1,874
Views
358
CrossRef citations to date
0
Altmetric
Research Article

Replication Protein A (RPA): The Eukaryotic SSB

, &
Pages 141-180 | Published online: 29 Sep 2008

REFERENCES

  • Wold, M. S. 1997. Replication protein A: a heterotrimeric, single-stranded DNA- binding protein required for eukaryotic DNA metabolism. Ann. Rev. Biochem. 66: 61-92.
  • Wobbe, C. R., L. Weissbach, J. A. Borowiec, F. B. Dean, Y. Murakami, P. Bullock, and J. Hurwitz. 1987. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc. Natl. Acad. Sci. USA 84: 1834-1838.
  • Fairman, M. P. and B. Stillman. 1988. Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J. 7: 1211-1218.
  • Wold, M. S. and T. J. Kelly. 1988. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc. Natl. Acad. Sci. USA 85: 2523-2527.
  • Heyer, W.-D., M. R. S. Rao, L. F. Erdile, T. J. Kelly, and R. D. Kolodner. 1990. An essential Saccharomyces cerevisiae single-stranded DNA binding protein is homologous to the large subunit of human RP-A. EMBO J. 9: 2321-2329.
  • Brill, S. J. and B. Stillman. 1989. Yeast replication factor-A functions in the unwinding of the SV40 origin of replication. Nature 342: 92-95.
  • Parker, A. E., R. K. Clyne, A. M. Carr, and T. J. Kelly. 1997. The Schizo-sac- charomyces pombe rad11+ gene encodes the large subunit of replication protein A. Mol. Cell. Biol. 17: 2381-90.
  • Adachi, Y. and U. K. Laemmli. 1992. Identification of nuclear pre-replication centers poised for DNA synthesis in Xe- nopus egg extracts: immunolocalization study of replication protein A. J. Cell. Biol. 119: 1-15.
  • Mitsis, P. G., S. C. Kowalczykowski, and I. R. Lehman. 1993. A single- stranded DNA binding protein from Droso- phila melanogaster: characterization of the heterotrimeric protein and its interaction with single-stranded DNA. Biochemistry 32: 5257-5266.
  • Marton, R. F., P. Thommes, and S. Cotterill. 1994. Purification and characterisation of dRP-A: a single-stranded DNA binding protein from Drosophila melanogaster. FEBS Lett. 342: 139-44.
  • van der Knaap, E., S. Jagoueix, and H. Kende. 1997. Expression of an ortholog of replication protein A1 (RPA1) is induced by gibberellin in deepwater rice. Proc. Natl. Acad. Sci. USA 94: 997983.
  • Seroussi, E. and S. Lavi. 1993. Replication protein A is the major single-stranded DNA binding protein detected in mammalian cell extracts by gel retardation assays and UV cross-linking of long and short single-stranded DNA molecules. J. Biol. Chem. 268: 7147-54.
  • Henricksen, L. A., C. B. Umbricht, and M. S. Wold. 1994. Recombinant replication protein A: expression, complex formation, and functional characterization. J. Biol. Chem. 269: 11121-11132.
  • Stigger, E., F. B. Dean, J. Hurwitz, and S.-H. Lee. 1994. Reconstitution of functional human single-stranded DNA-bind- ing protein from individual subunits expressed by recombinant baculoviruses. Proc. Natl. Acad. Sci. USA 91: 579-83.
  • Keshav, K. F., C. Chen, and A. Dutta. 1995. Rpa4, a homolog of the 34- kilodalton subunit of the replication protein A complex. Mol. Cell. Biol. 15: 31193128.
  • Nasheuer, H. P., D. von Winkler, C. Schneider, I. Dornreiter, I. Gilbert, and E. Fanning. 1992. Purification and functional characterization of bovine RP-A in an in vitro SV40 DNA replication system. Chromosoma 102: S52-9.
  • Kamakaka, R. T., P. D. Kaufman, B. Stillman, P. G. Mitsis, and J. T. Kadonaga. 1994. Simian virus 40 origin- and T-antigen-dependent DNA replication with Drosophila factors in vitro. Mol. Cell. Biol. 14: 5114-22.
  • Melendy, T. and B. Stillman. 1993. An interaction between replication protein A and SV40 T antigen appears essential for primosome assembly during SV40 DNA replication. J. Biol. Chem. 268: 33893395.
  • Kenny, M. K., U. Schlegel, H. Furneaux, and J. Hurwitz. 1990. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J. Biol. Chem. 265: 7693-7700.
  • Wold, M. S., D. H. Weinberg, D. M. Virshup, J. J. Li, and T. J. Kelly. 1989. Identification of cellular proteins required for simian virus 40 DNA replication. J. Biol. Chem. 264: 2801-2809.
  • Gomes, X. V. and M. S. Wold. 1995. Structural analysis of human replication protein A. Mapping functional domains of the 70-kDa subunit. J. Biol. Chem. 270: 4534-4543.
  • Gomes, X. V. and M. S. Wold. 1996. Functional domains of the 70-kilodalton subunit of human replication protein A. Biochemistry 35: 10558-10568.
  • Kim, D.-K., E. Stigger, and S.-H. Lee. 1996. Role of the 70-kDa subunit of human replication protein A. J. Biol. Chem. 271: 15124-15129.
  • Lin, Y.-L., C. Chen, K. F. Keshav, E. Winchester, and A. Dutta. 1996. Dissection of functional domains of the human DNA replication protein complex replication protein A. J. Biol. Chem. 271: 1719017198.
  • Pfuetzner, R. A., A. Bochkarev, L. Frappier, and A. M. Edwards. 1997. Replication protein A. Characterization and crystallization of the DNA binding domain. J. Biol. Chem. 272: 430-434.
  • Philipova, D., J. R. Mullen, H. S. Maniar, J. Lu, C. Gu, and S. J. Brill. 1996. A hierarchy of SSB protomers in replication protein A. Genes Dev. 10: 2222-2233.
  • Bochkarev, A., R. A. Pfuetzner, A. M. Edwards, and L. Frappier. 1997. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385: 176-181.
  • Raghunathan, S., C. S. Ricard, T. M. Lohman, and G. Waksman. 1997. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single- stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proc. Natl. Acad. Sci. USA 94: 6652-7.
