48
Views
97
CrossRef citations to date
0
Altmetric
Original

Membrane Cholesterol, Tumorigenesis, and the Biochemical Phenotype of Neoplasia

, &
Pages 341-393 | Published online: 31 Jan 2011

References

  • Berenblum I., Shubik P. A new quantitative approach to the study of the stages of chemical carcinogenesis in the mouse skin. Br. J. Cancer 1947; 1: 383
  • Burnet F. M. Cancer: somatic-genetic considerations. Advances in Cancer Research, G. Klein, S. Weinhouse. Academic Pres, New York 1978; 28: 1
  • Wiley M. H., Siperstein M. D. Control of cholesterol synthesis in normal and malignant cells. Control Mechanisms in Cancer, W. E.T. Criss Ono, J. R. Sabine. Raven Pres, New York 1976; 343
  • Bagshawe K. D. Recent observations related to the chemotherapy and immunology of gestational choriocarcinoma. Advances in Cancer Research, G. Klein, S. Weinhouse. Academic Pres, New York 1973; 18: 231
  • Price M. R., Baldwin R. W. Shedding of tumor cell surface antigens. Dynamic Aspects of Cell Surface Organization, Cell Surface Reviews, G. Poste, G. L. Nicolson, North-Holland, Amsterdam 1977; 3: 423
  • Nicolson G. L. Cell surface proteins and glycoproteins of metastatic murine melanomas and sarcomas. Biological Markers of Neoplasia: Basic and Applied Aspects, R. W. Ruddon. Elsevie, New York 1978; 227
  • Christman J. K., Silverstein S. C., Acs G. Plasminogen activators. Proteinases in Mammalian Cells and Tissues, A. J. Barrett, North-Holland, Amsterdam 1977; 91
  • Schwartz M. K. Enzymes in cancer — an overview. Biological Markers of Neoplasia: Basic and Applied Aspects, R. W. Ruddon. Elsevie, New York 1978; 503
  • Cooney D., King A., Cable V. D., Taylor R. G.B., Jr., Wodinsky I. L-Asparagine synthetase as a marker for neoplasia. Cancer Res. 1976; 36: 3238
  • Lenaz G. Lipid properties and lipid-protein interactions. Membrane Proteins and Other Interactions with Lipids, R. Capaldi. Marcel Dekke, New York 1977; 1: 47
  • Bird C., Lynch W., Pirt J. M., Reid F. J., Brooks W. W.C. J. W., Middleditch B. S. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature 1971; 230: 473
  • Haberland M. E., Reynolds J. A. Self-association of cholesterol in aqueous solution. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 2313
  • Ways P., Hanahan D. J. Characterization and quantification of red cell lipids in normal man. J. Lipid Res. 1964; 5: 319
  • Dallner G., Siekevitz P., Palade G. Phospholipids in hepatic microsomal membranes during development. Biochem. Biophys. Res. Commun. 1965; 20: 142
  • Fleischer S., Rouser G. Lipids of subcellular particles. J. Am. Oil Chem. Soc. 1965; 43: 594
  • Clark A. J., Bloch K. Function of sterols in. Dermestes vulpinus, J. Biol. Chem. 1959; 234: 2583
  • Conner R., Landry L., Kaneshiro J. R.E. S., VanWagtendonk W. J. The metabolism of stigmasterol and cholesterol by. Paramecium aurelia, Biochim. Biophys. Acta 1971; 239: 312
  • Nes W. R. Role of sterols in membranes. Lipids 1974; 9: 596
  • Atlas of Steroid Structure, W. L. Duax, D. A. Norton. Plenum Press, New York 1975; 1
  • Duax W. L., Weeks C. M., Rohrer D. C. Crystal structure of steroids: molecular conformation and biological function, in. Recent Progress in Hormone Research 1976; 32: 81
  • Nes W., Adler R., Joseph J. H., Landrey J.J. R., Conner R. L. The architectural and metabolic necessity that sterols have right-handed side chains. Fed. Proc. 1977; 36: 708
  • Teng J., Kulig I., Smith M. J., Kan L. L.G., VanLier J. E. Sterol metabolism. XX. Cholesterol 7 — hydroperoxide. J. Org. Chem. 1973; 38: 119
  • Smith L. L., Teng J. I. Sterol metabolism. XXIX. On the mechanism of microsomal lipid peroxidation in rat liver. J. Am. Chem. Soc. 1974; 96: 2640
  • Bischoff F. Carcinogenic effects of steroids. Advances in Lipid Research, R. Paoletti, D. Kritchevsky. Academic Pres, New York 1969; 7: 197
  • Bischoff F., Bryson G. Carcinogenecity of 6-hydroxy-4-cholesten-3-one in female marsh mice. Fed. Proc. 1970; 29: 860
  • Jain M. K. Role of cholesterol in biomembranes and related systems. Current Topics in Membranes and Transport, F. Bronner, A. Kleinzeller. Academic Press, NewYork 1975; 6: 1
  • Law J. H., Snyder W. R. Membrane lipids. Membrane Molecular Biology, C. F. Fox, A. Keith. Sinauer Assoc. Conn. 1972; 3
  • Smith P. F. Comparative lipid biochemistry of. Mycoplasma, Ann. N. Y. Acad. Sci. 1967; 143: 139
  • Rottem S., Yashour J., Ne'eman Z., Razin S. Cholesterol Mycoplasma membranes. Composition, ultrastructure, and biological properties of membranes from Mycoplasma mycoides var. Capri cells adapted to grow with low cholesterol concentrations. Biochim. Biophys. Acta 1973; 323: 495
  • Odriozola Waitzkin J., Smith E.T., Bloch K. Sterol requirement of. Mycoplasma capricolum, Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 4107
  • Wallach D. F. H. Membrane Molecular Biology of Neoplastic Cells. Elsevier, Amsterdam 1975
  • Sabine J. R. Defective control of lipid biosynthesis in cancerous and precancerous liver. Progr. Biochem. Pharmacol. 1975; 10: 269
  • Nelson G. J. Composition of neutral lipids from erythrocytes of common mammals. J. Lipid Res. 1967; 8: 374
  • Ashworth L., Green C. Plasma membranes: phospholipid and sterol content. Science 1966; 151: 210
  • Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim. Biophys. Acta 1971; 249: 462
  • Parsons D., Yano Y. The cholesterol content of the outer and inner membranes of guinea pig liver mitochondria. Biochim. Biophys. Acta 1967; 135: 362
  • Fleischer Rouser S., Fleischer G., Casu B.A., Kritchevsky G. Lipid composition of mitochondria from bovine heart, liver and kidney. J. Lipid Res. 1967; 8: 170
  • Philips M. C., Finer E. G. The stoichiometry and dynamics of lecithin-cholesterol clusters in bilayer membranes. Biochim. Biophys. Acta 1974; 356: 199
  • deKruyff VanDijck B., Demel P. W. M., Schuijff R. A., Brants A.F., VanDeenen L. L. M. Nonrandom distribution of cholesterol in phosphatidylcholine bilayers. Biochim. Biophys. Acta 1974; 356: 1
  • Shimshick E., Kleemann J., Hubbell W.W. L., McConnell H. M. Lateral phase separations in membranes. J. Supramol. Struct. 1973; 1: 285
  • Poznansky M., Lange Y. Transbilayer movement of cholesterol in dipalmitoyllecithincholesterol vesicles. Nature (London) 1976; 259: 420
  • Chapman D.B., Cornell A., Quinn P. J. Phase transitions, protein aggregation and a new method for modulating membrane fluidity. FEBS Symp. 1977; 42: 72
  • Rothman J. E., Engleman D. Molecular mechanism for the interaction of phospholipids with cholesterol. Nature (London) 1972; 237: 42
