24
Views
10
CrossRef citations to date
0
Altmetric
Original

Affinity Labeling Via Deamination Reactions

Pages 327-372 | Published online: 31 Jan 2011

References

  • Baker B. R. Design of active-site-directed irreversible enzyme inhibitors. John Wiley & Sons, New York 1967
  • Editors-in-chief, Affinity labeling,in Colowick. Methods in Enzymology, W. B. Jakoby, M.S. P. Wilchek, N. O. Kaplan. Academic Press, New York 1977; 46
  • Powers J. C., Carroll D. L. Reaction of acyl carbazates with proteolytic enzymes. Biochem. Biophys. Res. Commun. 1975; 67: 639
  • Roeser K. R., Legler G. Role of sugar hydroxyl groups in glycoside hydrolysis cleavage mechanism of 2-deoxyglucosides and related substrates by β-glucosidase A3 from. Aspergillus wentii, Biochem. Biophys. Acta. 1981; 657: 321
  • Hexter C. S., Westheimer F. H. S-Carboxymethylcysteine from the photolysis of diazoacyl trypsin and chymotypsin. J. Biol. Chem. 1971; 246: 3934
  • Enzyme Activated Irreversible Inhibitors, N.M. Seiler, J. Jung, J. Koch-Weser. Elsevier, North Holland Biomedical Press, Amsterdam 1978
  • Dell A. Chemical modification of proteins, in Sheppard, R. C. Specialist Periodical Report. Amino-Acids, Peptides, and Proteins. Chemical Society, London 1977; 10: 108
  • Standring D. N., Knowles J. R. Photoaffinity labeling of lactate dehydrogenase by the carbene derived from the 3-diazirino analog of nicotinamide adenine dinucleotide. Biochemistry. 1980; 19: 2811
  • Johnston Raines M., Walsh R.C., Firestone R. A. Mechanism-based enzyme inactivation using an allyl sulfoxide allyl sulfenate ester rearrangement. J. Am. Chem. Soc. 1980; 102: 4241
  • Hiromi K. The Kinetics of Fast Enzyme Reactions. Theory and Practice. Kodansha, Tokyo 1979; 262
  • Ridd J. H. Nitrosation, diazotisation and deamination. Q. Rev. Chem. Soc. 1961; 15: 418
  • White E. H., Woodcock D. J. Cleavage of the carbon-nitrogen bond. The Chemistry of the Amino Group, S. Patai. John Wiley & Sons, New York 1968, chap. 8.
  • Kirmse W. Nitrogen as a leaving group: aliphatic diazonium ions. Angew. Chem. Int. Ed Engl. 1976; 15: 251
  • Maskill H.R., Southam M., Whiting M. C. Synchronous fragmentation in the deamination of secondary carbinylamines. Chem. Comm. 1965; 496
  • Maskill H., Whiting M. C. Deamination of cis- and trans-4-t-butylcyclohexylamines. J. Chem. Soc. Perkin Trans. 1976; 2: 1462
  • Kirmse W.W., Baron J., Seipp V. Azocoupling by cyclopropane diazonium. ions, Angew Chem Int. Ed. Engl. 1973; 12: 924
  • Kirmse W., Schnurr O., Jendralla H. Reaktionen aliphatischer Diazonium-Ionen mit Lithiumazid. Chem. Ber. 1979; 112: 2120
  • Kirmse W., Rinckler H A. Zersetzung von 1-Diazo-butan in Methanol. Justus Liebigs Ann. Chem. 1967; 707: 57
  • White E. H., Ryan T. J., Field K. W. The deamination of aliphatic amines. J. Am. Chem. Soc. 1972; 94: 1360
  • White E., McGirk H., Aufdermarsh R. H., Tiwari C. A.H. P., Todd M. J. The deamination of bridgehead amines via the nitroso- and nitro-amide approach. J. Am. Chem. Soc. 1973; 95: 8107
  • McGarrity J. F., Smyth T. Kinetics and mechanism of the acid-catalysed hydrolysis of diazomethane. J. Chem. Soc. Chem. Commun. 1977; 347