  • Walther, A. P., X. V. Gomes, Y. Lao, C. G. Lee, and M. S. Wold. 1999. Replication protein A interactions with DNA: 1. Functions of the DNA-binding and zinc- finger domains of the 70-kDa subunit. Biochemistry 38: 3963-3973.
  • Blackwell, L. J. and J. A. Borowiec. 1994. Human replication protein A binds single-stranded DNA in two distinct complexes. Mol. Cell. Biol. 14: 3993-4001.
  • Kim, C., R. O. Snyder, and M. S. Wold. 1992. Binding properties of replication protein A from human and yeast cells. Mol. Cell. Biol. 12: 3050-3059.
  • Lavrik, O. I., H.-P. Nasheuer, K. Weisshart, M. S. Wold, R. Prasad, W. A. Beard, S. H. Wilson, and A. Favre. 1998. Subunits of human replication protein A are crosslinked by photoreactive primers synthesized by DNA polymerases. Nucl. Acids Res. 26: 602-607.
  • Mass, G., T. Nethanel, and G. Kaufmann. 1998. The middle subunit of replication protein A contacts growing RNA-DNA primers in replicating simian virus 40 chromosomes. Mol. Cell. Biol. 18: 6399-407.
  • Nethanel, T., S. Reisfeld, G. Dinter- Gottlieb, and G. Kaufmann. 1988. An Okazaki piece of simian virus 40 may be synthesized by ligation of shorter precursor chains. J. Virol. 62: 2867-73.
  • Nethanel, T. and G. Kaufmann. 1990. Two DNA polymerases may be required for synthesis of the lagging DNA strand of simian virus 40. J. Virol. 64: 5912-5918.
  • Waga, S. and B. Stillman. 1994. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369: 207-212.
  • Bochkareva, E., L. Frappier, A. M. Edwards, and A. Bochkarev. 1998. The RPA32 subunit of human replication protein A contains a single-stranded DNA- binding domain. J. Biol. Chem. 273: 3932-3936.
  • Brill, S. J. and S. Bastin-Shanower. 1998. Identification and characterization of the fourth single-stranded-DNA binding domain of replication protein A. Mol. Cell. Biol. 18: 7225-34.
  • Sibenaller, Z. A., B. R. Sorensen, and M. S. Wold. 1998. The 32- and 14- kilodalton subunits of replication protein A are responsible for species-specific interactions with single-stranded DNA. Biochemistry 37: 12496-506.
  • Erdile, L. F., W.-D. Heyer, R. Kolodner, and T. J. Kelly. 1991. Characterization of a cDNA encoding the 70-kDa single- stranded DNA-binding subunit of human replication protein A and the role of the protein in DNA replication. J. Biol. Chem. 266: 12090-12098.
  • Brown, G. W., J. C. Hines, P. Fisher, and D. S. Ray. 1994. Isolation of the genes encoding the 51-kilodalton and 28- kilodalton subunits of Crithidia fasciculata replication protein A. Mol. Biochem. Parasitol. 63: 135-42.
  • Ishiai, M., J. P. Sanchez, A. A. Amin, Y. Murakami, and J. Hurwitz. 1996. Purification, gene cloning, and reconstitution of the heterotrimeric single-stranded DNA- binding protein from Schizosaccharomyces pombe. J. Biol. Chem. 271: 20868-78.
  • Dong, J., J.-S. Park, and S.-H. Lee. 1999. In vitro analysis of the zinc-finger motif in human replication protein A. Biochem. J. 337: 311-317.
  • Lao, Y., C. G. Lee, and M. S. Wold. 1999. Replication protein A interactions with DNA: 2. Characterization of double- stranded DNA binding/helix-destabiliza- tion activities and the role of the zinc- finger domain in DNA interactions. Biochemistry 38: 3974-3984.
  • Stigger, E., R. Drissi, and S.-H. Lee. 1998. Functional analysis of human replication protein A in nucleotide excision repair. J. Biol. Chem. 273: 9337-43.
  • Lin, Y. L., M. K. Shivji, C. Chen, R. Kolodner, R. D. Wood, and A. Dutta. 1998. The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J. Biol. Chem. 273: 1453-61.
  • Iftode, C. and J. A. Borowiec. 1998. Unwinding of origin-specific structures by human replication protein A occurs in a two-step process. Nucl. Acids Res. 26: 5636-43.
  • Lewis, S. A., G. Tian, I. E. Vainberg, and N. J. Cowan. 1996. Chaperonin-me- diated folding of actin and tubulin. J. Cell Biol. 132: 1-4.
  • Qiu, H., T. Kodadek, and D. P. Giedroc. 1994. Zinc-free and reduced T4 gene 32 protein binds single-stranded DNA weakly and fails to stimulate UvsX-catalyzed homologous pairing. J. Biol. Chem. 269: 2773-81.
  • Gomes, X. V., L. A. Henricksen, and M. S. Wold. 1996. Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a confor- mational change upon interaction with single-stranded DNA. Biochemistry 35: 5586-5595.
  • Kenny, M. K., S.-H. Lee, and J. Hurwitz. 1989. Multiple functions of human single- stranded-DNA binding protein in simian virus 40 DNA replication: single-strand stabilization and stimulation of DNA polymerases a and 8. Proc. Natl. Acad. Sci. USA 86: 9757-9761.
  • Tsurimoto, T. and B. Stillman. 1989. Multiple replication factors augment DNA synthesis by the two eukaryotic DNA poly- merases, a and d. EMBO J. 8: 3883-3889.
  • Braun, K. A., Y. Lao, Z. He, C. J. Ingles, and M. S. Wold. 1997. Role of protein- protein interactions in the function of replication protein A (RPA): RPA modulates the activity of DNA polymerase a by multiple mechanisms. Biochemistry 36: 8443-54.
  • Dutta, A., J. M. Ruppert, J. C. Aster, and E. Winchester. 1993. Inhibition of DNA replication factor RPA by p53. Nature 365: 79-82.
  • He, Z., B. T. Brinton, J. Greenblatt, J. A. Hassell, and C. J. Ingles. 1993. The transactivator proteins VP 16 and GAL4 bind replication factor A. Cell 73: 12231232.
