236
Views
41
CrossRef citations to date
0
Altmetric
Research Article

Molecular Elements of Ion Permeation and Selectivity within Calcium Channels

, , , , &
Pages 181-214 | Published online: 29 Sep 2008

REFERENCES

  • Hille, B., Ionic Channels of Excitable Membranes, 2nd ed., Sinauer Associates, Sunderland, Massachusets, 1992.
  • Cleemann, L., Wang, W., and Morad, M., Two-dimensional confocal images of organization, density, and gating of focal Ca2+ release sites in rat cardiomyocytes, Proc. Natl. Acad. Sci. USA, 95, 10984, 1998.
  • Jessell, T. M. and Kandel, E. R., Synaptic transmission: a bidirectional and self- modifiable form of cell-cell communication, Cell/Neuron, 72/10, 1, 1993.
  • Sudhof, T. C., The synaptic vesicle cycle: a cascade of protein-protein interactions, Nature, 375, 645, 1995.
  • Randall, A. D., The molecular basis of voltage-gated Ca2+ channel diversity: Is it time for T?, J. Membrane Biol, 161, 207, 1998.
  • Zhang, J.-F., Randall, A. D., Horne, W. A., Sather, W. A., Tanabe, T., Schwartz, T. L., and Tsien, R. W., Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in CNS neurons, Neuropharmacology, 32, 1075, 1993.
  • Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F. X., and Catterall, W. A., Subunit structure of dihydro-pyri- dine-sensitive calcium channels from skeletal muscle, Proc. Natl. Acad. Sci. USA, 84, 5478, 1987.
  • Jay, S. D., Sharp, A. H., Kahl, S. D., Vedvick, T. S., Harpold, M. M., and Campbell, K. P., Structural characterization of the dihydropyridine-sensitive calcium channel a2 subunit and the associated 8 peptides, J. Biol. Chem., 266, 3287, 1991.
  • Gurnett, C. A., De Waard, M., and Campbell, K. P., Dual function of the voltage-dependent Ca2+ channel a28 subunit in current stimulation and subunit interaction, Neuron, 16, 431, 1996.
  • Kuniyasu, A., Oka, K., Ide-Yamada, T., Hatanaka, Y., Abe, T., Nakayama, H., and Kanaoka, Y., Structural characterization of the dihydropyridine receptor- linked calcium channel from porcine heart, J. Biochem, 112, 235, 1992.
  • Eberst, R., Shuiping, D., Klugbauer, N., and Hofmann, F., Identification and functional characterization of a calcium channel g subunit, Pflugers Arch., 433, 633, 1997.
  • Witcher, D. R., De Waard, M., Sakamoto, J., Franzini-Armstrong, C., Pragnell, M., Kahl, S. D., and Campbell, K. P., Subunit identification and reconsti- tution of N-type Ca2+ channel complex purified from brain, Science, 261, 486, 1993.
  • Scott, V. E. S., Felix, R., Arikkath, J., and Campbell, K. P., Evidence for a 95 kDa short form of the a1A subunit associated with the w-conotoxin MVIIC receptor of the P/Q-type Ca2+ channels, J. Neurosci, 18, 641 1998.
  • Malouf, N., McMahon, D. K., Hains- worth, C. N., and Kay, B. K., A two- motif isoform of the major calcium channel subunit in skeletal muscle, Neuron, 8, 899, 1992.
  • Brawley, R. M. and Hosey, M. M., Identification of two distinct proteins that are immunologically related to the aj subunit of the skeletal muscle dihydropyridine- sensitive calcium channel, J. Biol. Chem., 267, 18218, 1992.
  • Liu, H., De Waard, M., Scott, V. E. S., Gurnett, C. A., Lennon, V. A., and Campbell, K. P., Identification of three subunits of the high-affinity w-conotoxin MVIIC-sensitive Ca2+ channel, J. Biol. Chem., 271, 13804, 1996.
  • Ophoff, R., Terwindt, G. M., Vergouwe, M. N., van Eijk, R., Oefner, P. J., Hoffman, S. M. G., Lamerdin, J. E., Mohreweises, H. W., Bulman, D. E., Ferreri, M., Haan, J., Lindhout, D., van Ommen, G.J. B., Hoflker, M. H., Ferrari, M. D., and Frants, R. R., Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the calcium channel gene CACNL1A4, Cell, 87, 543, 1996.