  • Jones C., Kelly C., Sinnott M. A.M. L., Smith P. J. Unimolecular heterolysis of a nitrogen-nitrogen bond. J. Chem. Soc. Chem. Commun. 1980; 322
  • McGarrity J. F., Symth T. Hydrolysis of diazomethane-kinetics and mechanism. J. Am. Chem. Soc. 1980; 102: 7303
  • Albery W. J., Davies M. H. Decomposition of ethyl diazoacetate in H2O + D2O mixtures. Trans. Faraday Soc. 1969; 65: 1066
  • Dahn H., Gold H. Uber die saurekatalysierte Hydrolyse von Diazoketonen, I. Kinetik and Mechanismus. Helv. Chim. Acta. 1963; 46: 983
  • Engberts J. B. F. N., Zwanenburg B. Further study of the acid-catalysed hydrolysis of aryl and alkyl sulphonyldiazomethanes. Tetrahedron. 1968; 24: 1737
  • Dahn Gold H., Ballenegger H., Lenoir M., Diderich J.G., Malherbe R. Über die Entstehung von α-Keto-carbonium-lonen bei der saurekatalysierte Hydrolyse von Diazoketonen. Helv. Chim. Acta. 1968; 51: 2065
  • Ballenegger M., Dahn H. L'hydrolyse acide des diazocetones alcoylees: formation d'ions α-acylcarbonium secondaires. Helv. Chim. Acta 1969; 52: 2417
  • Hassid A. I., Kreevoy M. M., Liang T. M. The reaction complex in proton transfer. Faraday Symposia of the Chemical Society 1975; 10: 69, and references therein.
  • Albery W. J., Curran J. S., Campbell-Crawford A. N. Kinetic isotope effects and aliphatic diazo-compounds. II. Experiments at high buffer concentrations. J. Chem. Soc. Perkin Tran 1972; 2: 2185
  • Albery W.A. N., Campbell-Crawford J., Hobbs K. S. Kinetic isotope effects and aliphatic diazo-compounds. I. General acid catalysis and the Brønsted coefficients. J. Chem. Soc. Perkin Trans. 1972; 2: 2180
  • Albery Campbell-Crawford W. J.A. N., Stevenson R. W. Kinetic isotope effects and aliphatic diazo-compounds. IV. Primary isotope effects in general acid catalysis. J. Chem. Soc. Perkin Trans. 1972; 2: 2198
  • Huisgen R., Krause L. Die (Configuration der Diazo-ester und der Mechanismus ihrer Bildung durch Acylwanderung. Justus Liebigs Ann. Chem. 1952; 574: 157
  • Huisgen R., Reinertshofer J. Nitrosocaprolactam und seiner Reaktionen. Justus Liebigs Ann. Chem. 1952; 575: 174
  • White E. H. The chemistry of the N-alkyl N-nitrosoamides. III. Mechanism of the nitrogen elimination reaction. J. Am. Chem. Soc. 1955; 77: 6014
  • Huisgen R., Horeld G. Die Phenylierung aromatischer Verbindungen mit Nitroso-acyl-aniliden. Justus Liebigs Ann. Chem. 1952; 562: 137
  • Zimmerman H. E. The Möbius-Huckel concept in organic chemistry. Application to organic molecules and reactions. Acc. Chem. Res. 1971; 4: 272
  • Berry C. N., Challis B. C. Denitrosation and deamination of N-n-butyl N-nitrosoacetamide in aqueous acid. J. Chem. Soc. Perkin Trans. 1974; 2: 1638
  • Challis B. C., Jones S. P. General acid catalysed decomposition of N-nitroso-2-pyrrolidone, an example of amide hydrolysis via SN2 displacement on the N-conjugate acid. J. Chem. Soc. Perkin Trans. 1975; 2: 153
  • Snyder J. K., Stock L. M. Reactions of alkyl nitrosoureas in aqueous solution. J. Org. Chem. 1980; 45: 1990
  • Bollinger Hayes F. W.F. N., Siegel S. The base-catalyzed decomposition of N-nitroso-N-cyclohexylurethan. J. Am. Chem. Soc. 1950; 72: 5592