  • Li, R. and M. Botchan. 1993. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 73: 1207-1221.
  • Chen, C., K. Umezu, and R. D. Kolodner. 1998. Chromosomal rearrangements occur in S. cerevisiae rfal mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2: 9-22.
  • Firmenich, A. A., M. Elias-Arnanz, and P. Berg. 1995. A novel allele of Saccha- romyces cerevisiae RFAl that is deficient in recombination and repair and suppress- ible by RAD52. Mol. Cell. Biol. 15: 162031.
  • Smith, J. and R. Rothstein. 1995. A mutation in the gene encoding the Saccharo- myces cerevisiae single- stranded DNA- binding protein Rfa1 stimulates a RAD52- independent pathway for direct-repeat recombination. Mol. Cell. Biol. 15: 1632-41.
  • Smith, J. and R. Rothstein. 1999. An allele of RFAl suppresses RAD52-depen- dent double-strand break repair in Sac- charomyces cerevisiae. Genetics 151: 44758.
  • Din, S.-, S. J. Brill, M. P. Fairman, and B. Stillman. 1990. Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev. 4: 968-977.
  • Dutta, A. and B. Stillman. 1992. cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J. 11: 21892199.
  • Lee, S.-H. and D.-K. Kim. 1995. The role of the 34-kDa subunit of human replication protein A in simian virus 40 DNA replication in vitro. J. Biol. Chem. 270: 12801-12807.
  • He, Z., L. A. Henricksen, M. S. Wold, and J. C. Ingles. 1995. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374: 566-569.
  • Nagelhus, T. A., T. Haug, K. K. Singh, K. F. Keshav, F. Skorpen, M. Otterlei, S. Bharati, T. Lindmo, S. Benichou, R. Benarous, and H. E. Krokan. 1997. A sequence in the N-terminal region of human uracil-DNA glycosylase with homol- ogy to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J. Biol. Chem. 272: 6561-6.
  • Santocanale, C., H. Neecke, M. P. Longhese, G. Lucchini, and P. Plevani. 1995. Mutations in the gene encoding the 34 kDa subunit of yeast replication protein A cause defective S phase progression. J. Mol. Biol. 254: 595-607.
  • Maniar, H. S., R. Wilson, and S. J. Brill. 1997. Roles of replication protein-A sub- units 2 and 3 in DNA replication fork movement in Saccharomyces cerevisiae. Genetics 145: 891-902.
  • Kelly, T. J., P. Simancek, and G. S. Brush. 1998. Identification and characterization of a single-stranded DNA-binding protein from the archaeon Methanococcus jannaschii. Proc. Natl. Acad. Sci. USA 95: 14634-9.
  • Chedin, F., E. M. Seitz, and S. C. Kowalczykowski. 1998. Novel homologs of replication protein A in archaea: implications for the evolution of ssDNA-bind- ing proteins. Trends Biochem. Sci. 23: 273-7.
  • Umbricht, C. B., L. F. Erdile, E. W. Jabs, and T. J. Kelly. 1993. Cloning, overexpression, and genomic mapping of the 14-kDa subunit of human replication protein A. J. Biol. Chem. 268: 6131-6138.
  • Ozawa, K., F. B. Dean, M. Chen, S. H. Lee, A. Shiratori, Y. Murakami, T. Sakakura, J. Hurwitz, and T. Eki. 1993. Mapping of the 70 kDa, 34 kDa, and 11 kDa subunit genes of the human multimeric single-stranded DNA binding protein (hSSB/RPA) to chromosome bands 17p13, 1p35-p36.1, and 7p21-p22. Cell Struct. Funct. 18: 221-30.
  • Umbricht, C. B., C. A. Griffin, A. L. Hawkins, K. H. Grzeschik, P. O'Connell, R. Leach, E. D. Green, and T. J. Kelly. 1994. High-resolution genomic mapping of the three human replication protein A genes (RPA1, RPA2, and RPA3). Genomics 20: 249-57.
  • Brill, S. J. and B. Stillman. 1991. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev. 5: 1589-1600.
  • Alani, E., R. Thresher, J. Griffith, and R. D. Kolodner. 1992. Characterization of DNA-binding and strand-exchange stimulation properties of y-RPA, a yeast single-strand-DNA-binding protein. J. Mol. Biol. 227: 54-71.
  • Kim, C., B. F. Paulus, and M. S. Wold. 1994. Interactions of human replication protein A with oligonucleotides. Biochemistry 33: 14197-14206.
  • Kim, C. and M. S. Wold. 1995. Recom- binant human replication protein A binds to polynucleotides with low cooperativity. Biochemistry 34: 2058-64.
  • Carmichael, E. P., J. M. Roome, and A. F. Wahl. 1993. Binding of a sequence- specific single-stranded DNA-binding factor to the simian virus 40 core origin inverted repeat domain is cell cycle regulated. Mol. Cell. Biol. 13: 408-20.
  • Iftode, C. and J. A. Borowiec. 1999. Manuscript in preparation.
  • Atrazhev, A., S. Zhang, and F. Grosse. 1992. Single-stranded DNA binding protein from calf thymus. Purification, properties, and stimulation of the homologous DNA-polymerase-alpha-primase complex. Eur. J. Biochem. 210: 855-865.
  • Treuner, K., U. Ramsperger, and R. Knippers. 1996. Replication protein A induces the unwinding of long double- stranded DNA regions. J. Mol. Biol. 259: 104-112.
  • Hurwitz, J., F. B. Dean, A. D. Kwong, and S.-H. Lee. 1990. The in vitro replication of DNA containing the SV40 origin. J. Biol. Chem. 265: 18043-18046.
  • Luche, R. M., W. C. Smart, T. Marion, M. Tillman, R. A. Sumrada, and T. G. Cooper. 1993. Saccharomyces cerevisiae BUF protein binds to sequences participating in DNA replication in addition to those mediating transcriptional repression (URS1) and activation. Mol. Cell. Biol. 13: 5749-5761.
  • Singh, K. K. and L. Samson. 1995. Replication protein A binds to regulatory elements in yeast DNA repair and DNA metabolism genes. Proc. Natl. Acad. Sci. USA 92: 4907-4911.