  • Diriong, S., Lory, P., Williams, M. E., Ellis, S. B., Harpold M. M., and Taviaux, S., Chromosomal localization of the human genes for a1A, a1B, and a1E voltage- dependent Ca2+ channel subunits, Geno- mics, 30, 605, 1995.
  • Williams, M. E., Brust, P. F., Feldman, D. H., Patthi, S., Simerson, S., Maroufi, A. , McCue, A. F., Velifelebi, G., Ellis, S.B., and Harpold, M. M., Structure and functional expression of an w-conotoxin- sensitive human N-type calcium channel, Science, 257, 389, 1992.
  • Schultz, D., Mikala, G., Yatani, A., Iles, D. E., Segers, B., Sinke, R. J., Olde Weghuis, D., Klockner, U., Wakamori, M., Wang, J.-J., Melvin, D., Varadi, G., and Schwartz, A., Cloning. Chromosomal localization, and functional expression of the a1 subunit of the L-type voltage-dependent calcium channel from normal human heart, Proc. Natl. Acad. Sci. USA, 90, 6228, 1993.
  • Williams, M. E., Feldman, D. H., McCue, A. F., Brenner, R., Velicelebi, G., Ellis, S. B., and Harpold, M. M., Structure and functional expression of a1, a2, and b subunits of a novel human neu- ronal calcium channel subtype, Neuron, 8, 71, 1992.
  • Seino, S., Yamada, Y., Espinosa III, R., LeBeau, M. M., and Bell, G.I., Assignment of the gene encoding the a1 subunit of the neuroendocrine/brain-type calcium channel (CACNL1A2) to human chromosome 3, band p14.3, Genomics, 13, 1375, 1992.
  • Williams, M. E., Marubio, L. M., Deal, C. R., Hans, M., Brust, P. F., Philipson, L. H., Miller, R. J., Johnson, E. C., Harpold, M. M., and Ellis, S. B., Structure and functional characterization of neuronal a1E calcium channel subtypes, J. Biol. Chem., 269, 22347, 1994.
  • Bech-Hansen, N. T., Naylor, M. J., Maybaum, T. A., Pearce, W. G., Koop, B., Fishman, G. A., Mets, M., Musarella M. A., and Boycott, K. M., Loss-of-func- tion mutations in a calcium channel a1- subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness, Nature Genetics, 19, 264, 1998.
  • Strom, T. M., Nyakutara, G., Apfelstedt- Sylla, E., Hellebrandt, H., Lorenz, B., Weber, B. H., Wutz, K., Gutwillinger, N., Ruther, K., Drescher, B., Sauer, C., Zrenner, E., Metzinger, T., Rosenthal, A., and Meindl, A., An L-type calcium channel gene mutated in incomplete X- linked congenital stationary blindness, Nature Genetics, 19, 26, 1998.
  • Hogan, K., Powers, P. A., and Gregg, R. G., Cloning of the human skeletal muscle a1 subunit of the dihydro- pyridine-sensitive L-type calcium channel (CACNL1A3), Genomics, 24, 608, 1994.
  • Gregg, R. G., Couch, F., Hogan, K., and Powers, P. A., Assignment of the human gene for the a1 subunit of the skeletal muscle DHP-sensitive Ca2+ channel (CACNL1A3) to chromosome 1q31-q32, Genomics, 15, 107, 1993.
  • Perez-Reyes, E., Cribbs, L. L., Daud, A., Lacerda, A. E., Barclay, J., Williamson, M. P., Fox, M., Rees M., and Lee, J.-H., Molecular characterization of a neuronal low-voltage-activated T-type calcium channel, Nature, 391, 896, 1998.
  • Cribbs, L. L., Lee, J.-H., Yang, J., Satin, J., Zhang, Y., Daud, A., Barclay, J., Williamson, M. P., Fox, M., Rees, M., and Perez-Reyes, E., Cloning and characterization of a1H from human heart, a member of the T-type Ca2+ channel gene family, Circ Res., 83, 103, 1998.
  • Lee, J.-H., Daud, A. N., Cribbs, L. L., Lacerda, A. E., Pereverzev, A., Klockner, U., Schneider T., and Perez- Reyes, E., Cloning and expression of a novel member of the low-voltage-activated T-type calcium channel family, J. Neuro- sci., 19, 1912, 1999.
  • Varadi, G., Mori, Y., Mikala, G., and Schwartz, A., Molecular determinants of Ca2+ channel function and drug action, Trends Pharmacol. Sci., 16, 43, 1995.