  • Challis B. C., Jones S. P. Decomposition of N-nitroso-2-pyrrolidone under basic conditions, an unusual example of nucleophilic catalysed hydrolysis of an amide derivative. J. Chem. Soc. Perkin Trans. 1979; 2: 703
  • Kirmse W., Wachtershauser G. Mechanisms der alkalischen Nitrosoharnstoff-Spaltung. Justus Liebigs Ann. Chem. 1967; 707: 44
  • Werner E. A. The interaction of nitrous acid and mono-substituted ureas. The preparation of diazomethane, diazoethane, diazo-n-butane and diazoisopentane from the respective nitroso ureas. J. Chem. Soc. 1919; 1093
  • White E. H., Scherrer H. The triazene method for the deamination of aliphatic amines. Tetrahedron Letters. 1961; 758
  • Vaughan K., Stevens M. F. G. Monoalkyltriazenes. Chem. Soc. Rev. 1978; 7: 377
  • Isaacs N. S., Rannala E. Kinetics and mechanism of the decomposition of 3-alkyl-1-aryl triazenes by carboxylic acids. J. Chem. Soc. Perkin Trans. 1974; 2: 899
  • Iwamura Albert H.K., Riecker A. On the tautomerism of 3-alkyl-1-aryl triazenes. Tetrahedron Letters. 1976; 2627
  • Tronchet J. ML J., Rachidzadeh F. Nonveaux types de sucres triazotés: triazènes et phenylimino-2-oxadiazoles-1, 3, 4. Helv. Chim. Acta. 1976; 59: 2855
  • Vaughan K. The effect of electron-withdrawing substitutents on the tautomerism between 1-aryl-3-methyl triazenes and 3-aryl-1-methyl triazenes. J. Chem. Soc. Perkin Trans. 1977; 2: 17
  • Lunazzi L., Panciera G., Guerra M. The mechanism of tautomerisation in triazenes. J. Chem. Soc. Perkin Trans. 1980; 2: 52
  • Jones Kelly C. C., Marshall M. A., Sinnott P. J., Smith M. L.P. J., Tzotzos G. T., unpublished data.
  • Jencks D. A., Jencks W. P. On the characterization of transition states by structure-reactivity coefficients. J. Am. Chem. Soc. 1977; 99: 7948
  • Tzotzos G. T. Ph.D. thesis. University of Bristol. 1980
  • White E. H., Grisley D. W., Jr. The preparation and decomposition of certain N-nitroamides and N-nitrocarbamates. J. Am. Chem. Soc. 1961; 83: 1191
  • White E. H., Field K. W. Deamination of aliphatic amines in ethanol. J. Am. Chem. Soc. 1975; 97: 2148
  • Beak Trancik P.R. J., Simpson D. A. The reactions of chloroformates with silver salts. J. Am. Chem. Soc. 1969; 91: 5073
  • Skell P. S., Starer I. Mechanism of conversions of n-propyl carbonium ion to cyclopropane. 1, 3-Hydrogen shift. J. Am. Chem. Soc. 1962; 84: 3962
  • Jensen F. R., Ouellette R. J. The effect of structure and solvent on the rates of demercurization. Rehybridization of leaving group as an important factor in solvolysis reactions. J. Am. Chem. Soc. 1963; 85: 363
  • Bartz Elder Q. R., Frohardt C. C., Fusari R. P., Haskell S. A., Johannessen T. H.D. W., Ryder A. Isolation and characterization of azaserine. Nature 1954; 173: 72
  • Dion Fusari H. W., Jakubowski S. A., Zora Z. L.J. G., Bartz Q. R. 6-Diazo-5-oxo-L-norleucine, a new tumor-inhibitory substance. II. Isolation and characterization. J. Am. Chem. Soc. 1956; 78: 3075
  • Kaplan F., Meloy G. K. The structure of diazoketones. A study of hindered internal rotation. J. Am. Chem. Soc. 1966; 88: 950
  • Jackson R. C., Handschuhmacher R. E. Escherichia coli L-asparaginase. Catalytic activity and sub-unit nature. Biochemistry. 1970; 9: 3585