  • Tang, C. M., A. E. Tomkinson, W. S. Lane, M. S. Wold, and E. Seto. 1996. Replication protein A is a component of a complex that binds the human metallo- thionein IIA gene transcription start site. J. Biol. Chem. 271: 21637-21644.
  • Clugston, C. K., K. McLaughlin, M. K. Kenny, and R. Brown. 1992. Binding of human single-stranded DNA binding protein to DNA damaged by the anticancer drug cis-diamminedichloroplatinum (II). Cancer Res. 52: 6375-9.
  • Patrick, S. M. and J. J. Turchi. 1998. Human replication protein A preferentially binds cisplatin-damaged duplex DNA in vitro. Biochemistry 37: 8808-15.
  • Burns, J. L., S. N. Guzder, P. Sung, S. Prakash, and L. Prakash. 1996. An affinity of human replication protein A for ultraviolet-damaged DNA. J. Biol. Chem. 271: 11607-10.
  • Patrick, S. M. and J. J. Turchi. 1999. Replication protein A (RPA) binding to duplex cisplatin-damaged DNA is mediated through the generation of single- stranded DNA. J. Biol. Chem. 274: 1497214978.
  • Blackwell, L. J., J. A. Borowiec, and I. A. Mastrangelo. 1996. Single-stranded- DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol. Cell. Biol. 16: 4798-4807.
  • Lavrik, O. I., D. M. Kolpashchikov, H. P. Nasheuer, K. Weisshart, and A. Favre. 1998. Alternative conformations of human replication protein A are detected by crosslinks with primers carrying a photoreactive group at the 3'-end. FEBS Lett. 441: 186-90.
  • Bujalowski, W., L. B. Overman, and T. M. Lohman. 1988. Binding mode transitions of Escherichia coli single strand binding protein-single-stranded DNA complexes. Cation, anion, pH, and binding density effects. J. Biol. Chem. 263: 46294640.
  • Sugiyama, T., E. M. Zaitseva, and S. C. Kowalczykowski. 1997. A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. J. Biol. Chem. 272: 7940-5.
  • de Laat, W. L., E. Appeldoorn, K. Sugasawa, E. Weterings, N. G. J. Jaspers, and J. H. J. Hoeijmakers. 1998. DNA-binding polarity of human replication protein A positions nucleases in nucle- otide excision repair. Genes Dev. 12: 2598-2609.
  • Mass, G., T. Nethanel, and G. Kaufmann. Unpublished observations.
  • Georgaki, A. and U. Hubscher. 1993. DNA unwinding by replication protein A is a property of the 70 kDa subunit and is facilitated by phosphorylation of the 32 kDa subunit. Nucl. Acids Res. 21: 36593665.
  • Georgaki, A., B. Strack, V. Podust, and U. Hubscher. 1992. DNA unwinding activity of replication protein A. FEBS Lett. 308: 240-244.
  • Matsumoto, K. and Y. Ishimi. 1994. Single-stranded-DNA-binding protein-dependent DNA unwinding of the yeast ARS1 region. Mol. Cell. Biol. 14: 46244632.
  • Alberts, B. M. and L. Frey. 1970. T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature 227: 1313-1318.
  • Monaghan, A., A. Webster, and R. T. Hay. 1994. Adenovirus DNA binding protein: helix destabilising properties. Nucl. Acids Res. 22: 742-748.
  • Zijderveld, D. C. and P. C. van der Vliet. 1994. Helix-destabilizing properties of the adenovirus DNA-binding protein. J. Virol. 68: 1158-1164.
  • Boehmer, P. E. and I. R. Lehman. 1993. Herpes simplex virus type 1 ICP8: helix- destabilizing properties. J. Virol. 67: 711715.
  • Lee, S. S. and I. R. Lehman. 1997. Unwinding of the box I element of a herpes simplex virus type 1 origin by a complex of the viral origin binding protein, single- strand DNA binding protein, and single- stranded DNA. Proc. Natl. Acad. Sci. USA 94: 2838-42.
  • Iftode, C. and J. A. Borowiec. 1997. Denaturation of the simian virus 40 origin of replication mediated by human replication protein A. Mol. Cell. Biol. 17: 38763883.
  • Dean, F. B., M. Dodson, H. Echols, and J. Hurwitz. 1987. ATP-dependent formation of a specialized nucleoprotein structure by simian virus 40 (SV40) large tumor antigen at the SV40 replication origin. Proc. Natl. Acad. Sci. USA 84: 89818985.
  • Deb, S. and P. Tegtmeyer. 1987. ATP enhances the binding of simian virus 40 large T antigen to the origin of replication. J. Virol. 61: 3649-3654.
  • Borowiec, J. A. and J. Hurwitz. 1988. ATP stimulates the binding of simian virus 40 (SV40) large tumor antigen to the SV40 origin of replication. Proc. Natl. Acad. Sci. USA 85: 64-68.
  • Stahl, H., P. Droge, and R. Knippers. 1986. DNA helicase activity of SV40 large tumor antigen. EMBO J. 5: 1939-1944.
  • Dean, F. B., P. Bullock, Y. Murakami, C. R. Wobbe, L. Weissbach, and J. Hurwitz. 1987. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc. Natl. Acad. Sci. USA 84: 16-20.
  • Wold, M. S., J. J. Li, and T. J. Kelly. 1987. Initiation of simian virus 40 DNA replication in vitro: Large-tumor-antigen- and origin-dependent unwinding of the template. Proc. Natl. Acad. Sci. USA 84: 3643-3647.
  • Wiekowski, M., M. W. Schwarz, and H. Stahl. 1988. Simian virus 40 large T antigen DNA helicase. J. Biol. Chem. 263: 436-442.
  • Goetz, G. S., F. B. Dean, J. Hurwitz, and S. W. Matson. 1988. The unwinding of duplex regions in DNA by the simian virus 40 large tumor antigen-associated DNA helicase activity. J. Biol. Chem. 263: 383-392.
  • Wessel, R., J. Schweizer, and H. Stahl. 1992. Simian virus 40 T-antigen DNA helicase is a hexamer which forms a binary complex during bidirectional unwinding from the viral origin of DNA replication. J. Virol. 66: 804-815.
