol Biol. 26(8):744–754. doi: 10.1038/s41594-019-0273-3.
  • Laganière J, Deblois G, Lefebvre C, Bataille AR, Robert F, Giguère V. 2005. From the cover: location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc Natl Acad Sci U S A. 102(33):11651–11656.
  • Lerner J, Gomez-Garcia PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS. 2020. Two-parameter mobility assessments discriminate diverse regulatory factor behaviors in chromatin. Mol Cell. 79(4):677–688 e6.
  • Lerner J, Katznelson A, Zhang J, Zaret KS. 2023. Different chromatin-scanning modes lead to targeting of compacted chromatin by pioneer factors FOXA1 and SOX2. Cell Rep. 42(7):112748.
  • Lian T, Guan R, Zhou BR, et al. 2023. The human LIN28B nucleosome is inherently pre-positioned for efficient binding of multiple OCT4s without H3 K27 acetylation. bioRxiv.
  • Link VM, Duttke SH, Chun HB, Holtman IR, Westin E, Hoeksema MA, Abe Y, Skola D, Romanoski CE, Tao J, et al. 2018. Analysis of genetically diverse macrophages reveals local and domain-wide mechanisms that control transcription factor binding and function. Cell. 173(7):1796–1809 e17. doi: 10.1016/j.cell.2018.04.018.
  • Li X-Y, Thomas S, Sabo PJ, Eisen MB, Stamatoyannopoulos JA, Biggin MD. 2011. The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biol. 12(4):R34. doi: 10.1186/gb-2011-12-4-r34.
  • Liu Z, Kraus WL. 2017. Catalytic-independent functions of PARP-1 determine Sox2 pioneer activity at intractable genomic loci. Mol Cell. 65(4):589–603 e9.
  • Liu Y, Pelham-Webb B, Di Giammartino DC, et al. 2017. Widespread mitotic bookmarking by histone marks and transcription factors in pluripotent stem cells. Cell Rep. 19(7):1283–1293.
  • Liu X, Wang Y, Gao Y, Su J, Zhang J, Xing X, Zhou C, Yao K, An Q, Zhang Y, et al. 2018. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development. 145(4). doi: 10.1242/dev.158261.
  • Li G, Widom J. 2004. Nucleosomes facilitate their own invasion. Nat Struct Mol Biol. 11(8):763–769. doi: 10.1038/nsmb801.
  • Li S, Zheng EB, Zhao L, Liu S. 2019. Nonreciprocal and conditional cooperativity directs the pioneer activity of pluripotency transcription factors. Cell Rep. 28(10):2689–2703 e4.
  • Luo Y, North JA, Rose SD, Poirier MG. 2014. Nucleosomes accelerate transcription factor dissociation. Nucleic Acids Res. 42(5):3017–3027. doi: 10.1093/nar/gkt1319.
  • Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS, Brown M. 2008. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell. 132(6):958–970. doi: 10.1016/j.cell.2008.01.018.
  • Luzete-Monteiro E, Zaret KS. 2022. Structures and consequences of pioneer factor binding to nucleosomes. Curr Opin Struct Biol. 75:102425. doi: 10.1016/j.sbi.2022.102425.
  • Martínez-Balbás MA, Dey A, Rabindran SK, Ozato K, Wu C. 1995. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell. 83(1):29–38. doi: 10.1016/0092-8674(95)90231-7.
  • Matoba S, Liu Y, Lu F, Iwabuchi KA, Shen L, Inoue A, Zhang Y. 2014. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell. 159(4):884–895. doi: 10.1016/j.cell.2014.09.055.
  • Mayran A, Drouin J. 2018. Pioneer transcription factors shape the epigenetic landscape. J Biol Chem. 293(36):13795–13804.
  • McDaniel SL, Gibson TJ, Schulz KN, Fernandez Garcia M, Nevil M, Jain SU, Lewis PW, Zaret KS, Harrison MM. 2019. Continued activity of the pioneer factor zelda is required to drive zygotic genome activation. Mol Cell. 74(1):185–195 e4.
  • McPherson CE, Shim EY, Friedman DS, Zaret KS. 1993. An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array. Cell. 75(2):387–398. doi: 10.1016/0092-8674(93)80079-t.
  • Meers MP, Janssens DH, Henikoff S. 2019. Pioneer factor-nucleosome binding events during differentiation are motif encoded. Mol Cell. 75(3):562–575 e5.
  • Michael AK, Grand RS, Isbel L, Cavadini S, Kozicka Z, Kempf G, Bunker RD, Schenk AD, Graff-Meyer A, Pathare GR, et al. 2020. Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science. 368(6498):1460–1465. doi: 10.1126/science.abb0074.