  • Ladbrook B. D., Chapman D. Thermal analysis of lipids, proteins, and biological membranes: a review and summary of some recent studies. Chem. Phys. Lipids 1969; 3: 304
  • Chapman D., Urbina J., Keough K. M. Biomembrane phase transitions: studies of lipid-water systems using differential scanning calorimetry. J. Biol. Chem. 1974; 249: 2512
  • Demel R., VanDeenen A.L. L. M., Pethica B. A. Monolayer interaction of phospholipids and cholesterol. Biochim. Biophys. Acta 1967; 135: 11
  • Rand R. P., Luzzati V. X-ray diffraction study in water of lipids extracted from human erythrocytes. The position of cholesterol in the lipid lamellae. Biophys. J. 1968; 8: 125
  • Demel R., VanKessel A.W. S. M. G., VanDeenen L. L. M. The properties of polyunsaturated lecithins in monolayers and liposomes and the interactions of these lecithins with cholesterol. Biochim. Biophys. Acta 1972; 266: 26
  • Vandenheuvel F. A. Structural studies of biological membranes: the structure of myelin. Ann. N. Y. Acad. Sci. 1965; 122: 57
  • Demel R., Jansen A.J., VanDijck W. C. M.P. W. M., VanDeenen L. L. M. The preferential interaction of cholesterol with different classes of phospholipids. Biochim. Biophys. Acta 1977; 465: 1
  • Chapman D. Phase transitions and fluidity characteristics of lipids and cell membranes. Q. Rev. Biophys. 1975; 8: 185
  • Abrahamsson Dahlen S., Lofgren B., Pascher H.I., Sundell S. Molecular arrangement and conformation of lipids of relevance to membrane structure. Structure of Biological Membranes, S. Abrahamsson, I. Pascher, Plenum, New York 1977; 1
  • Bangham A. D. Models of cell membranes. Cell Membranes: Biochemistry, Cell Biology and Pathology, G. Weissmann, R. Claiborne. H. P. Publ. Co., New York 1975; 24
  • Huang C. A structural model for the cholesterol-phosphatidylcholine complexes in bilayer membranes. Lipids 1977; 12: 348
  • Demel R. A., Bruckdorfer K. R., VanDeenen L. L. M. The effect of sterol structure on the permeability of liposomes to glucose, glycerol and Rb+. Biochim. Biophys. Acta 1972; 255: 321
  • Jain M. K., Toussaint D. G., Cordes E. H. Kinetics of water penetration into unsonicated liposomes: effects of n-alkanols and cholesterol. J. Memb. Biol. 1973; 14: 1
  • de Gier Mandersloot J.J. G., VanDeenen L. L. M. The role of cholesterol in lipid membranes. Bioch. Bioph. Acta 1969; 173: 143
  • Demel R., Kinsky A., Kinsky S. C.C. B., VanDeenen L. L. M. Effects of temperature and cholesterol on the glucose permeability of liposomes prepared with natural and synthetic lecithins. Biochim. Biophys. Acta 1968; 150: 655
  • Papahadjopoulos D., Watkins J. C. Phospholipid model membranes: II. Permeability properties of hydrated liquid crystals. Biochim. Biophys. Acta 1967; 135: 639
  • Kimelberg H. K. Influence of lipid phase transitions and cholesterol on protein-lipid interactions. Cryobiology 1978; 15: 222
  • Scibona Scappa G., Fabiani B.C., Pizzichini M. Nonisothermal potential of phospholipid bilayer films: influence of cholesterol and macrocyclic carrier effects. Biochim. Biophys. Acta 1978; 512: 41
  • Benz R., Gros D. Influence of sterols on ion transport through lipid bilayer membranes, Biochim. Biophys. Acta 1978; 506: 265
  • Lala A.H., Lin K., Bloch K. The effect of some alkyl derivatives of cholesterol on the permeability properties and microviscosities of model membranes. Bioorg. Chem. 1978; 7: 437
  • de Kruyff Demel B.R. A., VanDeenen L. L. M. The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase-transition of intact Acholeplasma laidlawii cell membranes and derived liposomes. Biochim. Biophys. Acta 1972; 255: 331
  • Blok M., VanDeenen C.L. L. M., de Gier J. Op den, Kamp J. A. F., Verkleij M. Some aspects of lipid-phase transition on membrane permeability and lipid-protein association. FEBS Symp. 1977; 42: 38
  • Wiley J. S., Cooper R. A. Inhibition of cation cotransport by cholesterol enrichment of human red cell membranes. Biochim. Biophys. Acta 1975; 413: 425
  • Klein I., Moore L., Pastan I. Effect of liposomes containing cholesterol on adenylate cyclase activity of cultured mammalian fibroblasts. Biochim. Biophys. Acta 1978; 506: 42
  • Stephens C. L., Shinitzky M. Modulation of electrical activity in Aplysia neurons by cholesterol. Nature (London) 1977; 270: 267
  • Alivisatos S., Papastavrou G. A., Drouka-Liapati C., Molyvdas E.A. P., Nikitopoulou G. Enzymatic and electrophysiological changes of the function of membrane proteins by cholesterol. Biochem. Biophys. Res. Commun. 1977; 79: 677
  • Binggeli R., Camron I. Cellular potentials of normal and cancerous fibroblasts and hepatocytes. Cancer Res. 1980; 40: 1830
  • Cone C. D. Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J. Theor. Biol. 1971; 30: 151
  • Alderson J. C. E., Green C. Lectin-induced cell agglutination and membrane cholesterol levels. Exp. Cell Res. 1978; 114: 475
  • Vaz W., Jacobson L. C., Wu K.E., Derzko S.Z. Lateral mobility of an amphipathic apoliprotein, Apo C-Ill, bound to phosphatidylcholine bilayers with and without cholesterol. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 5645
  • Shinitzky M., Inbar M. Microviscosity parameters and protein mobility in biological membranes. Biochim. Biophys. Acta 1976; 433: 133
  • Shattil S. J., Cooper R. A. Membrane microviscosity and human platelet function. Biochemistry 1976; 15: 4832
  • Shinitzky M., Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 1978; 515: 367
  • Klausner R., Kleinfield D., Hoover A. M.R. L., Karnovsky M. J. Lipid domains in membranes: evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. Biol. Chem. 1980; 255: 1286
  • Jain M. K., White H. B. III. Long-range order in biomembranes. Advances in Lipid Research, R. Paoletti, D. Kritchevsky. Academic Pres, New York 1977; 1
  • Singer S. J., Nicolson G. L. Fluid mosaic model of the structure of cell membranes. Science 1972; 175: 720
  • Cullis P. R., de Kruijff B. Lipid polymorphism and the functional role of lipids in biological membranes. Biochim. Biophys. Acta 1979; 559: 399
  • Saito Y., Silbert D. Selective effects of membrane sterol depletion on surface function: thymidine and 3–0-methyl-D-glucose transport in a sterol auxotroph. J. Biol. Chem. 1979; 254: 1102
  • Baldassare J., Saito Y., Silbert D. Effect of sterol depletion on LM cell sterol mutants. J. Biol. Chem. 1979; 254: 1108
  • Baldassare J., Silbert D. F. Membrane phospholipid metabolism in response to sterol depletion. Compensatory compositional changes which maintain 3–0-methylglucose transport. J. Biol Chem. 1979; 254: 1078