  • De Waard, M., Gurnett, C. A., and Campbell, K. P., Structural and functional diversity of voltage-activated calcium channels, in Ion Channels, Narahashi, I., Ed., Plenum Press, New York, 1996, pp. 41-87.
  • Guy, H. R. and Conti, F., Pursuing the structure and function of voltage-gated channels, Trends Neurosci., 13, 201, 1990.
  • Guy, H. R., Structural models of Na+, Ca2+, and K+ channels, Soc. Gen. Physiol. Ser., 50, 1, 1995.
  • Doyle, D. A., Cabral, J. M., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R., The structure of the potassium channel: Molecular basis of K+ conduction and selectivity, Science, 280, 69, 1998.
  • MacKinnon, R., Cohen, S. L., Kuo, A., Lee, A., and Chait, B. T., Structural conservation in prokaryotic and eukaryotic potassium channels, Science, 280, 106, 1998.
  • Powers, P. A., Scherer, S. W., Tsui, L.-C., Gregg, R. G., and Hogan, K., Localization of the gene encoding the a2/8 subunit (CACNL2A) of the human skeletal muscle voltage-dependent Ca2+ channel to chromosome 7q21-q22 by somatic cell hybrid analysis, Genomics, 19, 192, 1994.
  • Ellis, S. B., Williams, M. E., Ways, N. R., Brenner, R., Sharp, A. H., Leung, A. T., Campbell, K. P., McKenna, E., Koch, W. J., Hui, A., Schwartz, A., and Harpold, M. M., Sequence and expression of mRNAs encoding the a1 and a2 subunits of a DHP-sensitive calcium channel, Science, 241, 1661, 1988.
  • Brust, P. B., Simerson, S., McCue, A. F., Deal, C. R., Schoonmaker, S., Williams, M. E., Velifelebi, G., Johnson, E. C., Harpold, M. M., and Ellis, S. B., Human neuronal voltage-dependent calcium channels: Studies on subunit structure and role in channel assembly, Neuropharmacology, 32, 1089, 1993.
  • Angelotti, T. and Hofmann, F., Tissue- specific expression of splice-variants of the mouse voltage-gated calcium channel a2/8 subunit, FEBS Lett., 397, 331, 1996.
  • Klugbauer, N., Lacinova, L., Marais, E., Hobom, M., and Hofmann, F., Molecular diversity of the calcium channel a2/8 subunit, J. Neurosci., 19, 684, 1999.
  • Collin, T., Wang, J.-J., Nargeot, J., and Schwartz, A., Molecular cloning of three isoforms of the L-type voltage-dependent calcium channel b subunit from normal human heart, Circ. Res., 72, 1337, 1993.
  • Gregg, R. G., Powers, P. A., and Hogan, K., Assignment of the human gene for the b subunit of the voltage-dependent calcium channel (CACNLB1) to chromosome 17 using somatic cell hybrids and linkage mapping, Genomics, 15, 185, 1993.
  • Taviaux, S., Williams, M. E., Harpold, M. M., Nargeot, J., and Lory, P., Assignment for human genes for b2 and b4 subunits of voltage-dependent calcium channels to chromosomes 10p12 and 2q22-q23, Hum. Genet., 100, 151, 1997.
  • Collin, T., Lory, P., Taviaux, S., Cortieu, C., Guilbault, P., Berta, J., and Nargeot, J., Cloning, chromosomal location, and functional expression of the human voltage-dependent Ca2+ channel b3 subunit, Eur. J. Biochem., 220, 257, 1994.
  • Berry, R., Stevens, T. J., Walter, N. A. R., Wilcox, A. S., Rubano, T., Hopkins, J. A., Weber, J., Goold, R., Soares, M. B., and Sikela, J. M., Gene based sequence-tagged sites (STSs) as the basis for a human gene map, Nature Genetics, 10, 415 1995.
  • Yamada, Y., Yasuda, Y., Li, Q., Ihara, Y., Kubota, A., Miura, T., Nakamura, K., Fujii, Y., Seino, S., and Seino, Y., The structures of human calcium channel a1 subunit (CACNL1A2) and b subunit (CACNLB3) genes, Genomics, 27, 312, 1995.
  • Escayg, A., Jones, J. M., Kearney, J. A., Hitchcock, P. F., and Meissler, M. H., Calcium channel b4 (CACNB4): human ortholog of the mouse epilepsy gene lethargic, Genomics, 50, 14, 1998.