  • Leary Larsen R., Watanabe D.H., Shaw E. Diazomethyl ketone substrate derivatives as active-site-directed irreversible inhibitors of thiol proteases. Papain. Biochemistry. 1977; 16: 5857
  • Leary R., Shaw E. Inactivation of Cathepsin, B. by diazomethyl ketones. Biochem. Biophys. Res. Commun. 1977; 79: 926
  • Brocklehurst K., Malthouse J. P. G. Mechanism of the reaction of papain with substrate-derived diazomethyl ketones. Biochem. J. 1978; 175: 761
  • Watanabe Green H.G. D. J., Shaw E. A comparison of the behaviour of chymotrypsin and cathepsin B towards peptidyl diazoketones. Biochem. Biophys. Res. Commun. 1979; 89: 1354
  • Green G. D. J., Shaw E. Peptidyl diazomethyl ketones are specific inactivators of thiol proteases. J. Biol. Chem. 1981; 256: 1923
  • Lewis C. A., Wolfinden R. Thiohemiacetal formation by inhibitory aldehydes at the active site of papain. Biochemistry. 1977; 16: 4890
  • Hartman S. C., McGrath T. F. Glutaminase A of Escherichia coli. Reactions with the substrate analog, 6-diazo-5-oxo-norleucine. J. Biol. Chem. 1973; 248: 8506
  • Hartman S. C. The interaction of 6-diazo-5-oxo-L-norleucine with phosphoribosyl pyrophosphate amidotransferase. J. Biol. Chem. 1963; 238: 3036
  • French Dawid T. C., Day I. B.R. A., Buchanan J. M. Azaserine-reactive sulfhydryl group of 2-formamido-N-ribosylacetamide 5′ phosphate: l-glutamine amido-ligase (adenosine diphosphate). I. Purification and properties of the enzyme from Salmonella typhimurium and the synthesis of l-azaserine-14C. J. Biol. Chem. 1963; 238: 2171
  • Handschuhmacher Bates R. E., Chang C. J., Andrews P. K.A. T., Fischer G. A. 5-Diazo-4-oxo-l-norvaline: reactive asparagine analog with biological specificity. Science 1968; 161: 62
  • Hartman S. C. Glutaminase of Escherichia coli. I. Purification and catalytic properties. J. Biol. Chem. 1968; 243: 853
  • Hartman S. C., Stochaj E. M. Glutaminase A of Escherichia coli subunit structure and cooperative behavior. J. Biol. Chem. 1973; 248: 8511
  • Holcenberg Ericsson J. S.L., Roberts J. Amino acid sequence of the diazooxonorleucine binding site of Acinetobacter and Pseudomonas 7A glutaminase-asparaginase enzymes. Biochemistry. 1978; 17: 411
  • Roberts J. Purification and properties of a highly potent anti-tumor glutaminase asparaginase from. Pseudomonas 7A, J. Biol. Chem. 1976; 251: 2119
  • Baldwin J. E. Rules for ring closure. J. Chem. Soc. Chem. Commun. 1976; 734
  • Lauinger C., Ressler C. β-cyanoalanine as a substrate for l-asparaginase. Stoichiometry, kinetics and inhibition. Biochem. Biophys. Acta. 1970; 198: 316
  • Peterson Richards R. G.F. F., Handschumacher R. E. Structure of a peptide from the active site region of Escherichia coli l-asparaginase. J. Biol. Chem. 1977; 252: 2072
  • Inoue Horiuchi M.S., Morino Y. Affinity labeling of rat-kidney γ-glutamyl transpeptidase. Eur. J. Biochem. 1977; 73: 335
  • Horiuchi Inoue S.M., Morino Y. γ-Glutanyl transpeptidase: sidedness of its active site on renal brush border membranes. Eur. J. Biochem. 1978; 87: 429
  • Tate S. S., Meister A. Affinity labeling of γ-glutamyl transpeptidase and location of the γ-glutamyl binding site on the light subunit. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 931