  • Patzer E. J., Wagner R. R., Dubovi E. J. Viral membranes: model systems for studying biological membranes. CRC Crit. Rev. Biochem. 1979; 7: 165
  • Quigley J. P., Rifkin D. B., Reich E. Lipid studies of Rous sarcoma virus and host cell membranes. Virology 1972; 50: 550
  • Renkonen Kaarainen O., Simons L.K., Gahmberg C. G. The lipid class composition of Semliki forest virus and of plasma membranes of the host cells. Virology 1971; 46: 318
  • Hirschberg C. B., Robbins P. W. The glycoproteins and phospholipids of Sindbis virus and their relation to the lipids of the host cell plasma membrane. Virology 1974; 61: 602
  • Sefton B. M., Gaffney B. J. Effect of the viral proteins on the fluidity of the membrane lipids in Sindbis virus. J. Mol. Biol. 1974; 90: 343
  • Lenard J., Compans R. W. The membrane structure of lipid-containing viruses. Biochim. Biophys. Acta 1974; 394: 51
  • Hatanaka M., Huebner R., Gilden R. Alterations in the characteristics of sugar uptake by mouse cells transformed by murine sarcoma viruses. J. Natl. Cancer Inst. 1969; 43: 1091
  • Isselbacher K. Increased uptake of amino acids and 2-deoxy-D-glucose by virus-transformed cells in culture. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 585
  • Hatanaka M. Transport of sugars in tumor cell membranes. Biochim. Biophys. Acta 1974; 355: 77
  • Parnes J., Isselbacher K. Transport alterations in virus-transformed cells. Progr. Exp. Tumor Res, D. F. H. Wallach, S. Karger Basel, 1978; 22: 79
  • Hatanaka M., Augl C., Gilden R. Evidence for a functional change in the plasma membrane of murine sarcoma virus-infected mouse embryo cells. J. Biol Chem. 1970; 245: 714
  • Bailey J., Allan M., Butler T.E. J., Wu J-D. Defective regulation of cholesterol biosynthesis in tumor-virus transformed and hypercholesterolemic human skin fibroblasts: a comparative study. Cancer Enzymology, J. Miami Winter Symposia Schultz, F. Ahmad. Academic Press, New York 1976; 12: 335
  • Linden C., Fox C. F. Membrane physical state and function. Acc. Chem. Res. 1975; 8: 321
  • Kandutsch A., Heiniger A.H-J., Chen H. W. Effects of 25-hydroxycholesterol and 7-ketocholesterol inhibitors. Biochim. Biophys. Acta 1977; 486: 260
  • Kandutsch A. A., Chen H. W. Consequences of blocked sterol synthesis in culture cells: DNA synthesis and membrane composition. J. Biol. Chem. 1977; 252: 409
  • Chen H., Heiniger W.H-J., Kandutsch A. A. Alteration of 86Rb+ influx and efflux following a depletion of membrane sterol in L-cells. J. Biol. Chem. 1978; 253: 3180
  • Heiniger H., Kandutsch J.A. A., Chen H. W. Deletion of L-cell sterol depresses endocytosis. Nature (London) 1976; 263: 515
  • Chen H., Heiniger W.H-J., Kandutsch A. A. Relationship between sterol synthesis and DNA synthesis in phytohemagglutinin-stimulated mouse lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 1950
  • Chen H. W., Kandutsch A. A., Heiniger H-J. The role of cholesterol in malignancy. Progr. Exp. Tumor Res, D. F. H. Wallach, S. Karger Basel, 1978; 22: 275
  • Sinensky M. Isolation of a mammalian cell mutant resistant to 25-hydroxycholesterol. Biochem. Biophys. Res. Communun. 1977; 78: 863
  • Sinensky M., Duwe G., Pinkerton F. Defective regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in a somatic cell mutant. J. Biol. Chem. 1979; 254: 4482
  • Sinensky M. Defective regulation of cholesterol biosynthesis and plasma membrane fluidity in a Chinese hamster ovary cell mutant. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 1247
  • Quesney-Huneeus Wiley V.M. H., Siperstein M. D. Essential role for mevalonate synthesis in DNA replication. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 5056
  • Endo A., Kuroda M., Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976; 72: 323
  • Brown M., Faust S., Goldstein J. R., Kaneko J. L.I., Endo A. Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with Compactin (ML-236B), a competitive inhibitor of the reductase. J. Biol. Chem. 1978; 253: 1121
  • Brenneman D. E., Mathur S. N., Spector A. A. Characterization of the hyperlipidemia in mice bearing the Ehrlich ascites tumor. Eur. J. Cancer 1975; 11: 225
  • Cox R. A., Gokcen M. Effect of simian virus 40 subcutaneous tumors on circulating lipids and lipoproteins in Syrian hamster. J. Natl. Cancer Inst. 1975; 54: 379
  • Grigor M. R., Blank M. L., Snyder F. Cholesterol metabolism in rats bearing Morris hepatoma 7777. Cancer Res. 1973; 33: 1870
  • Barclay M. Lipoprotein class distribution in normal and diseased states. Blood Lipids and Lipoproteins: Quantitation, Composition and Metabolism, G. J. Nelson. John Wile, New York 1972; 585
  • Kark J. D., Smith A. H., Hames C. G. The relationship of serum cholesterol to the incidence of cancer in Evans County, Georgia. J. Chron. Dis. 1980; 33: 311
  • Ruggieri S., Fallani A., Tombaccini D. Effects of essential fatty acid deficiency on the lipid composition of the Yoshida ascites hepatoma (AH 130) and of the liver and blood plasma from host and normal rats. J. Lipid Res. 1976; 17: 456
  • Emmelot Bos P., VanHoeven C.R., VanBlitterswijk W. J. Isolation of plasma membranes from rat and mouse livers and hepatomas. Methods in Enzymology, S. Fleischer, L. Packer. Academic Press, New York 1974; 31: 75
  • VanHoeven R., Emmelot P. Studies on plasma membranes. XVIII. Lipid class composition of plasma membranes isolated from rat and mouse liver and hepatomas. J. Memb. Biol. 1972; 9: 105
  • Heiniger H-Chen J., Applegate H. W.O. L., Jr., Schacter L. P., Schacter B. Z., Anderson P. N. Elevated synthesis of cholesterol in human leukemic cells. J. Mol. Med. 1976; 1: 109
  • Philippot J. R., Cooper A. G., Wallach D. F. H. A nitroxide sterol derivative potently modifies cholesterol biosynthesis by normal and neoplastic guinea pig lymphocytes. Biochim. Biophys. Acta 1975; 406: 161
  • Philippot J. R., Cooper A. G., Wallach D. F. H. Regulation of cholesterol biosynthesis by normal and leukemic (L2C) guinea pig lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 956
  • Vlodovsky I., Fibach E., Sachs L. Control of normal differentiation of myeloid leukemia. X. Glucose utilization, cellular ATP and associated membrane changes in D- and D+ cells. J. Cell. Physiol. 1976; 87: 167
  • Chen H., Kandutsch W., Heiniger A. A.H-J., Meier H. Elevated sterol synthesis in lymphocytic leukemia cells from two inbred strains of mice. Cancer Res. 1973; 33: 2774
  • Siperstein M. D. Regulation of cholesterol biosynthesis in normal and malignant tissues. Current Topics in Cell Regulation, B. L. Horecker, E. R. Stadtman. Academic Pres, New York 1970; 2: 65