  • Michael AK, Stoos L, Crosby P, Eggers N, Nie XY, Makasheva K, Minnich M, Healy KL, Weiss J, Kempf G, et al. 2023. Cooperation between bHLH transcription factors and histones for DNA access. Nature. 619(7969):385–393. doi: 10.1038/s41586-023-06282-3.
  • Mir M, Stadler MR, Ortiz SA, Hannon CE, Harrison MM, Darzacq X, Eisen MB. 2018. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. Elife. 7. doi: 10.7554/eLife.40497.
  • Mivelaz M, Cao A-M, Kubik S, Zencir S, Hovius R, Boichenko I, Stachowicz AM, Kurat CF, Shore D, Fierz B, et al. 2020. Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor. Mol Cell. 77(3):488–500 e9.
  • Nien C-Y, Liang H-L, Butcher S, Sun Y, Fu S, Gocha T, Kirov N, Manak JR, Rushlow C. 2011. Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLoS Genet. 7(10):e1002339. doi: 10.1371/journal.pgen.1002339.
  • Nishimura M, Arimura Y, Nozawa K, Kurumizaka H. 2020. Linker DNA and histone contributions in nucleosome binding by p53. J Biochem. 168(6):669–675. doi: 10.1093/jb/mvaa081.
  • Paakinaho V, Swinstead EE, Presman DM, Grøntved L, Hager GL. 2019. Meta-analysis of chromatin programming by steroid receptors. Cell Rep. 28(13):3523–3534 e2.
  • Piña B, Brüggemeier U, Beato M. 1990. Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell. 60(5):719–731. doi: 10.1016/0092-8674(90)90087-u.
  • Plachta N, Bollenbach T, Pease S, Fraser SE, Pantazis P. 2011. Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol. 13(2):117–123. doi: 10.1038/ncb2154.
  • Polach KJ, Widom J. 1995. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol. 254(2):130–149.
  • Prescott DM, Bender MA. 1962. Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp Cell Res. 26(2):260–268. doi: 10.1016/0014-4827(62)90176-3.
  • Raccaud M, Friman ET, Alber AB, Agarwal H, Deluz C, Kuhn T, Gebhardt JCM, Suter DM. 2019. Mitotic chromosome binding predicts transcription factor properties in interphase. Nat Commun. 10(1):487. doi: 10.1038/s41467-019-08417-5.
  • Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM. 1993. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature. 362(6417):219–223. doi: 10.1038/362219a0.
  • Roberts GA, Ozkan B, Gachulincová I, O’Dwyer MR, Hall-Ponsele E, Saxena M, Robinson PJ, Soufi A. 2021. Dissecting OCT4 defines the role of nucleosome binding in pluripotency. Nat Cell Biol. 23(8):834–845. doi: 10.1038/s41556-021-00727-5.
  • Rossetti L, Cacchione S, De Menna A, Chapman L, Rhodes D, Savino M. 2001. Specific interactions of the telomeric protein Rap1p with nucleosomal binding sites. J Mol Biol. 306(5):903–913.
  • Schick S, Grosche S, Kohl KE, Drpic D, Jaeger MG, Marella NC, Imrichova H, Lin J-MG, Hofstätter G, Schuster M, et al. 2021. Acute BAF perturbation causes immediate changes in chromatin accessibility. Nat Genet. 53(3):269–278. doi: 10.1038/s41588-021-00777-3.
  • Schulz KN, Bondra ER, Moshe A, Villalta JE, Lieb JD, Kaplan T, McKay DJ, Harrison MM. 2015. Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Genome Res. 25(11):1715–1726. doi: 10.1101/gr.192682.115.
  • Sekiya T, Muthurajan UM, Luger K, Tulin AV, Zaret KS. 2009. Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev. 23(7):804–809. doi: 10.1101/gad.1775509.
  • Sinha KK, Bilokapic S, Du Y, Malik D, Halic M. 2023. Histone modifications regulate pioneer transcription factor cooperativity. Nature. 619(7969):378–384. doi: 10.1038/s41586-023-06112-6.
  • Soufi A, Donahue G, Zaret KS. 2012. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell. 151(5):994–1004. doi: 10.1016/j.cell.2012.09.045.
  • Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. 2015. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell. 161(3):555–568. doi: 10.1016/j.cell.2015.03.017.
  • Stefflova K, Thybert D, Wilson MD, Streeter I, Aleksic J, Karagianni P, Brazma A, Adams DJ, Talianidis I, Marioni JC, et al. 2013. Cooperativity and rapid evolution of cobound transcription factors in closely related mammals. Cell. 154(3):530–540. doi: 10.1016/j.cell.2013.07.007.
  • Sun Y, Nien C-Y, Chen K, Liu H-Y, Johnston J, Zeitlinger J, Rushlow C. 2015. Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation. Genome Res. 25(11):1703–1714. doi: 10.1101/gr.192542.115.
  • Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I, Hawkins M, Karpova TS, Ball D, Mazza D, Lavis LD, et al. 2016. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell. 165(3):593–605. doi: 10.1016/j.cell.2016.02.067.
  • Swinstead EE, Paakinaho V, Presman DM, Hager GL. 2016. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: a new perspective: multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays. 38(11):1150–1157. doi: 10.1002/bies.201600137.
  • Tanaka H, Takizawa Y, Takaku M, Kato D, Kumagawa Y, Grimm SA, Wade PA, Kurumizaka H. 2020. Interaction of the pioneer transcription factor GATA3 with nucleosomes. Nat Commun. 11(1):4136. doi: 10.1038/s41467-020-17959-y.
  • Tan ZY, Cai S, Noble AJ, Chen JK, Shi J, Gan L. 2023. Heterogeneous non-canonical nucleosomes predominate in yeast cells in situ. Elife. 12. doi: 10.7554/eLife.87672.
  • Tang X, Li T, Liu S, Wisniewski J, Zheng Q, Rong Y, Lavis LD, Wu C. 2022. Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat Struct Mol Biol. 29(7):665–676. doi: 10.1038/s41594-022-00800-z.
  • Tan C, Takada S. 2020. Nucleosome allostery in pioneer transcription factor binding. Proc Natl Acad Sci U S A. 117(34):20586–20596.
  • Taube JH, Allton K, Duncan SA, Shen L, Barton MC. 2010. Foxa1 functions as a pioneer transcription factor at transposable elements to activate Afp during differentiation of embryonic stem cells. J Biol Chem. 285(21):16135–16144.
  • Teves SS, An L, Hansen AS, Xie L, Darzacq X, Tjian R. 2016. A dynamic mode of mitotic bookmarking by transcription factors. Elife. 5. doi: 10.7554/eLife.22280.
  • Vettese-Dadey M, Grant PA, Hebbes TR, et al. 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. Embo J. 15(10):2508–2518.
  • Wang A, Yue F, Li Y, Xie R, Harper T, Patel NA, Muth K, Palmer J, Qiu Y, Wang J, et al. 2015. Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates. Cell Stem Cell. 16(4):386–399. doi: 10.1016/j.stem.2015.02.013.
  • Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, Pierce BG, Dong X, Kundaje A, Cheng Y, et al. 2012. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res. 22(9):1798–1812. doi: 10.1101/gr.139105.112.
  • Wiechens N, Singh V, Gkikopoulos T, Schofield P, Rocha S, Owen-Hughes T. 2016. The chromatin remodelling enzymes SNF2H and SNF2L position nucleosomes adjacent to CTCF and other transcription factors. PLoS Genet. 12(3):e1005940. doi: 10.1371/journal.pgen.1005940.
  • Xu C, Kleinschmidt H, Yang J, Leith E, Johnson J, Tan S, Mahony S, Bai L. 2023. Systematic dissection of sequence features affecting the binding specificity of a pioneer factor reveals binding synergy between FOXA1 and AP-1. bioRxiv. doi: 10.1101/2023.11.08.566246.
  • Xu J, Pope SD, Jazirehi AR, Attema JL, Papathanasiou P, Watts JA, Zaret KS, Weissman IL, Smale ST. 2007. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc Natl Acad Sci U S A. 104(30):12377–12382. doi: 10.1073/pnas.0704579104.
  • Yan C, Chen H, Bai L. 2018. Systematic study of nucleosome-displacing factors in budding yeast. Mol Cell. 71(2):294–305.e4.
  • Ye Z, Chen Z, Sunkel B, Frietze S, Huang TH-M, Wang Q, Jin VX. 2016. Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1. Nucleic Acids Res. 44(16):7540–7554. doi: 10.1093/nar/gkw659.
  • Yu X, Buck MJ. 2019. Defining TP53 pioneering capabilities with competitive nucleosome binding assays. Genome Res. 29(1):107–115. doi: 10.1101/gr.234104.117.
  • Zhang Q, Yoon Y, Yu Y, Parnell EJ, Garay JAR, Mwangi MM, Cross FR, Stillman DJ, Bai L. 2013. Stochastic expression and epigenetic memory at the yeast HO promoter. Proc Natl Acad Sci U S A. 110(34):14012–14017.
  • Zhou X, O’Shea EK. 2011. Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol Cell. 42(6):826–836.
  • Zhu F, Farnung L, Kaasinen E, Sahu B, Yin Y, Wei B, Dodonova SO, Nitta KR, Morgunova E, Taipale M, et al. 2018. The interaction landscape between transcription factors and the nucleosome. Nature. 562(7725):76–81. doi: 10.1038/s41586-018-0549-5.