  • Tate S. S., Ross M. E. Human kidney γ-glutamyl transpeptidase. Catalytic properties, subunit structure, and localization of the γ-glutamyl binding site on the light subunit. J. Biol. Chem. 1977; 252: 6042
  • Buchanan J. M., The amidotransferases
  • Meister A. Adv. Enzymol 1973; 39: 91
  • Winterburn P. J., Phelps C. F. The binding of substrates and modifiers to flucosamine synthetase. Biochem. J. 1971; 121: 721
  • Ghosh Blumenthal S., Davidson H. J.E., Roseman S. Enzymatic synthesis of glucosamine-6-phosphate. J. Biol. Chem. 1960; 235: 1265
  • Bates C. J., Handschuhmacher R. E. Inactivation and resynthesis of glucosamine-6-phosphate synthetase after treatment with glutamine analogs. Adv. Enzyme Regul. 1969; 7: 183
  • Hartman S. C. Phosphoribosylaminotransferase. Purification and general catalytic properties. J. Biol. Chem. 1963; 238: 3024
  • Levitzki Stallcup A.W. B., Koshland D. E., Jr. Half-of-the-sites reactivity and conformational states of cytidine triphosphate synthetase. Biochemistry. 1971; 10: 3371
  • Long Levitzki C. W.A., Koshland D. E., Jr. The subunit structure and subunit interactions of cytidine triphosphate synthetase. J. Biol. Chem. 1970; 245: 80
  • Levitzki A., Koshland D. E. Cytidine triphosphate synthetase. Covalent intermediates and mechanism of action. Biochemistry. 1971; 10: 3365
  • Levenberg Melnick B.I., Buchanan J. M. Biosynthesis of the purines, XV. The effect of aza-l-serine and 6-diazo-5-oxo-l-norleucine on inosinic acid biosynthesis. de novo, J. Biol. Chem. 1957; 225: 163
  • Dawid French I. B.T. C., Buchanan J. M. Azaserine-reactive sulfhydryl group of 2-formamido-N-ribosylacetamide 5′ phosphate-l-glutamine amido ligase (adenosine diphosphate). II. Degradation of 14C-azaserine labeled enzyme. J. Biol. Chem. 1963; 238: 2178
  • French Dawid T. C.I. B., Buchanan J. M. Azaserine-reactive sulfhydryl group of 2-formamido-N-ribosylacetamide 5′ phosphate; l-glutamine amido-ligase (adinosine diphosphate). III. Comparison of degradation products with synthetic compounds. J. Biol. Chem. 1963; 238: 2186
  • Zalkin H., Hwang L. H. Anthranilate synthetase from Serratia marcescens. On the properties and relationship to the enzyme from. Salmonella typhimurium. J. Biol. Chem. 1971; 246: 6899
  • Nagano Zalkin H.H., Henderson E. J. The anthranilate synthetase anthranilate-5-phosphoribosyl pyrophosphate phosphoribosyl transferase aggregate. On the reaction mechanism of anthranilate synthetase from. Salmonella typhimurium, J. Biol. Chem. 1970; 245: 3810
  • Goto Zalkin Y., Kein H.P. S., Henrikson R. L. Properties of anthranilate synthetase component II from. Pseudomonas putida, J. Biol. Chem. 1976; 251: 941
  • Queener Queener S. W., Meeks S. F.J. R., Gunsalus I. C. Anthranilate synthetase from Pseudomonas putida. Purification and properties of a two component enzyme. J. Biol. Chem. 1973; 248: 151
  • Naider F., Bohak Z. Regeneration of methonyl residues from their sulfonium salts in peptides and proteins. Biochemistry. 1972; 11: 3208
  • Yu C. K., Dietrich L. S. Purification and properties of yeast nicotinamide dinucleotide synthetase. J. Biol. Chem. 1972; 247: 4794