  • McGarry J. D., Foster D. W. Ketogenesis and cholesterol synthesis in normal and neoplastic tissues of the rat. J. Biol. Chem. 1969; 244: 4251
  • Kandutsch A. A., Hancock R. L. Regulation of the rate of sterol synthesis and the level of β-hydroxy-β-methylglutaryl coenzyme A reductase activity in mouse liver and hepatomas. Cancer Res. 1971; 31: 1396
  • Snyder F.M., Blank L., Morris H. P. Occurrence and nature of O-alkyl and O-alk-l-enyl moieties of glycerol in lipids of Morris transplanted hepatomas and normal rat liver. Biochim. Biophys. Acta 1969; 176: 502
  • Wood R., Falch J., Wiegond R. D. Hepatomas, host liver, and normal rat liver neutral lipids as affected by diet. Lipids 1975; 10: 202
  • Schmidt-Ullrich Wallach R.D. F. H., Davis F. D. G. II, Membranes of normal hamster lymphocytes and lymphoid cells neoplastically transformed by Simian virus 40. 1. High-yield purification of plasma membrane fragments. J. Natl. Cancer Inst. 1976; 57: 1107
  • Adam Alpes G., Blaser H.K., Neubert B. Cholesterol and phospholipid content of 3T3 cells and transformed derivatives. Zeit. Naturforsch. 1975; 30: 638
  • Balmain A., Hecker E. On the biochemical mechanism of tumorigenesis in mouse skin. VII. The effects of tumor promoters on 3H-choline and 3H-glycerol incorporation into mouse epidermal phosphatidylcholine in relation to their effects on 3H-thymidine incorporation into DNA. Zeit. Krebsforsch. 1976; 86: 251
  • Resch K., Ferber E. Phospholipid metabolism of stimulated lymphocytes. Effects of phytohemagglutinin, concanavalin A. and an anti-immunoglobulin serum. Eur. J. Biochem. 1972; 27: 153
  • Bloch K. The biological synthesis of cholesterol. Science 1965; 150: 19
  • Rudney H. The biosynthesis of β-hydroxy-β-methylglutaryl coenzyme A and its conversion to mevalonic acid. Ciba Foundation Symposium on the Biosynthesis of Terpenes and Sterols, G. E. W. Wolstenholme, M. O'Conner. Churchill Livingstone, London 1959; 95
  • Dietschy J. M., Siperstein M. D. Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J. Lipid Res. 1967; 8: 97
  • Dietschy J. M., Wilson J. D. Cholesterol synthesis in the squirrel monkey — relative rates of synthesis in various tissues and mechanisms of control. J. Clin. Invest. 1968; 47: 166
  • Dietschy J. M., Wilson J. D. Regulation of cholesterol metabolism. III. N. Engl. J. Med. 1970; 282: 1241
  • Swann A., Siperstein M. D. Distribution of cholesterol feedback control in the guinea pig. J. Clin. Invest. 1972; 51: 95a
  • Andersen J. M., Dietschy J. M. Regulation of sterol synthesis in 16 tissues of rat. I. Effect of diurnal light cycling, fasting, stress, manipulation of enterohepatic circulation, and administration of chylomicrons and triton. J. Biol. Chem. 1977; 252: 3646
  • Balasubramaniam Goldstein S., Faust J. L.J. R., Brown M. S. Evidence for regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesterol synthesis in nonhepatic tissues of rat. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 2564
  • Swann A.M., Wiley H., Siperstein M. D. Tissue distribution of cholesterol feedback control in the guinea pig. J. Lipid Res. 1975; 16: 360
  • Mills G. L., Chapman M. J., McTaggart F. Some effects of diet on guinea pig serum lipoproteins. Biochim. Biophys. Acta 1972; 260: 401
  • Rodwell V.J., Nordstrom L., Mitschelen J. J. Regulation of MHG CoA reductase. Advances in Lipid Research, R. Paoletti, D. Kritchevsky. Academic Pres, New York 1976; 1: 14
  • Scallen T. J., Schuster M. W., Dhar A. K. Evidence for a noncatalytic carrier protein in cholesterol biosynthesis. J. Biol. Chem. 1971; 246: 224
  • Brown M. S., Goldstein J. L. Receptor-mediated control of cholesterol metabolism. Science 1976; 191: 150
  • Brown M. S., Goldstein J. L. General scheme for regulation of cholesterol metabolism in mammalian cells. Disturbances in Lipid and Lipoprotein Metabolism, J. M.A. M. Dietschy Gotto, Jr., J. A. Ontko. American Physiological Society, Bethesda 1978; 173
  • Bell J. J., Sargeant T. E., Watson J. A. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in hepatoma tissue culture cells by pure cholesterol and several cholesterol derivatives. J. Biol. Chem. 1976; 251: 1745
  • Jakoi L., Quarfordt S. H. Alterations of rat hepatic cholesterogenesis by heterologous lipoprotein. J. Biol. Chem. 1977; 252: 6856
  • Spence J. T., Gaylor J. L. Investigation of regulation of microsomal hydroxymethylglutaryl coenzyme A reductase and methyl sterol oxidase of cholesterol biosynthesis. J. Biol. Chem. 1977; 252: 5852
  • Srikantaiah Tormanen M., Redd C., Hardgrave W.J., Scallen T. Purification of 3-hydroxy-3-methylglutaryl coenzyme A reducatase by affinity chromatography on blue dextran/sepharose 4B. J. Biol. Chem. 1977; 252: 6145
  • Sabine J. R., James M. J. The intracellular mechanism responsible for dietary feedback control of cholesterol synthesis. Life Sci. 1976; 18: 1185
  • Beg Z. H., Stonik J. A., Brewer H. B., Jr. 3-hydroxy-3-methylglutaryl coenzyme A reductase: regulation of enzymatic activity by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 3678
  • Beg Z. H., Stonik J. A., Brewer H. B., Jr. In vitro and in vivo phosphorylation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and reductase kinase (RK). Fed. Proc. 1980; 39: 1776
  • Arebalo R., Hardgrave E., Noland J. E.B. J., Scallen T. J. The in vivo regulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Fed. Proc. 1980; 39: 1776
  • Higgens M., Rudney H. Regulation of rat liver β-hydroxy-β-methylglutaryl CoA reductase activity by cholesterol. Nature (London), New Biol. 1973; 246: 60
  • Kandutsch A. A., Saucier S. E. Prevention of cyclic and triton-induced increases in hydroxyl-methylglutaryl coenzyme A reductase and sterol synthesis by puromycin. J. Biol. Chem. 1969; 244: 2299
  • Dugan R., Slakey E., Breidis L. L.A. V., Porter J. W. Factors affecting the diurnal variation in the level of β-hydroxy-β-methylglutaryl coenzyme A reductase and cholesterol-synthesizing activity in rat liver. Arch. Biochem. Biophys. 1972; 152: 21
  • Edwards P. A. Effect of adrenalectomy and hypophysectomy on the circadian rhythm of β-hydroxy-β-methylglutaryl coenzyme A reductase activity in rat liver. J. Biol. Chem. 1973; 248: 2912
  • Dietschy J. M., Brown M. S. Effect of alterations of the specific activity of the intracellular acetyl CoA pool on apparent rates of hepatic cholesterogenesis. J. Lipid Res. 1974; 15: 508