  • SenGupta, D. J. and J. A. Borowiec. 1994. Strand and face: the topography of interactions between the SV40 origin of replication and T antigen during the initiation of replication. EMBO J. 13: 982992.
  • Smelkova, N. V. and J. A. Borowiec. 1997. Dimerization of simian virus 40 T-antigen hexamers activates T-antigen DNA helicase activity. J. Virol. 71: 87668773.
  • Smelkova, N. V. and J. A. Borowiec. 1998. Synthetic DNA replication bubbles bound and unwound with two-fold symmetry by an SV40 T antigen double hexamer. J. Virol. 72: 8676-8681.
  • Liu, V. F. and D. T. Weaver. 1993. The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells. Mol. Cell. Biol. 13: 72227231.
  • Carty, M. P., M. Zernik-Kobak, S. McGrath, and K. Dixon. 1994. UV light- induced DNA synthesis arrest in HeLa cells is associated with changes in phos- phorylation of human single-stranded DNA-binding protein. EMBO J. 13: 21142123.
  • Brush, G. S., D. M. Morrow, P. Hieter, and T. J. Kelly. 1996. The ATM homo- logue MEC1 is required for phosphorylation of replication protein A in yeast. Proc. Natl. Acad. Sci. USA 93: 15075-80.
  • Morgan, S. E. and M. B. Kastan. 1997. Dissociation of radiation-induced phospho- rylation of replication protein A from the S-phase checkpoint. Cancer Res. 57: 3386-9.
  • Shao, R. G., C. X. Cao, H. Zhang, K. W. Kohn, M. S. Wold, and Y. Pommier. 1999. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein ki- nase and dissociates RPA:DNA-PK complexes. EMBO J. 18: 1397-1406.
  • Treuner, K., A. Okuyama, R. Knippers, and F. O. Fackelmayer. 1999. Hype- rphosphorylation of replication protein A middle subunit (RPA32) in apoptosis. Nucl. Acids Res. 27: 1499-1504.
  • Fotedar, R. and J. M. Roberts. 1992. Cell cycle regulated phosphorylation of RPA-32 occurs within the replication initiation complex. EMBO J. 11: 2177-2187.
  • Pan, Z.-Q., A. A. Amin, E. Gibbs, H. Niu, and J. Hurwitz. 1994. Phosphoryla- tion of the p34 subunit of human single- stranded-DNA-binding protein in cyclin A-activated Gj extracts is catalyzed by cdk-cyclin A complex and DNA-depen- dent protein kinase. Proc. Natl. Acad. Sci. USA 91: 8343-8347.
  • Henricksen, L. A. and M. S. Wold. 1994. Replication protein A mutants lacking phosphorylation sites for p34cdc2 kinase support DNA replication. J. Biol. Chem. 269: 24203-24208.
  • Gibbs, E., Z. Q. Pan, H. Niu, and J. Hurwitz. 1996. Studies on the in vitro phosphorylation of HSSB-p34 and -p107 by cyclin-dependent kinases. Cyclin-sub- strate interactions dictate the efficiency of phosphorylation. J. Biol. Chem. 271: 22847-54.
  • Niu, H., H. Erdjument-Bromage, Z. Q. Pan, S. H. Lee, P. Tempst, and J. Hurwitz. 1997. Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro. J. Biol. Chem. 272: 12634-41.
  • Brush, G. S., C. W. Anderson, and T. J. Kelly. 1994. The DNA-activated protein kinase is required for the phosphorylation of replication protein A during simian virus 40 DNA replication. Proc. Natl. Acad. Sci. USA 91: 12520-12524.
  • Boubnov, N. K. and D. T. Weaver. 1995. scid cells are deficient in Ku and Replication Protein A phosphorylation by the DNA-dependent protein kinase. Mol. Cell. Biol. 15: 5700-5706.
  • Fried, L. M., C. Koumenis, S. R. Peterson, S. L. Green, P. van Zijl, J. Allalunis-Turner, D. J. Chen, R. Fishel, A. J. Giaccia, J. M. Brown, and C. U. Kirchgessner. 1996. The DNA damage response in DNA-dependent protein ki- nase-deficient SCID mouse cells: replication protein A hyperphosphorylation and p53 induction. Proc. Natl. Acad. Sci. USA 93: 13825-30.
  • Gottlieb, T. M. and S. P. Jackson. 1993. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72: 131-142.
  • Morozov, V. E., M. Falzon, C. W. Anderson, and E. L. Kuff. 1994. DNA-depen- dent protein kinase is activated by nicks and larger single-stranded gaps. J. Biol. Chem. 269: 16684-16688.
  • Gately, D. P., J. C. Hittle, G. K. T. Chan, and T. J. Yen. 1998. Characterization of ATM Expression, Localization, and Associated DNA-dependent Protein Kinase Activity. Mol. Biol. Cell. 9: 2361-74.
  • Jeggo, P. A., A. M. Carr, and A. R. Lehmann. 1998. Splitting the ATM: distinct repair and checkpoint defects in ataxia- telangiectasia. Trends Genet. 14: 312-6.
  • Plug, A. W., A. H. Peters, Y. Xu, K. S. Keegan, M. F. Hoekstra, D. Baltimore, P. de Boer, and T. Ashley. 1997. ATM and RPA in meiotic chromosome synapsis and recombination. Nat. Genet. 17: 45761.
  • Plug, A. W., A. H. Peters, K. S. Keegan, M. F. Hoekstra, P. de Boer, and T. Ashley. 1998. Changes in protein composition of meiotic nodules during mammalian meiosis. J. Cell. Sci. 111: 413-23.
  • Kemp, B. E. and R. B. Pearson. 1990. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15: 342-6.
  • Zernik-Kobak, M., K. Vasunia, M. Connelly, C. W. Anderson, and K. Dixon. 1997. Sites of UV-induced phos- phorylation of the p34 subunit of replication protein A from HeLa cells. J. Biol. Chem. 272: 23896-904.