  • Preiss J., Handler P. Biosynthesis of diphosphopyridine nucleotide. III. Enzymatic aspects. J. Biol. Chem. 1958; 233: 493
  • Patel Moyed N.H. S., Kane J. F. Xanthosine 5′ phosphate amido transferase from. E. coli, J. Biol. Chem. 1975; 250: 2609
  • Kozlov Ginodman L. V.L. M., Orekhovitch V. N. Inactivation of pepsin with aliphatic diazocarbonyl compounds. Biochemistry (USSR) 1967; 32: 839
  • Bayliss Knowles R. S.J. R., Wybrandt G. B. An aspartic acid residue at the active site of pepsin. The isolation and sequence of the hexapeptide. Biochem. J. 1969; 113: 377
  • Rajagopalan Stein T. C.W. H., Moore S. The inactivation of pepsin by diazoacetyl norleucine methyl ester. J. Biol. Chem. 1966; 241: 4295
  • Lundblad R. L., Stein W. H. On the reaction of diazoacetyl compounds with pepsin. DL-diazoacetyl norleucine methyl ester. J. Biol. Chem. 1969; 244: 154
  • Kirmse W. Carbene Chemistry2nd. John Wiley & Sons, New York 1971; 85
  • Schrock R.e. g. R. Alkylidene complexes of niobium and tantalum. Acc. Chem. Res. 1979; 12: 98
  • Meitner P. A. Bovine pepsinogens and pepsins. The sequence round a reactive aspartyl residue. Biochem. J. 1971; 124: 673
  • Sodek J., Hofmann T. Amino-acid sequence around the active site aspartic acid in penicillopepsin. Can. J. Biochem. 1970; 48: 1014
  • Mizobe Takahashi F.K., Ando T. The structure and function of acid proteases. I. Specific inactivation of an acid protease from Rhizopus chinensis by diazoacetyl DL norleucinemethyl ester. J. Biochem. (Tokyo) 1973; 73: 61
  • Chang W.-J., Takahashi K. The structure and function of acid proteases. II. Inactivation of bovine rennin by acid-protease-specific inhibitors. J. Biochem. (Tokyo) 1973; 74: 231
  • Chang W.-J., Takahashi I. The structure and function of acid proteases. III. Isolation and characterization of the active-site peptides from bovine rennin. J. Biochem. (Tokyo) 1974; 76: 467
  • Takahashi Chang K.W.-J., Arima K. The structure and function of acid proteases. IV. Inactivation of the acid protease from Mucor pusillus by acid-protease specific inhibitors. J. Biochem. (Tokyo) 1976; 80: 61
  • Takahashi K., Chang W.-J. The structure and function of acid proteases. V. Comparative studies on the specific inhibition of acid proteases by diazoacetyl DL norleucine methyl ester, 1, 2-epoxy 3-(p-nitrophenoxy) propane and pepstatin. J. Biochem. (Tokyo) 1976; 80: 497
  • Chang W., Horiuchi J., Takahashi S., Yamasaki K.M., Yamada Y. The structure and function of acid proteases. VI. Effects of acid protease specific inhibitors on the acid proteases of Aspergillus niger var. macrosporus, J. Biochem. (Tokyo) 1976; 80: 975
  • Moriyama A., Takahashi K. The structure and function of acid proteases. VII. Purification and characterization of cathepsins D from Japanese monkey lung. J. Biochem. (Tokyo) 1978; 83: 441
  • Nakamura S., Takahashi K. The structure and function of acid proteases. IX. Isolation and amino acid sequences of the peptides containing the active site aspartyl residues reactive with diazo acetyl-dl-norleucine methyl ester and 1, 2-epoxy-3-(p-nitrophenoxy) propane in Rhizopus chinensis acid protease. J. Biochem. (Tokyo) 1978; 84: 1593