  • Kandutsch A. A., Chen H. Inhibition of sterol synthesis in cultured mouse cells by cholesterol derivatives oxygenated in the side chain. J. Biol. Chem. 1974; 249: 6057
  • Sabine J. R. Metabolic controls of precancerous liver. VII. Time course of loss of dietary feedback of cholesterol synthesis during carcinogen treatment. Eur. J. Cancer 1976; 12: 299
  • Pedersen P. L. Tumor mitochondria and the bioenergetics of cancer cells. Progr. Exp. Tumor Res, D. F. H. Wallach. S. Karger, Basel 1978; 190
  • Sabine J. R. Progressive loss of cellular metabolic controls during hepatic carcinogenesis. Control Mechanisms in Cancer, W. E.T. Criss Ono, J. R. Sabine. Raven Pres, New York 1976; 351
  • Perkins R. G., Kummerow F. A. Major lipid classes in plasma membrane isolated from liver of rats fed a hepatocarcinogen. Biochim. Biophys. Acta 1976; 424: 469
  • Barbason Fridman-Manduzio H., Lelievre A.P., Betz E. H. Variations of liver cell control during diethylnitrosamine carcinogenesis. Eur. J. Cancer 1977; 13: 13
  • Chan P-C., Cohen L. A. Dietary fat and growth promotion of rat mammary tumors. Cancer Res. 1975; 35: 3384
  • Rogers A. E. Variable effects of a lipotrope-deficient high-fat diet on chemical carcinogenesis in rats. Cancer Res. 1975; 35: 2469
  • Cruse J., Lewin P., Ferulano M. R.G. P., Clark C. G. Cocarcinogenic effects of dietary cholesterol in experimental colon cancer. Nature 1978; 276: 822
  • Szepsenwol J. Gastro-intestinal tumors in mice of three strains maintained on fat-enriched diets. Oncology 1978; 35: 143
  • Bernard P.M., Pace J., Gass G. H. Effects of dietary fats on mammary carcinoma in C3H mice. ICRS Med. Sci. (Cancer) 1978; 6: 489
  • Hems G. The contributions of diet and childbearing to breast cancer rates. Br. J. Cancer 1978; 37: 974
  • Kigoshi S., Akiyama M., Ito R. Close correlation between levels of cholesterol and free fatty acids in lymphoid cells. Experientia 1976; 32: 1244
  • Hilf Goldenberg R., Michel H., Orlando I.R., Archer F. Enzymes, nucleic acids, and lipids in human breast cancer and normal breast tissue. Cancer Res. 1970; 30: 1974
  • Hostetler K. Y., Zenner B. D., Morris H. P. Abnormal membrane phospholipid content in subcellular fractions from Morris 7777 hepatoma. Biochim. Biophys. Acta 1976; 441: 231
  • Morton Cunningham R., Jester C., Waite R., Miller M.N., Morris H. P. Alteration of mitochondrial function and lipid composition in Morris hepatoma 7777. Cancer Res. 1976; 36: 3246
  • Feo Canuto F., Garcea A.R., Gabriel L. Effect of cholesterol content on some physical and functional properties of mitochondria isolated from adult rat liver, fetal liver, cholesterol-enriched liver, and hepatomas AH-130, 3924A and 5123. Biochim. Biophys. Acta 1975; 413: 116
  • Mitchell R. F. The lipid content of mitochondria from transplantable animal tumors. Biochim. Biophys. Acta 1969; 176: 764
  • Farias R., Bloj N., Morero B., Sineriz R. D.F., Trucco R. E. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition. Biochim. Biophys. Acta 1975; 415: 231
  • Reitz R. C., Thompson J. A., Morris H. P. Mitochondrial and microsomal phospholipids of Morris hepatoma 7777. Cancer Res. 1977; 37: 561
  • Pani Canuto P., Garcea R. A.R., Feo F. Lipid composition of subcellular particles isolated from rat liver and from hepatoma. Biochem. Soc. Trans. 1973; 1: 971
  • Feo Canuto F., Bertone R. A., Garcea G.R., Pani P. Cholesterol and phospholipid composition of mitochondria and microsomes isolated from Morris hepatoma 5123 and rat liver. FEBS Lett. 1973; 33: 229
  • Kaschnitz R., Hatefi M.Y., Morris H. P. Oxidative phosphorylation properties of mitochondria isolated from transplanted hepatoma. Biochim. Biophys. Acta 1976; 449: 224
  • Graham J. M., Green C. The properties of mitochondria enriched in vitro with cholesterol. Eur. J. Biochem. 1970; 12: 58
  • Cederbaum A., Rubin E. Fatty acid oxidation, substrate shuttles and activity of citric acid cycle in hepatocellular carcinomas of varying differentiation. Cancer Res. 1976; 36: 2980
  • Hochli M., Schneider H., Hackenbrock C. R. Effect of excess bilayer cholesterol on the structure and function of the mitochondrial inner membrane. Fed. Proc. 1980; 39: 1632
  • Barritt G. J. Effects of elevated plasma cholesterol concentrations in the rat on the cholesterol content and retention of calcium ions by isolated heart and liver mitochondria. Biochem. Med. 1979; 22: 50
  • Parks L. W., McLean-Bowen C. Corresponding changes in enzymic activity, membrane fluidity and sterol composition. Fed. Proc. 1980; 39: 1632
  • Sul Shrago H., Goldfarb E.S., Rose F. Comparison of the adenine nucleotide translocase in hepatomas and rat liver mitochondria. Biochim. Biophys. Acta 1979; 551: 148
  • Senior A., McGowan S., Hilf R. A comparative study of inner membrane enzymes and transport systems in mitochondria from R3230AC mammary tumor and normal rat mammary glands. Cancer Res. 1975; 35: 2061
  • Vignais P. V. Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim. Biophys. Acta 1976; 456: 1
  • Coleman P., Lavietes S., Born B. B.R., Weg A. Cholesterol enrichment of normal mitochondria in vitro: a model system with properties of hepatoma mitochondria. Biochem. Biophys. Res. Commun. 1978; 84: 202
  • Pedersen P. L., Morris H. P. Uncoupler-stimulated adenosine triphosphatase activity. Deficiency in intact mitochondria from Morris hepatomas and ascites tumor cells. J. Biol. Chem. 1974; 249: 3327
  • Pedersen, Greenawalt P. L., Chan J. W.T. L., Morris H. P. A comparison of some ultrastructural and biochemical properties of mitochondria from Morris hepatomas 9618A, 7800, and 3924A. Cancer Res. 1970; 30: 2620
  • Baldwin P., George D., Cunningham C. Respiratory control in liver mitochondria of rats hosting the Walker 256 carcinoma tumor. Experientia 1975; 31: 1333
  • Gould R. G. Some aspects of the control of hepatic cholesterol biosynthesis. Cholesterol Metabolism and Lipolytic Enzymes, J. Polonovski. Masson Publ, New York 1977; 13
  • Srere P. The enzymology of the formation and breakdown of citrate. Adv. in Enzymol. 1975; 43: 57
  • Citric Acid Cycle-Control and Compartmentalization, J. Lowenstein. Marcel Dekke, New York 1969
  • Goodridge A. Regulation of the activity of acetyl coenzyme A carboxylase by palmitoyl coenzyme A and citrate. J. Biol. Chem. 1972; 247: 6946
  • Passonneau J., Lowry O. P-fructokinase and the control of the citric acid cycle. Biochem. Biophys. Res. Commun. 1963; 13: 372
  • Silbert C., Martin D. Inhibition by citrate of pyruvate dehydrogenase in rat liver mitochondria. Biochem. Biophys. Res. Commun. 1968; 31: 818