  • Jay, S. D., Ellis, S. B., McCue, A. F., Williams, M. E., Vedvick, T. S., Harpold, M. M., and Campbell, K. P., Primary structure of the g subunit of the DHP-sensitive calcium channel from skeletal muscle, Science, 248, 490, 1990.
  • Powers, P. A., Liu, S., Hogan, K., and Gregg, R. G., Molecular characterization of the gene encoding the g subunit of the human skeletal muscle 1,4-dihy- dropyridine-sensitive Ca2+ channel (CACNLG), cDNA sequence, gene structure, and chromosomal location, J. Biol. Chem., 268, 9275, 1993.
  • Letts, V. A., Felix, R., Biddlecome, G. H., Arikkath, J., Mahaffey, C. L., Valenzuela, A., Bartlett II, F. S., Mori, Y., Campbell, K. P., and Frankel, W. N., The mouse stargazer gene encodes a neu- ronal Ca2+ channel g subunit, Nature Genetics, 19, 340, 1998.
  • Perez-Reyes, E., Kim, H. S., Lacerda, A. E., Horne, W., Wei, X., Rampe, D., Campbell, K. P., Brown, A. M., and Birnbaumer, L., Induction of calcium currents by the expression of the a1 subunit of the dihydropyridine receptor from skeletal muscle, Nature, 340, 233, 1989.
  • Ellinor, P. T., Zhang, J.-F., Horne, W. A., and Tsien, R. W., Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin, Nature, 372, 272, 1994.
  • Mori, Y., Friedrich, T., Kim, M.-S., Mikami, M., Nakai, J., Ruth, P., Bosse, E., Hofmann, V. F., Flockerzi, V., Furuichi, T., Mikoshiba, M., Imoto, K., Tanabe, T., and Numa, S., Primary structure and functional expression from complementary DNA of a brain calcium channel, Nature, 350, 398, 1991.
  • Varadi, G., Lory, P., Schultz, D., Varadi, M., and Schwartz, A., Acceleration of activation and inactivation by the b sub- unit of the skeletal muscle calcium channel, Nature, 352, 159, 1991.
  • Isom, L. L., DeJongh, K. S., and Catterall, W. A., Auxiliary subunits of voltage-gated ion channels, Neuron, 12, 1183 1994.
  • Soong, T. W., Stea, A., Hodson, C. D., Dubel, S. J., Vincent, S. R., and Snutch, T. P., Structure and functional expression of a member of a low voltage-gated calcium channel family, Science, 260, 1133, 1993.
  • Ellinor, P. T., Zhang, J.-F., Randall, A. D., Zhou, M., Schwartz, T. L., Tsien, R. W., and Horne, W. A., Functional expression of a rapidly inactivating neu- ronal Ca2+ channel, Nature, 363, 455, 1993.
  • Castellano, A., Wei, X., Birnbaumer, L., and Perez-Reyes, E., Cloning and expression of a third calcium channel b sub- unit, J. Biol. Chem., 268, 3450, 1993.
  • Castellano, A., Wei, X., Birnbaumer, L., and Perez-Reyes, E., Cloning and expression of a neuronal calcium channel b subunit, J. Biol. Chem., 268, 12359, 1993.
  • Welling, A., Kwan, Y. W., Bosse, E., Flockerzi, V., Hofmann, F., and Kass, R. S., Subunit-dependent modulation of recombinant L-type calcium channels. Molecular basis for dihydropyridine tissue selectivity, Circ. Res., 73, 974, 1993.
  • Pragnell, M., De Waard, M., Mori, Y., Tanabe, T., Snutch, T. P., and Campbell, K. P., Calcium channel b subunit binds to a conserved motif in the I-II cytoplasmic linker of the a1 subunit, Nature, 368, 67, 1994.
  • Josephson, I. R. and Varadi, G., The subunit increases Ca2+ currents and gating charge movements of human cardiac L-type Ca2+ channels, Biophys. J, 70, 1285, 1996.
  • Kamp, T. J., Perez-Garcia, M. T., and Marban, E., Enhancement of ionic current and charge movement by coexpression of calcium channel b1A subunit with a1C subunit in a human embryonic kidney cell line, J. Physiol. (London), 492, 89, 1996.
  • Chien, A. J., Zhao, X., Shirikov, R. E., Puri, T. S., Chang, C. F., Sun, D., Rios, E., and Hosey, M. M., Roles of a membrane-localized b subunit in the formation and targeting of functional L-type Ca2+ channels, J. Biol. Chem., 270, 30036, 1995.