  • Kageyama T., Takahashi K. Pepsinogen C and pepsin C from the gastric mucosa of the Japanese monkey. J. Biochem. (Tokyo) 1976; 80: 983
  • Kanazavva H. Acid proteases. I. Inactivation of Cladosporium acid protease by diazoacetyl-DL-norleucine methyl ester as an active-site-directed irreversible inhibitor. J. Biochem. (Tokyo). 1977; 81: 1739
  • Llewellin J. M., Green M. L. The effect of acid proteinase inhibitors on chicken pepsin. Biochem. J. 1975; 151: 319
  • Brockhaus M., Lehmann J. 2,6-Anhydro-1-diazo-1-deoxy-d-glycero-l-manno-heptitol. A specific blocking agent for βgalactosidase. FEBS Letters. 1976; 62: 154
  • Brockhaus M., Lehmann J. Ester and sulfonium salt formation in the active-site labeling of β-dgalactosidase from Escherichia coli by 2,6-anhydro-1-deoxy-1-diazo-d-glycero-l-manno-heptitol. Carbohydrate Res. 1978; 63: 301
  • Sinnott M. L. β-Galactosidase-catalysed hydrolysis of β-d-galactopyranosyl azide. Biochem. J. 1971; 125: 717
  • White Roswell E. H., Politzer D. F.I. R., Branchini B. R. Active-site-directed inhibition of enzymes using deaminatively produced carbonium ions. Application to chymotrypsin. J. Am. Chem. Soc. 1975; 97: 2290
  • White Jelinski E. H., Perks L. W., Burrows H. M.E. P., Roswell D. F. Preferential inhibition of α-chymotrypsin by the D form of an amino acid derivative, N′-isobutyryl-N-benzyl-N-nitroso-phenylalaninamide. J. Am. Chem. Soc. 1977; 99: 3171
  • White E., Perks H.H. M., Roswell D. F. Labeling of amide linkages in active site mapping carbonium ion and extended photoaffinity labeling approaches. J. Am. Chem. Soc. 1978; 100: 7421
  • White E. H. 1980, personal communication
  • Sinnott M. L., Smith P. J. Active-site-directed irreversible inhibition of E. coli β-galactosidase by the “hot” carbonium ion precursor, β-d-galactopyranosylmethyl p-nitrophenyl triazene. J. Chem. Soc. Chem. Commun. 1976; 223
  • Sinnott M. L., Smith P. J. Affinity labelling with adeaminatively-generated carbonium ion. Kinetics and stoicheiometry of the alkylation of methionine 500 of the lacZ β-galactosidase of Escherichia coli by β-d-galactopyranosylmethyl p-nitrophenyl triazene. Biochem. J. 1978; 175: 525
  • Fowler A., Zabin V., Sinnott I.M. L., Smith P. J. Methionine 500, the site of covalent attachment of an active-site-directed reagent of β-galactosidase. J. Biol. Chem. 1978; 253: 5283
  • Marshall Sinnott P. J., Smith M. L.P. J., Widdows D. Active-site-directed irreversible inhibition of glycosidases by the corresponding glycosylmethyl p-nitrophenyl triazenes. J. Chem. Soc. Perkin Trans. 1981; 1: 366
  • Koch H. J., Stuart R. S. A novel method for specific labeling of carbohydrates with deuterium by catalytic exchange. Carbohydr. Res. 1977; 59: C1
  • Sinnott M. L., Smith P. J. 1980, Unpublished data
  • VanDiggelen Schramm O. P., Sinnott A. W., Smith M. L., Robinson P. J.D., Galjaard H. Turnover of β-galactosidase in fibroblasts from patients with genetically different types of β-galactosidase deficiency. Biochem. J. 1981; 200: 143
  • Naider Bohak F.Z., Yariv J. Reversible alkylation of a methionyl residue near the active site of β-galactosidase. Biochemistry 1972; 11: 3202