  • D'Urso, G., R. L. Marraccino, D. R. Marshak, and J. M. Roberts. 1990. Cell cycle control of DNA replication by a homologue from human cells of the p34cdc2 protein kinase. Science 250: 786791.
  • Pan, Z.-Q., C. H. Park, A. A. Amin, J. Hurwitz, and A. Sancar. 1995. Phospho- rylated and unphosphorylated forms of human single-stranded DNA-binding protein are equally active in simian virus 40 DNA replication and in nucleotide excision repair. Proc. Natl. Acad. Sci. USA 92: 4636-4640.
  • Ariza, R. R., S. M. Keyse, J. G. Moggs, and R. D. Wood. 1996. Reversible protein phosphorylation modulates nucleotide excision repair of damaged DNA by human cell extracts. Nucl. Acids Res 24: 43340.
  • Henricksen, L. A., T. Carter, A. Dutta, and M. S. Wold. 1996. Phosphorylation of human replication protein A by the DNA-dependent protein kinase is involved in the modulation of DNA replication. Nucl. Acids Res. 24: 3107-3112.
  • Braun, K. A., L. A. Henricksen, C. G. Lee, T. Carter, S. P. Lees-Miller, and M. S. Wold. 1999. Manuscript in preparation.
  • Abramova, N. A., J. Russell, M. Botchan, and R. Li. 1997. Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner. Proc. Natl. Acad. Sci. USA 94: 7186-91.
  • Brenot-Bosc, F., S. Gupta, R. L. Margolis, and R. Fotedar. 1995. Changes in the subcellular localization of replication initiation proteins and cell cycle proteins during G1- to S-phase transition in mammalian cells. Chromosoma 103: 51727.
  • Murti, K. G., D. C. He, B. R. Brinkley, R. Scott, and S.-H. Lee. 1996. Dynamics of human replication protein A subunit distribution and partitioning in the cell cycle. Exp. Cell Res. 223: 279-289.
  • Dimitrova, D., Y. Daniely, D. M. Gilbert, and J. A. Borowiec. Unpublished observations.
  • Treuner, K., C. Eckerich, and R. Knippers. 1998. Chromatin association of replication protein A. J. Biol. Chem. 273: 31744-50.
  • Krude, T. 1995. Chromatin assembly factor 1 (CAF-1) colocalizes with replication foci in HeLa cell nuclei. Exp. Cell Res. 220: 304-11.
  • Hozak, P., A. B. Hassan, D. A. Jackson, and P. R. Cook. 1993. Visualization of replication factories attached to a nucleo- skeleton. Cell 73: 361-373.
  • Newport, J. and H. Yan. 1996. Organization of DNA into foci during replication. Curr. Opin. Cell Biol. 8: 365-8.
  • Tanaka, T. and K. Nasmyth. 1998. Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases. EMBO J. 17: 5182-91.
  • Dimitrova, D. S., I. T. Todorov, T. Melendy, and D. M. Gilbert. Unpublished observations.
  • Adachi, Y. and U. K. Laemmli. 1994. Study of the cell cycle-dependent assembly of the DNA pre-replication centres in Xenopus egg extracts. EMBO J. 13: 415364.
  • Yan, H. and J. Newport. 1995. An analysis of the regulation of DNA synthesis by cdk2, Cip1, and licensing factor. J. Cell Biol. 129: 1-15.
  • Yan, H. and J. Newport. 1995. FFA-1, a protein that promotes the formation of replication centers within nuclei. Science 269: 1883-5.
  • Yan, H., C. Y. Chen, R. Kobayashi, and J. Newport. 1998. Replication focus-forming activity 1 and the Werner syndrome gene product. Nat. Genet. 19: 375-8.
  • Bullock, P. A. 1997. The initiation of simian virus 40 DNA replication in vitro. Crit. Rev. Biochem. Mol. Biol. 32: 503-568.
  • Gannon, J. V. and D. P. Lane. 1987. p53 and DNA polymerase a compete for binding to SV40 T antigen. Nature 329: 456458.
  • Dornreiter, I., A. Hoss, A. K. Arthur, and E. Fanning. 1990. SV40 T antigen binds directly to the large subunit of purified DNA polymerase a. EMBO J. 9: 3329-3336.
  • Collins, K. L. and T. J. Kelly. 1991. Effects of T antigen and replication protein A on the initiation of DNA synthesis by DNA polymerase alpha-primase. Mol. Cell. Biol. 11: 2108-15.
  • Dornreiter, I., L. F. Erdile, I. U. Gilbert, D. von Winkler, T. J. Kelly, and E. Fanning. 1992. Interaction of DNA poly- merase a-primase with cellular replication protein A and SV40 T antigen. EMBO J. 11: 769-776.
  • Dornreiter, I., W. C. Copeland, and T. S. Wang. 1993. Initiation of simian virus 40 DNA replication requires the interaction of a specific domain of human DNA polymerase alpha with large T antigen. Mol. Cell. Biol. 13: 809-820.
  • Weisshart, K., P. Taneja, and E. Fanning. 1998. The replication protein A binding site in simian virus 40 (SV40) T antigen and its role in the initial steps of SV40 DNA replication. J. Virol. 72: 9771-81.
  • Longhese, M. P., P. Plevani, and G. Lucchini. 1994. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol. Cell. Biol. 14: 7884-7890.
  • Murakami, Y. and J. Hurwitz. 1993. Functional interactions between SV40 T antigen and other replication proteins at the replication fork. J. Biol. Chem. 268: 11008-11017.
  • Matsumoto, T., T. Eki, and J. Hurwitz. 1990. Studies on the initiation and elongation reactions in the simian virus 40 DNA replication system. Proc. Natl. Acad. Sci. USA 87: 9712-6.
  • Zhang, D., L. Frappier, E. Gibbs, J. Hurwitz, and M. O'Donnell. 1998. Human RPA (hSSB) interacts with EBNA1, the latent origin binding protein of Epstein- Barr virus. Nucl. Acids Res. 26: 631-7.
  • Zhu, F. X., E. E. Biswas, and S. B. Biswas. 1997. Purification and characterization of the DNA polymerase alpha associated exonuclease: the RTH1 gene product. Biochemistry 36: 5947-54.