  • Brice, N. L., Berrow, N. S., Campbell, V., Page, K. M., Brickley, K., Tedder, I., and Dolphin, A. C., Importance of the different b subunits in the membrane expression of the a1A and a2 calcium channel subunits: Studies using a depolarization-sensitive a1A antibody, Eur. J. Neurosci., 9, 749, 1997.
  • Gao, T., Chien, A. J., and Hosey, M. M., Complexes of the a1C and b subunits generate the necessary signal for membrane targeting of class C L-type calcium channels, J. Biol. Chem., 274, 2137, 1999.
  • Yamaguchi, H., Hara, M., Strobeck, M., Fukasawa, K., Schwartz, A., and Varadi, G., Multiple modulation pathways of calcium channel activity by b subunit. Direct evidence of b subunit participation in membrane trafficking of the a1C subunit, J. Biol. Chem., 273, 19348, 1998.
  • Strube, C., Beurg, M., Powers, P. A., Gregg, R. G., and Coronado, R., Reduced Ca2+ current, charge movement, and absence of Ca2+ transients in skeletal muscle deficient in dihydropyridine receptor b1 subunit, Biophys. J., 71, 2531, 1996.
  • Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., and Numa, S., Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel, Nature, 340, 230, 1989.
  • Felix, R., Gurnett, C. A., De Ward, M., and Campbell, K. P., Dissection of functional domains of the voltage-dependent Ca2+ channel a28 subunit, J. Neurosci., 17, 6884, 1997.
  • Almers, W. and McCleskey, E. W., Non- selective conductance in calcium channels of frog muscle: Calcium selectivity in a single-file pore, J. Physiol. (London), 353, 585, 1984.
  • Hess, P. and Tsien, R. W., Mechanism of ion permeation through calcium channels, Nature, 309, 453, 1984.
  • Armstrong, C. M. and Neyton, J., Calcium channels: A one-site model, Ann. New York Acad. Sci., 635, 19, 1992.
  • Dang, T. X. and McCleskey, E. W., Ion channel selectivity through stepwise changes in binding affinity, J. Gen. Physiol, 111, 185, 1998.
  • Miller, C., 1990: Annus mirabilis of potassium channels, Science, 252, 1092, 1991.
  • Heinemann, S. H., Terlau, H., Stuhmer, W., Imoto, K., and Numa, S., Calcium channel characteristics conferred on the sodium channel by single mutations, Nature, 356, 441, 1992.
  • Kim, M. S., Morii, T., Sun, L. X., Imoto, K., and Mori, Y., Structural determinants of Ca2+ selectivity in brain calcium channel, FEBS Lett., 318, 145, 1993.
  • Tang, S., Mikala, G., Bahinski, A., Yatani, A., Varadi, G., and Schwartz, A., Molecular localization of ion selectivity sites within the pore of a human L-type cardiac calcium channel, J. Biol. Chem., 268, 13026, 1993.
  • Ellinor, P. T., Yang, J., Sather, W. A., Zhang, J. F., and Tsien, R. W., Ca2+ channel selectivity at a single locus for high- affinity Ca2+ interactions, Neuron, 15, 1121, 1995.
  • Yang, J., Ellinor, P. T., Sather, W. A., Zhang, J. F., and Tsien, R. W., Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels, Nature, 366, 158, 1993.
  • Heinemann, S. H., Schlief, T., Mori, Y., and Imoto, K., Molecular pore structure of voltage-gated sodium and calcium channels, Braz. J. Med. Biol. Res., 27, 2781, 1994.
  • Mikala, G., Bahinski, A., Yatani, A., Tang, S., and Schwartz, A., Differential contribution by conserved glutamate residues to an ion-selectivity site in the L-type Ca2+ channel pore, FEBS Lett., 335, 265, 1993.
  • Yatani, A., Bahinski, A., Mikala, G., Tang, S., and Schwartz, A., Single amino acid substitutions within the ion permeation pathway alter single channel conductance of the human L-type cardiac Ca2+ channel, Circ. Res., 75, 315, 1994.
  • Parent, L. and Gopalakrishnan, M., Glutamate substitution in repeat IV alters divalent and monovalent cation permeation in the heart Ca2+ channel, Biophys. J., 69, 1801, 1995.
  • Schetz, J. A. and Anderson, P. A.V., A reevaluation of the structure in the pore regions of voltage-activated cation channels, Biol. Bull., 185, 462, 1993.