  • Loeffler Sinnott R. S. T., Sykes M. L.B. D., Withers S. G. Interaction of the lacZ β-galactosidase of Escherichia coli with some β-d-galactopyranoside competitive inhibitors. Biochem. J. 1979; 177: 145
  • Sinnott M. L., Souchard I. J. L. The mechanism of action of β-galactosidase. Effect of aglycone nature and α-deuterium substitution on the hydrolysis of aryl galactosides. Biochem. J. 1973; 133: 89
  • Campbell Lengyel J. H.J. A., Langridge J. Evolution of a second gene for β-galactosidase. E. coli, Proc. Natl. Acad. Sci. USA 1973; 70: 1841
  • Hall B. G. Experimental evolution of a new enzymatic function. Kinetic analysis of the ancestral (ebg°) and evolved (ebg+) enzymes. J. Mol. Biol. 1976; 107: 71
  • Hall B. G. Experimental evolution of a new enzymatic function. II. Evolution of multiple functions for ebg enzyme in. E. coli. Genetics 1978; 89: 453
  • Hall B. G., Zuzel T. Evolution of a new enzymatic function by recombination within a gene. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 3529
  • Burton J. Mechanistic studies on the ebg° β-galactosidase of E. coli. Ph.D. thesis. Bristol. 1980
  • Hartley F. K., Jevons F. R. The attachment of carbohydrate in ovomucoid. Biochem. J. 1962; 84: 134
  • VanDiggelen Galjaard O. P., Sinnott H.M. L., Smith P. J. Specific inactivation of lysosomal glycosidases in living fibroblasts by the corresponding glycosylmethyl p-nitrophenyl triazenes. Biochem. J. 1980; 188: 337
  • Rossi Vuilleumier B., Gache P., Balerna C.M., Lazdunski M. Affinity labeling of digitalis receptor with p-nitrophenyltriazene ouabain, a highly specific alkylating agent. J. Biol. Chem. 1980; 255: 9936
  • Viratelle Yon O. M.J. M., Yariv J. The inactivation of β-galactosidase by N-bromoacetyl β-d-glucosylamine. FEBS Lett. 1977; 79: 109
  • Jencks W. P. Binding energy, specificity, and catalysis—the Circe effect. Adv. Enzymol. 1976; 43: 219
  • Novogrodsky Tate A.S. S., Meister A. Uptake and utilization of l-glutamine by human lymphoid cells; relationship to γ-glutamyl trans-peptidase activity. Biochem. Biophys. Res. Commun. 1977; 78: 222
  • Inoue Horiuchi M.S., Morino Y. Affinity labeling of γ-glutamyl transpeptidase of tumor cell AH 130 and transport activity of glutathione and amino acids. Biochem. Biophys. Res. Commun. 1978; 79: 1104
  • Inoue M., Horiuchi S., Morino Y. γ-Glutamyl transpeptidase in rat ascites tumor cell LY-5. Lack of functional correlation of its catalytic activity with the amino acid transport. Eur. J. Biochem. 1977; 78: 609
  • Hsu Y., Marshall L., McNamara C. M.P. D., Segal S. Effect of azaserine on glutamine uptake by rat renal brush-border membranes. Biochem. J. 1980; 192: 119
  • Willis R. C., Woolfolk C. A. Asparagine utilisation in. E. Coli, J. Bacteriol. 1974; 118: 231
  • Willis R. C., Woolfolk C. A. l-Asparagine uptake in. E. coli, J. Bacteriol. 1975; 123: 937
  • Shaw E., Dean R. T. The inhibition of macrophage protein turnover by a selective inhibitor of thiol proteinases. Biochem. J. 1980; 186: 385
  • VanDiggelen Veeze O. P., Galjaard H. J., Sinnott H.M. L., Smith P. J. 1980, unpublished data

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.