  • Biswas, E. E., F. X. Zhu, and S. B. Biswas. 1997. Stimulation of RTHl nu- clease of the yeast Saccharomyces cerevisiae by replication protein A. Biochemistry 36: 5955-62.
  • Ishimi, Y., A. Claude, P. Bullock, and J. Hurwitz. 1988. Complete enzymatic synthesis of DNA containing the SV40 origin of replication. J. Biol. Chem. 263: 1972319733.
  • Harrington, J. J. and M. R. Lieber. 1994. Functional domains within FEN-1 and RAD2 define a family of structure- specific endonucleases: implications for nucle- otide excision repair. Genes Dev. 8: 134455.
  • Waga, S., G. Bauer, and B. Stillman. 1994. Reconstitution of complete SV40 DNA replication with purified replication factors. J. Biol. Chem. 269: 10923-34.
  • Murray, J. M., M. Tavassoli, R. al- Harithy, K. S. Sheldrick, A. R. Lehmann, A. M. Carr, and F. Z. Watts. 1994. Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage. Mol. Cell. Biol. 14: 4878-88.
  • Sommers, C. H., E. J. Miller, B. Dujon, S. Prakash, and L. Prakash. 1995. Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5'- to 3'-exonuclease required for lagging strand DNA synthesis in reconstituted systems. J. Biol. Chem. 270: 4193-6.
  • Budd, M. E. and J. L. Campbell. 1997. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol. Cell. Biol. 17: 2136-42.
  • Loor, G., S.-J. Zhang, P. Zhang, N. L. Toomey, and M. Y. Lee. 1997. Identification of DNA replication and cell cycle proteins that interact with PCNA. Nucl. Acids Res. 25: 5041-6.
  • Wold, M. Unpublished observations.
  • Coverley, D., M. K. Kenny, M. Munn, W. D. Rupp, D. P. Lane, and R. D. Wood. 1991. Requirement for the replication protein SSB in human DNA excision repair. Nature 349: 538-541.
  • Mu, D., C. H. Park, T. Matsunaga, D. S. Hsu, J. T. Reardon, and A. Sancar. 1995. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270: 2415-8.
  • Guzder, S. N., Y. Habraken, P. Sung, L. Prakash, and S. Prakash. 1995. Recon- stitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J. Biol. Chem. 270: 12973-6.
  • Moggs, J. G., K. J. Yarema, J. M. Essigmann, and R. D. Wood. 1996. Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3- intrastrand d(GpTpG)-cisplatin adduct. J. Biol. Chem. 271: 7177-86.
  • Mu, D., D. S. Hsu, and A. Sancar. 1996. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271: 8285-94.
  • Matsuda, T., M. Saijo, I. Kuraoka, T. Kobayashi, Y. Nakatsu, A. Nagai, T. Enjoji, C. Masutani, K. Sugasawa, F. Hanaoka, A. Yasui, and K. Tanaka. 1995. DNA repair protein XPA binds replication protein A (RPA). J. Biol. Chem. 270: 4152-4157.
  • Li, L., X. Lu, C. A. Peterson, and R. J. Legerski. 1995. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucle- otide excision repair. Mol. Cell. Biol. 15: 5396-402.
  • Lee, S.-H., D.-K. Kim, and R. Drissi. 1995. Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J. Biol. Chem. 270: 21800-21805.
  • Saijo, M., I. Kuraoka, C. Masutani, F. Hanaoka, and K. Tanaka. 1996. Sequential binding of DNA repair proteins RPA and ERCC1 to XPA in vitro. Nucl. Acids Res. 24: 4719-24.
  • Matsunaga, T., C.-H. Park, T. Bessho, D. Mu, and A. Sancar. 1996. Replication protein A confers structure-specific endo- nuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J. Biol. Chem. 271: 1104711050.
  • Evans, E., J. G. Moggs, J. R. Hwang, J. M. Egly, and R. D. Wood. 1997. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16: 6559-73.
  • Evans, E., J. Fellows, A. Coffer, and R. D. Wood. 1997. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 16: 625638.
  • Aboussekhra, A., M. Biggerstaff, M. K. Shivji, J. A. Vilpo, V. Moncollin, V. N. Podust, M. Protic, U. Hubscher, J. M. Egly, and R. D. Wood. 1995. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80: 859-68.
  • Kazantsev, A., D. Mu, A. F. Nichols, X. Zhao, S. Linn, and A. Sancar. 1996. Functional complementation of xeroderma pigmentosum complementation group E by replication protein A in an in vitro system. Proc. Natl. Acad. Sci. USA 93: 5014-8.
  • Rapic Otrin, V., I. Kuraoka, T. Nardo, M. McLenigan, A. P. Eker, M. Stefanini, A. S. Levine, and R. D. Wood. 1998. Relationship of the xeroderma pigment- osum group E DNA repair defect to the chromatin and DNA binding proteins UV- DDB and replication protein A. Mol. Cell. Biol. 18: 3182-90.
  • Vrieling, H., A. A. van Zeeland, and L. H. Mullenders. 1998. Transcription coupled repair and its impact on mutagen- esis. Mutat. Res. 400: 135-42.
  • Teng, Y., M. Longhese, G. McDonough, and R. Waters. 1998. Mutants with changes in different domains of yeast replication protein A exhibit differences in repairing the control region, the transcribed strand and the non-transcribed strand of the Saccharomyces cerevisiae MFA2 gene. J. Mol. Biol. 280: 355-63.
  • DeMott, M. S., S. Zigman, and R. A. Bambara. 1998. Replication protein A stimulates long patch DNA base excision repair. J. Biol. Chem. 273: 27492-8.
  • Umezu, K., N. Sugawara, C. Chen, J. E. Haber, and R. D. Kolodner. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148: 989-1005.
  • Petrini, J. H., D. A. Bressan, and M. S. Yao. 1997. The RAD52 epistasis group in mammalian double strand break repair. Semin. Immunol. 9: 181-8.
  • Bianco, P. R., R. B. Tracy, and S. C. Kowalczykowski. 1998. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci. 3: D570- 603.
  • Baumann, P. and S. C. West. 1998. Role of the human RAD51 protein in homologous recombination and double- stranded- break repair. Trends Biochem. Sci. 23: 247-51.