  • Doughty, S. W., Blaney, F. E., and Richards, W. G., Models of ion pores in N-type voltage-gated calcium channels, J. Mol. Graphics, 13, 342, 1995.
  • Klockner, U., Mikala, G., Schwartz, A., and Varadi, G., Molecular studies of the asymmetric pore structure of the human cardiac voltage-dependent Ca2+ channel, J. Biol. Chem., 271, 22293, 1996.
  • Chen, X.-H., Bezprozvanny, I., and. Tsien, R. W., Molecular basis of proton block of L-type Ca2+ channels, J. Gen. Physiol, 108, 363, 1996.
  • Prod'hom, B., Pietrobon, D., and Hess, P., Direct measurement of proton transfer rates to a group controlling the dihydro- pyridine-sensitive Ca2+ channel, Nature, 329, 243, 1987.
  • Colquhoun, D., A new type of ion-channel block, Nature, 329, 204, 1987.
  • Pietrobon, D., Prod'hom, B., and Hess, P., Interactions of protons with single open L-type calcium channels. pH Dependence of proton-induced current fluctuations with Cs+, K+, and Na+ as permeant ions, J. Gen Physiol, 94, 1, 1989.
  • Prod'hom, B., Pietrobon, D., and Hess, P., Interactions of protons with single open L-type calcium channels. Location of pro- tonation site and dependence of proton- induced current fluctuations and species of permeant ion, J. Gen Physiol, 94, 23, 1989.
  • Root, M. J. and MacKinnon, R., Two identical noninteracting sites in an ion channel revealed by proton transfer, Science, 265, 1852, 1994.
  • Chen, X.-H. and Tsien, R. W., Aspartate substitutions establish the concerted action of P-region glutamates in repeats I and III forming the protonation site of L- type Ca2+ channels, J. Biol. Chem., 272, 30002, 1997.
  • Nakamura, H., Roles of electrostatic interactions in proteins, QtrlyRev. Biophys, 29, 1 1996.
  • Akabas, M. H., Stauffer, D. A., Xu, M., and Karlin, A., Acetylcholine receptor channel structure probed in cysteine- substitution mutants, Science, 258, 307, 1992.
  • Todd, A. P., Cong, J., Levinthal, F., and Hubbell, W. L., Site-directed mutagen- esis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation, Proteins, 6, 294, 1989.
  • Altenbach, C., Marti, T., Khorana, H. G., and Hubbel, W. L., Transmem- brane protein structure: spin-labeling of bacterorhodopsin mutants, Science, 248, 1088, 1990.
  • Akabas, M. H., Kaufmann, C., Archdeacon, P., and Karlin, A., Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the a subunit, Neuron, 13, 919, 1994.
  • Akabas, M. H. and Karlin, A., Identification of acetylcholine receptor channel- lining residues in the M1 segment of the a subunit, Biochemistry, 34, 12496, 1995.
  • Stauffer, D. A. and Karlin, A., Electrostatic potential of the acetylcholine binding site in the nicotinic recptor probed by reactions of binding site cysteines with charged methanethiosulfonates, Biochemistry, 33, 6840, 1994.
  • Sun, Z. P., Akabas, M. H., Goulding, E. H., Karlin, A., and Siegelbaum, S. A., Exposure of residues in the cyclic nucle- otide-gated channel pore: P region structure and function in gating, Neuron, 16, 141, 1996.
  • Chiamvimonvat, N., O'Rourke, B., Kamp, T. J., Kellen, R. G., Hofmann, F., Flockerzi, V., and Marban, E., Functional consequences of sulfhydryl modification in the pore-forming subunits of cardiovascular Ca2+ and Na+ channels, Circ. Res., 76, 325, 1995.
  • Chiamvimonvat, N., Perez-Garcia, M. T., Ranjan, R., Marban, E., and Tomaselli, G. F., Depth asymmetries of the pore-lining segments of the Na+ channel revealed by cysteine mutagenesis, Neuron, 16, 1037, 1996.
  • Perez-Garcia, M. T., Chiamvimonvat, N., Marban, E., and Tomaselli, G. F., Structure of the sodium channel pore revealed by serial cysteine mutagenesis, Proc. Natl. Acad. Sci. USA, 93, 300, 1996.
  • Xu, M. and Akabas, M. H., Amino acids lining the channel of the g-aminobutyric acid type A receptor identified by cysteine substitution, J. Biol. Chem., 268, 21505, 1993.
  • Cheung, M. and Akabas, M. H., Locating the anion-selectivity filter in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, J. Gen. Physiol, 109, 289, 1997.