  • Watkins P. A., Tarlow D. M., Lane M. D. Mechanism for acute control of fatty acid synthesis by glucagon and 3′: 5′-cyclic AMP in the liver cell. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 1497
  • Greenhouse W. V. V., Lehninger A. L. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells. Cancer Res. 1977; 37: 4173
  • Halperin M., Taylor L., Cheema-Dhadli W. M., Morris S.H. P., Fritz I. B. Effects of fasting on the control of fatty acid synthesis in hepatoma 7777 and host liver. Role of long chain fatty acyl-CoA, the mitochondrial citrate transporter and pyruvate dehydrogenase activity. Eur. J. Biochem. 1975; 50: 517
  • McGee R., Spector A. Short-term effects of free fatty acids on regulation of fatty acid biosynthesis in Ehrlich ascites tumor cells. Cancer Res. 1974; 34: 3355
  • Busch H. Studies on the metabolism of acetate-1-14C in tissues of tumor-bearing rats. Cancer Res. 1953; 13: 789
  • Busch H. Studies on the metabolism of pyruvate-2-14C in tissues of tumor-bearing rats. Cancer Res. 1955; 15: 356
  • Nyhan W. L., Busch H. Metabolic patterns for L-glutamate-U-C14 in tissues of tumor-bearing rats. Cancer Res. 1958; 18: 385
  • Nyhan W. L., Busch H. Metabolic patterns for succinate-2-C14 in tissues of tumor-bearing rats. Cancer Res. 1958; 18: 1203
  • Lavietes B. B., Regan D. H., Demopoulos H. B. Glutamate oxidation in 6C3HED lymphoma: effects of L-asparaginase on sensitive and resistant lines. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 3993
  • Eboli M., Paradies L.G., Papa S. Transport of anionic substrates and glutamate metabolism in mitochondria from ascites tumor cells. Cancer Res. 1976; 36: 3119
  • Glazer R., Vogel I., Patel C. L.I. R., Anthony P. P. Glutamate dehydrogenase activity related to histopathological grade of hepatocellular carcinoma in man. Cancer Res. 1974; 34: 2975
  • Lawson Paik D., Morris W. K.H. P., Weinhouse S. Urea synthesis in Novikoff and Morris hepatomas. Cancer Res. 1977; 37: 850
  • Pausch J., Keppler G.D. O. R., Gerole W. Increased de novo pyrimidine nucleotide synthesis in liver induced by ammonium ions in amounts surpassing the urea cycle capacity. Eur. J. Biochem. 1977; 76: 157
  • Tomkins G., Yielding M., Curran K. L., Summers J. F.M. R., Bitensky M. W. The dependence of the substrate specificity on the conformation of crystalline glutamate dehydrogenase. J. Biol. Chem. 1965; 240: 3793
  • Pons Michel M., Descomps F.B., Crattes de Paulet A. Structural requirements for maximal inhibitory allosteric effect of estrogens and estrogen analogues on glutamate dehydrogenase. Eur. J. Biochem. 1978; 84: 257
  • La Noue Bryla K.J., Bassett D. J. P. Energy-driven aspartate efflux from heart and liver mitochondria. J. Biol. Chem. 1974; 249: 7514
  • Broome J. D. Studies on the mechanism of tumor inhibition by L-asparaginase. Effects of the enzyme on asparagine levels in the blood, normal tissues, and 6C3HED lymphoma of mice: differences in asparagine formation and utilization in asparaginase-sensitive and -resistant lymphoma cells. J. Exp. Med. 1968; 127: 1055
  • Sanchez J., Enjuanes L. Gas-liquid chromatography of amino acids in blood of Wistar rats with Walker 256 carcinoma. Oncology 1971; 25: 44
  • Wilson E., Sprague A., Hurst A. D.M. E., Roddick J. W., Jr. Free serum amino acids in patients with advanced cervical carcinoma. Gynecol. Oncol. 1976; 4: 311
  • Wiseman C.R., McGregor F., McCredie K. B. Urinary amino acid excretion in acute leukemia. Cancer 1976; 38: 219
  • Broome J. D., Schwartz J. W. Differences in the production of L-asparagine in asparaginase-sensitive and -resistant lymphoma cells. Biochim. Biophys. Acta 1967; 138: 637
  • Horowitz Madras B., Meister B. K., Old A., Boyse L. J.E. A., Stockert E. Asparagine synthetase activity in mouse leukemias. Science 1968; 160: 533
  • Coleman P. S., Lavietes B. B., (unpublished observations)
  • Horowitz B., Meister A. Glutamine-dependent asparagine synthetase from leukemia cells. J. Biol. Chem. 1972; 247: 6708
  • Horowitz B., Meister A. Utilization of glutamine for the biosynthesis of asparagine. The Enzymes of Glutamine Metabolism, S. Prusiner, E. R. Stadtman. Academic Pres, New York 1973; 573
  • Horowitz M. L., Knox W. E., Morris H. P. Glutaminase activities and growth rates of rat hepatomas. Cancer Res. 1969; 29: 1195
  • Chakrabarty P., Shrivastava G. C. Glutamine aminotransferase and glutamine aminohydrolase ratio as possible test for antitumor compounds. Experientia 1975; 31: 850
  • Russell D. Polyamines in Normal and Neoplastic Growth. Raven Press, New York 1973
  • Anderson G., Heby O. Kinetics of cell proliferation and polyamine synthesis during Ehrlich ascites tumor growth. Cancer Res. 1977; 37: 4361
  • Perin A., Sessa A. Changes in polyamine levels and protein synthesis rate during rat liver carcinogenesis induced by 4-dimethylaminobenzene. Cancer Res. 1978; 22: 190
  • O'Brien T. G., Diamond L. Ornithine decarboxylase, polyamines, and tumor promoters. Carcinogenesis, Mechanisms of Tumor Promotion and Cocarcinogenesis, T.A. Slaga Sivak, R. Boutwell. Raven Pres, New York 1978; 2: 273
  • Russell D. H., Durie B. G. M. Polyamines as Biochemical Markers of Normal and Malignant Growth. Raven Press, New York 1978; 54
  • Durie B., Salmon G. M.S. E., Russell D. H. Polyamines as markers of responses and disease activity in cancer chemotherapy. Cancer Res. 1977; 37: 214
  • O'Brien T., Simsiman G.R. C., Boutwell R. K. Induction of polyamine biosynthetic enzymes in mouse epidermis by tumor-promoting agents. Cancer Res. 1975; 35: 1662
  • Verma A. K., Boutwell R. K. Vitamin A acid (retinoic acid), a potent inhibitor of 12–0-tetradecanoyl-phorbol-13-acetate-induced ornithine decarboxylase activity in mouse epidermis. Cancer Res. 1977; 37: 2196
  • Chen K. Y., Canellakis E. S. Enzyme regulation in neuoroblastoma cells in a salts/glucose medium: induction of ornithine decarboxylase by asparagine and glutamine. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 3791
  • Prouty W. F. Ornithine decarboxylase inactivation in HeLa cells. J. Cell Physiol. 1976; 89: 65
  • Canellakis E., Viceps-Madore S., Kyriakidis D.D. A., Heller J. S. The regulation and function of ornithine decarboxylase and of the polyamines. Current Topics in Cellular Regulation, B. L. Horecker, E R. Stadtman. Academic Pres, New York 1979; 15: 155
  • Quash Calogero G., Fossar H., Ferdinand N.A., Taylor D. Modification of diamine oxidase activity in vitro by metabolites of asparagine and differences in asparagine decarboxylation in normal and virus-transformed baby hamster kidney cells. Biochem. J. 1976; 157: 599