  • Shinohara, A., H. Ogawa, and T. Ogawa. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69: 457-70.
  • Sung, P. 1994. Catalysis of ATP-depen- dent homologous DNA pairing and strand exchange by yeast RAD 51 protein. Science 265: 1241-3.
  • Sung, P. and D. L. Robberson. 1995. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82: 453-61.
  • Mortensen, U. H., C. Bendixen, I. Sunjevaric, and R. Rothstein. 1996. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl. Acad. Sci. USA 93: 10729-34.
  • Milne, G. T. and D. T. Weaver. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7: 1755-65.
  • Hays, S. L., A. A. Firmenich, and P. Berg. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl. Acad. Sci. USA 92: 6925-9.
  • Shen, Z., K. G. Cloud, D. J. Chen, and M. S. Park. 1996. Specific interactions between the human RAD51 and RAD52 proteins. J. Biol. Chem. 271: 148-52.
  • Park, M. S., D. L. Ludwig, E. Stigger, and S.-H. Lee. 1996. Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J. Biol. Chem. 271: 18996-9000.
  • Hays, S. L., A. A. Firmenich, P. Massey, R. Banerjee, and P. Berg. 1998. Studies of the interaction between Rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol. Cell. Biol. 18: 44006.
  • Baumann, P. and S. C. West. 1997. The human Rad51 protein: polarity of strand transfer and stimulation by hRP-A. EMBO J. 16: 5198-206.
  • Golub, E. I., R. C. Gupta, T. Haaf, M. S. Wold, and C. M. Radding. 1998. Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA. Nucl. Acids Res 26: 538893.
  • Sung, P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272: 28194-7.
  • Shinohara, A. and T. Ogawa. 1998. Stimulation by Rad52 of yeast Rad51- mediated recombination. Nature 391: 404-7.
  • New, J. H., T. Sugiyama, E. Zaitseva, and S. C. Kowalczykowski. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391: 407-10.
  • White, C. I. and J. E. Haber. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9: 663-73.
  • Gasior, S. L., A. K. Wong, Y. Kora, A. Shinohara, and D. K. Bishop. 1998. Rad52 associates with RPA and functions with rad55 and rad57 to assemble meiotic recombination complexes. Genes Dev. 12: 2208-21.
  • Sugawara, N. and J. E. Haber. 1992. Characterization of double-strand break- induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12: 563-75.
  • Prives, C. 1998. Signaling to p53: breaking the MDM2-p53 circuit. Cell95: 5-8.
  • Kuhn, C., F. Muller, C. Melle, H.-P. Nasheuer, F. Janus, W. Deppert, and F. Grosse. 1999. Surface plasmon resonance measurements reveal stable complex formation between p53 and DNA polymerase a. Oncogene 18: 769-74.
  • Leiter, L. M., J. Chen, T. Marathe, M. Tanaka, and A. Dutta. 1996. Loss of transactivation and transrepression function, and not RPA binding, alters growth suppression by p53. Oncogene 12: 2661-8.
  • Miller, S. D., K. Moses, L. Jayaraman, and C. Prives. 1997. Complex formation between p53 and replication protein A inhibits the sequence-specific DNA binding of p53 and is regulated by single- stranded DNA. Mol. Cell. Biol. 17: 21942201.
  • Fortunato, E. A. and D. H. Spector. 1998. p53 and RPA are sequestered in viral replication centers in the nuclei of cells infected with human cytomegalovirus. J. Virol. 72: 2033-9.
  • Amariglio, F., F. Tchang, M.-N. Prioleau, T. Soussi, C. Cibert, and M. Mechali. 1997. A functional analysis of p53 during early development of xenopus laevis. Oncogene 15: 2191-9.
  • Longhese, M. P., H. Neecke, V. Paciotti, G. Lucchini, and P. Plevani. 1996. The 70 kDa subunit of replication protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast. Nucl. Acids Res 24: 3533-7.
  • Sandell, L. L. and V. A. Zakian. 1993. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75: 729-39.
  • Lee, S. E., J. K. Moore, A. Holmes, K. Umezu, R. D. Kolodner, and J. E. Haber. 1998. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94: 399-409.
  • O'Neill, E. A., C. Fletcher, C. R. Burrow, N. Heintz, R. G. Roeder, and T. J. Kelly. 1988. Transcription factor OTF-1 is functionally identical to the DNA replication factor NF-III. Science 241: 12101213.
  • Cheng, L. and T. J. Kelly. 1989. Transcriptional activator nuclear factor I stimulates the replication of SV40 mini-chromosomes in vivo and in vitro. Cell 59: 541-551.
  • Murakami, Y., M. Satake, Y. Yamaguchi-Iwai, M. Sakai, M. Muramatsu, and Y. Ito. 1991. The nuclear protooncogenes c-jun and c-fos as regulators of DNA replication. Proc. Natl. Acad. Sci. USA 88: 3947-51.
  • Luche, R. M., W. C. Smart, and T. G. Cooper. 1992. Purification of the hetero- meric protein binding to the URS1 tran- scriptional repression site in Saccharomy- ces cerevisiae. Proc. Natl. Acad. Sci. USA 89: 7412-6.
  • Gailus-Durner, V., C. Chintamaneni, R. Wilson, S. J. Brill, and A. K. Vershon. 1997. Analysis of a meiosis-specific URS1 site: sequence requirements and involvement of replication protein A. Mol. Cell. Biol. 17: 3536-46.
  • Borowiec, J. A. 1996. DNA helicases, p. 545-574. In: DePamphilis, M. L., Ed. DNA Replication in Eukaryotic Cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  • Hughes, P. and G. Baldacci. 1997. A DNA helicase purified by replication protein A (RPA) affinity chromatography from mouse FM3A cells. Nucl. Acids Res 25: 3881-8.
  • Johnson, F. B., D. A. Sinclair, and L. Guarente. 1999. Molecular biology of aging. Cell 96: 291-302.
  • Sinclair, D. A. and L. Guarente. 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91: 1033-42.
  • Sinclair, D. A., K. Mills, and L. Guarente. 1997. Accelerated aging and nucleolar fragmentation in yeast sgsl mutants. Science 277: 1313-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.