  • Pascual, J. M., Sheih, C.-C., Kirsch, G. E., and Brown, A. M., K+ pore structure revealed by reported cysteines at inner and outer surfaces, Neuron, 14, 1055, 1995.
  • Quinn, K. E. and Ehrlich, B. E., Methanethiosulfonate derivatives inhibit current through the ryanodine receptor/ channel, J. Gen. Physiol, 109, 255, 1997.
  • Javitch, J. A., Li, X., Kaback, J., and Karlin, A., A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice, Proc. Natl. Acad. Sci. USA, 91, 10355, 1994.
  • Koch, S. E., Bodi, I., Schwartz, A., and Varadi, G., The structure of the pore of L- type calcium channels revealed by cys- teine-scanning mutagenesis (SCAM), Circulation, 98. I-820, 1998.
  • Dolphin, A. C., Voltage-dependent calcium channels and their modulation by neurotransmitters and G proteins, Exp. Physiol, 80, 1, 1995.
  • Dunlap, K. and Fischbach, G. D., Neu- rotransmitters decrease the calcium component of sensory neuron action potentials, Nature, 276, 837, 1978.
  • Bean, B. P., Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage-dependence, Nature, 340, 153, 1989.
  • Delcour, A. and Tsien, R. W., Altered prevalence of gating modes in neuro- tarnsmitter inhibition of N-type calcium channels. Science, 259, 980, 1993.
  • Kuo, C. C. and Bean, B. P., G-protein modulation of ion permeation through N-type calcium channels, Nature, 365, 258, 1993.
  • Strynadka, N. C. J. and James, M. N. G., Crystal structures of the helix-loop-helix calcium binding proteins, Annu. Rev. Biochem., 58, 951, 1989.
  • Fenton, D. E., Alkali metals and group IIA metals, in Comprehensive Coordination Chemistry, Wilkinson, G., Gillard, R. D., and McCleverty, J. A., Eds., Pergamon Press, Oxford, 1987, Vol. 3, pp. 1-80.
  • McCleskey, E. W. and Almers, W., The Ca channel in skeletal muscle is a large pore, Proc. Natl. Acad. Sci. USA, 82, 7149, 1985.
  • Perczel A. and Hollosi, M., Turns, in Circular Dichroism: Conformational Analysis of Biomolecules, Fasman, G. D., Ed., Plenum, New York, 1996, pp. 285-380.
  • McPhalen, C. A., Strynadka, N. C.J., and James, M. N. G., Calcium binding sites in proteins: A structural perspective, Adv. Protein Chem., 42, 77, 1991.
  • Cotton, F. A., Wilkinson, G., and Gaus, P. L., Basic Inorganic Chemistry, 2nd Ed., John Wiley & Sons, New York. 1987, Table 4-2. (Goldschmidt radii are somewhat different [B. Dietrich, J. Chem. Educ., 62, 954, 1985] but follow the same trend.)
  • Martin, B. M., in Calcium and Its Role in Biology, Siegel, H., Ed. M. Dekker, New York, 1984, pp. 2-49.
  • Kaufman Katz, A., Glusker, J. P., Beebe, S. A., and Bock, C. W., Calcium ion coordination: a comparison with that of beryllium, magnesium and zinc, J. Am. Chem. Soc., 118, 5752, 1996.
  • Kretsinger, R. H., Structure and evolution of calcium-modulated proteins, CRC Crit. Rev. Biochem., 8, 119, 1980.
  • Forsen, S., Calcium in Biological Systems, in Inorganic Biochemistry, Bertini, I., Ed., University Science Books, Mill Valley, CA, 1989, pp. 107-166.
  • Hughes, M. N., Coordination compounds in biology, in Comprehensive Coordination Chemistry, Wilkinson, G., Gillard, R. D., and McCleverty, J. A., Eds., Pergamon Press, Oxford, 1987, Vol. 6, pp. 545-754.
  • Black, C.B., Huang, H. W., and Cowan, J. A., Biological coordination chemistry of Mg2+, Na+ and K+ ions. Protein and nucleotide binding sites, Coord. Chem. Rev., 135/136, 165, 1994.
  • Sansom, M. S., The biophysics of peptide models of ion channels, Progr. Biophys. Mol. Biol., 55, 139, 1991.
  • Montal, M., Molecular mimicry in channel-protein structure, Current Opin. Struct. Biol., 5, 501, 1995.