  • Schrek Holcenberg R., Batra J. S., Roberts K. V., J., Dolowy W. C. Effect of asparagine and glutamine deficiency on normal and leukemic cells. J. Natl. Cancer Inst. 1973; 51: 1103
  • Hakala M., Soulinna T.E-, Kenny M. R.L. N., Tritsch G. L. Asparagine metabolism in mouse sarcoma cells. I. Transport, metabolism, and pools of dicarboxylic amino acids and their amides. Biochim. Biophys. Acta 1974; 338: 1
  • Roberts R., Hsu S., Lin H. W.K. D., Yang T. J. Amino acid metabolism of myeloma cells in culture. J. Cell Sci. 1976; 21: 609
  • Albrecht A., Biedler M., Hutchinson J. L., Spengler D. J.B. A., Stockert E. Radiation-induced murine leukemia ERLD in cell culture. Cancer Res. 1976; 36: 3784
  • Baker M. E. Stimulation of DNA synthesis by serum and amino acids in a rat neuroblastoma cell line. Exp. Cell Res. 1975; 95: 121
  • Shrivastava G. C., Quastel J. H. Malignancy and tissue metabolism. Nature 1962; 196: 876
  • Roberts Tananka E., Tanaka K. K.T., Simonsen D. G. Free amino acids in growing and regressing ascites tumor cells: host resistance and chemical agents. Cancer Res. 1956; 16: 970
  • Knox W. E., Horowitz M. L., Friedell G. H. The proportionality of glutaminase content to growth rate and morphology of rat neoplasms. Cancer Res. 1969; 29: 669
  • Kovacevic Z., Morris H. P. The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res. 1972; 32: 326
  • Kovacevic Z. Properties and intracellular localization of Ehrlich ascites tumor cell glutaminase. Cancer Res. 1974; 34: 3403
  • Roberts E., Simonsen D. G. Free amino acids and related substances in normal and neoplastic tissues. Amino Acids, Proteins, and Cancer Biochemistry, J. T. Edsall. Academic Pres, New York 1960; 121
  • Racker E. Bioenergetics and the problem of tumor growth. Am. Sci. 1972; 60: 56
  • Rubin H. Regulation of growth in animal cells. Membrane Transformations in Neoplasia, J. Schultz, R. E. Block. Academic Press, New York 1974; 8: 173
  • Kun E.J., Ayling E., Baltimore B. G. Studies on specific enzyme inhibitors. VIII. Enzyme-regulatory mechanisms of the entry of glutamic acid into metabolic pathways on kidney tissue. J. Biol. Chem. 1964; 239: 2896
  • Baruch S., Eun B., Macleod C. K.M., Pitts R. F. Renal CO2 production from glutamine and lactate as a function of arterial perfusion pressure in dog. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 4235
  • Bustamante E., Pedersen P. L. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc. Natl Acad. Sci. U.S.A. 1977; 74: 3735
  • Zielke W., Ozand R., Tildon P. T., Serdalian J. T.D. A., Cornblath M. Growth of human diploid fibroblasts in absence of glucose utilization. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 4110
  • Stoner G. D., Merchant D. J. Amino acid utilization by L-M strain mouse cells in a chemically defined medium. In Vitro 1972; 7: 330
  • Vail J. M., Glinos A. D. Density dependent regulation of growth in L-cell suspension cultures. IV. Adaptive and nonadaptive respiratory decline. J. Cell Physiol. 1974; 83: 425
  • Griffiths J. B., Pirt S. J. The uptake of amino acids by mouse cells (strain LS) during growth in batch culture and chemostat culture: the influence of cell growth rate. Proc. R. Soc. (B) 1967; 168: 421
  • Griffiths J. B. The effects of adapting human dipoid cells to grow in glutamic acid media on cell morphology, growth, and metabolism. J. Cell Sci. 1973; 12: 617
  • Heinz E.A., Pichler G., Pfeiffer B. Studies on the transport of glutamate in Ehrlich cells — inhibition by other amino acids and stimulation by H+ ions. Biochem. Z. 1965; 342: 542
  • Garcia-Sancho Sanchez J.A., Christensen H. N. Role of proton dissociation in the transport of acidic amino acids by the Ehrlich ascites tumor cell. Biochim. Biophys. Acta 1977; 464: 295
  • Lehninger A. L. Biochemistry2nd. Worth Publisher, New York 1975; 535
  • Bissell M., Rambeck J., White W. A.R. C., Bassham J. A. Glycerol phosphate shuttle in virus-transformed cells in culture. Science 1976; 191: 856
  • Eboli M., Galeotti L., Dionisi T., Longhi O.G., Terranova T. Shuttles for transfer of reducing equivalents in Ehrlich ascites tumor cells. Arch. Biochem. Biophys. 1976; 173: 747
  • Eboli M., Paradies L., Galeotti G.T., Papa S. Pyruvate transport in tumor-cell mitochondria. Biochim. Biophys. Acta 1977; 460: 183
  • Katz Brand J., Golden K.S., Rubenstein D. Lactate and pyruvate metabolism and reducing equivalent transfer in Ehrlich ascites tumor. Cancer Res. 1974; 34: 872
  • Greenhouse W. V. V., Lehninger A. L. Occurrence of malate-aspartate shuttle in various tumor types. Cancer Res. 1976; 36: 1392
  • Cederbaum Lieber A., Beattie C.D., Rubin E. Characterization of shuttle mechanisms for the transport of reducing equivalents into mitochondria. Arch. Biochem. Biophys. 1973; 158: 763
  • Chiaretti Casciaro B., Minotti A., Eboli G.M. L., Galeotti T. Quantitative evaluation of the activity of the malate-aspartate shuttle in Ehrlich ascites tumor cells. Cancer Res. 1979; 39: 2195
  • Smith S., Briggs B., Triebwasser S.K., Freedland R. Reevaluation of amino-oxyacetate as inhibitor. Biochem. J. 1977; 162: 453
  • Newsholme E.P., Sugden H., Williams T. Effect of citrate on the activities of 6-phospho-fructokinase from nervous and muscle tissues from different animals and its relationship to regulation of glycolysis. Biochem. J. 1977; 166: 123
  • Michuda C. M. The isozymes of glutamate-aspartate transaminase. Mechanisms of inhibition by dicarboxylic acids. J. Biol. Chem. 1970; 245: 262
  • Huang Y-Z., Knox W. E. Glutamine-dependent asparagine synthetase in fetal, adult, and neoplastic rat tissues. Enzyme 1975; 19: 314
  • Patterson M. K., Jr., Orr G. R. Asparagine biosynthesis by the Novikoff hepatoma: isolation, purification, properties, and the mechanism studies of the enzyme system. J. Biol. Chem. 1968; 243: 376
  • Michuda C. M., Martinez-Carrion M. Distinctions in the equilibrium kinetic constants of the mitochondrial and supernatant isozymes of aspartate transaminase. J. Biol. Chem. 1969; 244: 5920
  • Teranishi Kagatniyama H., Teranishi H., Wada K., Yamano H.T., Morino Y. Cytosolic and mitochondrial isoenzymes of glutamic-oxaloacetic transaminase from human heart. J. Biol. Chem. 1978; 253: 8842
  • Wood R., Falch J. Lipids of cultured hepatoma cells. IV. Effect of serum and lipid upon cellular and media neutral lipids. Lipids 1974; 9: 979
  • Packter N. M. Biosynthesis of Acetate-derived Compounds. John Wiley & Sons, London/New York 1973, chap. 4 and 7.
  • Carruthers C. The influence of transplantable rat mammary carcinomas on the chemical composition of the host. Oncology 1969; 23: 241
  • Grohsman J., Nowotny A. The immune recognition of TA3 tumors, its facilitation by endotoxin, and abrogation by ascites fluid. J. Immunol. 1972; 109: 1090
  • Notwotny Grohsman A., Abdelnoor J., Rote A., Yang N.C., Walterschoff R. Escape of TA3 tumors from allogenic immune reaction — theory and experiments. Eur. J. Immunol. 1974; 4: 73
  • Raz Barzilai A., Spira R.G., Inbar M. Oncogenicity and immunogenicity associated with membranes isolated from cell-free ascites fluid of lymphoma-bearing mice. Cancer Res. 1978; 38: 2480
  • Raz Goldman A., Yuli R.I., Inbar M. Isolation of plasma membranes fragments and vesicles from ascites fluid of lymphoma-bearing mice and their possible role in escape mechanism of tumors from host immune rejection. Cancer Immunol. Immunother. 1978; 4: 53
  • VanBlitterswijk W., Emmelot J., Hilgers P., Kamlag J., Nusse D.R., Feltkamp C. A. Quantitation of virus-induced (MLr) and normal (Thy. 1.2) cell surface antigens in isolated plasma membranes and the extracellular ascites fluid of mouse leukemia cells. Cancer Res. 1975; 35: 2743
  • VanBlitterswijk W., Emmelot J., Hilkmann P., Oomenmeulmans H. A. M.E. P. M., Inbar M. Differences in lipid fluidity among isolated plasma membranes of normal and leukemic lymphocytes and membranes exfoliated from their cell surface. Biochim. Biophys. Acta 1977; 467: 309
  • VanBlitterswijk W., Emmelot J., Hilkmann P., Hilgers H. A. M.J., Feltkamp C. A. Rigid plasma membrane-derived vesicles, enriched in tumor-associated surface antigens (MLr) occurring in the ascites fluid of a murine leukemia (GRSL). Int. J. Cancer 1979; 23: 62
  • Bluemink J. G., deLaat S. W. Plasma membrane assembly as related to cell division. The Synthesis, Assembly and Turnover of Cell Surface Components, G. Poste, G. L. Nicolson. North-Holland, New York 1977; 401
  • Porter K. R., Todaro E. G., Fonte V. A scanning electron microscope study of surface features of viral and spontaneous transformants of mouse Balb/3T3 cells. J. Cell Biol. 1973; 59: 633
  • Malick L. E., Langhenbach R. Scanning electron microscopy of in vitro chemically transformed mouse embryo cells. J. Cell Biol. 1976; 68: 654
  • Borek C., Fenoglio C. M. Scanning electron microscopy of surface features of hamster embryo cells transformed in vitro by X-irradiation. Cancer Res. 1976; 36: 1325
  • Saxholme H. J. K., Reith A. Surface structure of 7,12-dimethylbenz(a)anthracene-transformed C3H-10T cells: quantitative scanning electron microscopical study. Eur. J. Cancer 1979; 15: 843
  • Follett G. A., Goldman R. D. The occurrence of microvilli during spreading and growth of BHK21/C13 fibroblasts. Exp. Cell Res. 1970; 59: 124
  • Cone R. G. Dynamic aspects of the lymphocyte surface. The Lymphocyte: Structure and Function, J. J. Marchalonis. Marcel Dekke, New York 1977; 5,II: 565
  • Cooper R., Arner A., Wiley E. C.J. S., Shattil S. J. Modification of red cell membrane structure by cholesterol-rich lipid dispersions. J. Clin. Invest. 1975; 56: 115
  • Luke J. C., Kaplan J. I. On the theoretical shapes of bilipid vesicles under conditions of increasing membrane area. Biophys. J. 1979; 25: 107
  • Hellstrom I., Hellstrom K. E. Studies on cellular immunity and its serum-mediated inhibition in Moloney-virus induced mouse sarcomas. Int. J. Cancer 1969; 4: 587
  • Bloom E. T., Ossorio R. C., Brosman S. A. Cell-mediated cytotoxicity against human bladder cancer. Int. J. Cancer 1974; 14: 326
  • Peter Pavie-Fisher H., Fridman J., Aubert W. H., Cesarini C., Roubin C.R., Kourilsky F. M. Cell-mediated cytotoxicity in vitro of normal human lymphocyte against tissue culture melanoma cell line (IGR 3). J. Immunol. 1975; 115: 539
  • Baldwin R. W., Glaves D. Solubilization of tumor-specific antigen from plasma membrane of an aminoazo dye-induced rat hepatoma. Clin. Exp. Immunol. 1972; 11: 51
  • Baldwin R. W., Harris J. R., Price M. R. Fractionation of plasma membrane-associated tumor-specific antigen from an aminoazo dye-induced rat hepatoma. Int. J. Cancer 1973; 11: 1
  • Thomson D. M. P., Alexander P. Cross-reacting embryonic antigen in membrane of rat sarcoma cells which is immunogenic in syngeneic host. Br. J. Cancer 1973; 27: 35
  • Price M. R., Baldwin R. W. Immunogenic properties of rat hepatoma subcellular fractions. Br. J. Cancer 1974; 30: 394
  • Price M. R., Baldwin R. W. Preparation of aminoazo dye induced rat hepatoma membrane-fractions retaining tumor specific antigen. Br. J. Cancer 1974; 30: 382
  • Currie G. A., Alexander P. Spontaneous shedding of TSTA by viable sarcoma cells – its possible role in facilitating metastatic spread. Br. J. Cancer 1974; 29: 72
  • Sjogren H., Hellstrom O., Bansal I., Warner S. C.G. A., Hellstrom K. E. Elution of blocking factors from human tumors capable of abrogating tumor cell destruction by specifically immune lymphocytes. Int. J. Cancer 1972; 9: 274
  • Petitou Tuy M., Rosenfeld F., Michal C., Paintrand Z., Jasnin M., Mathe C.G., Inbar M. Decreased microviscosity of membrane lipids in leukemic cells: two possible mechanisms. Proc. Natl. Acad. Sci. U.S.A. 1978; 5: 2306
  • Reitzer L. J., Wice B. M., Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 1979; 254: 2669
  • Lavietes B. B., Coleman P. S. The role of lipid metabolism in neoplastic differentiation. J. Theor. Biol. 1980; 85: 523
  • Webster D. The determination of total and ester cholesterol in whole blood, serum, and plasma. Clin. Chim. Acta 1962; 7: 277
  • Saccone G., Sabine J. R. Lack of effect of fasting and alloxan diabetes on rate of fatty acid synthesis by some Morris hepatomas. Cancer Lett. 1978; 5: 35
  • Ballard F. J. Supply and utilization of acetate in mammals. Am. J. Clin. Nutr. 1972; 25: 773

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.