  • Markham, G. D., Glusker, J. P., Bock, C. L., Trachtman, T., and Bock, C. W., Hydration energies of divalent beryllium and magnesium ions: An ab initio molecular orbital study, J. Phys. Chem., 100, 3488, 1996.
  • Hughes, M. N., The Inorganic Chemistry of Biological Processes, John Wiley & Sons, London, 1972, pp. 54-55.
  • Albritton, N. L., Meyer, T., and Stryer, L., Range of messenger action of calcium ion and inositol 1,4,5-triphosphate, Science, 258, 1812, 1992.
  • Chapham, D. E., Calcium signaling, Cell, 80, 259, 1995.
  • Vass, E., Holly, S., Majer, Z., Samu, J., Laczko, M., and Hollosi, M., FTIR and CD spectroscopic detection of H-bonded folded polypeptide structures, J. Mol. Struct., 408/409, 47, 1997.
  • Kuhlman, B., Boice, J. A., Wu, W.-J., Fairman, R., and Raleigh, D. P., Calcium binding peptides from a-lactalbu- min: Implications from protein folding and stability, Biochemistry, 36, 4607, 1997.
  • Palyi, G., Alberts, K., Bartik, T., Boese, R., Frater, G., Herbrich, T., Herfurth, A., Kriebel, C., Sorkau, A., Tschoerner, C. M., and Zucchi, C., Intramolecular transmission of chiral information: con- formational enantiomers in crystalline organocobalt complexes generated by self- organization, Organometallics, 15, 3253, 1996.
  • Favre, I., Moczydlowski, E., and Schild, L., On the structural basis for ionic selectivity among Na+, K+ and Ca2+ in the voltage-gated sodium channel, Biophys. J, 71, 3110, 1996.
  • Jan, L. Y. and Jan, Y. N., Receptor regulated ion channels, Curr. Opin. Cell Biol., 9, 155, 1997.
  • Schrempf, H., Schmidt, O., Kummerlen, R., Hinnah, S., Muller D., Betzler, M., Steinkamp, T., and Wagner, R., A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans, EMBO J, 14, 5170, 1995.
  • Kumpf, R. A. and Dougherty, D. A., A mechanism for ion selectivity in potassium channels: computational studies of cation p interactions, Science, 261, 1708, 1993.
  • Herzberg, O. and James, M. N. G., Structure of the calcium regulatory muscle protein troponin C at 2.8 A resolution, Nature, 313, 653, 1985.
  • Babu, Y. S., Bugg, C. E., and Cook, W. J., Structure of calmodulin refined at 2.2 A resolution, J. Mol. Biol., 204, 191, 1988.
  • Chattopadhyaja, R., Meador, W. E., Means, A. R., and Quiocho, F. A., Calmodulin structure refined at 1.7 A resolution, J. Mol. Biol., 228, 1177, 1992.
  • Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B., and Bax, A., Solution structure of a calmodulin-target peptide complex by multidimensional NMR, Science, 256, 632, 1992.
  • Babitch, J., Channel hands, Nature, 436, 321, 1990.
  • de Leon, M., Wang, Y., Jones, L., Perez- Reyes, E., Wei, X., Soong, T. W., Snutch, T. P., and Yue, D. T., Essential Ca2+-bind- ing motif for Ca2+-sensitive inactivation of L-type Ca2+ channels, Science, 270, 1502, 1995.
  • Zhou, J., Olcese, R., Quin, N., Noceti, F., Birnbaumer, L., and Stefani, E., Feedback inhibition of Ca2+ channels by Ca2+ depends on a short sequence of the C-terminus that does not include the Ca2+- binding function of a motif with similarity to Ca2+-binding domains, Proc. Natl. Acad. Sci. USA, 94, 2301, 1997.
  • Soldatov, N. M., Oz, M., O'Brien, K. A., Abernethy, D. R., and Morad, M., Molecular determinants of the L-type Ca2+ channel inactivation. Segment exchange analysis of the carboxy-terminal cytoplas- mic motif encoded by exons 40-42 of the human a1C subunit gene, J. Biol. Chem., 273, 957, 1998.
  • Quin, N., Olcese, R., Bransby, M., Lin, T., and Birnbaumer, L., Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin, Proc. Natl. Acad. Sci. USA,, 96, 2435, 1999.
  • Peterson, B. Z., DeMaria, C. D., and Yue, D. T., Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels, Neuron, 22, 549, 1999.
  • Huber, R., Romisch, J., and Paques, E.-P., The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes, EMBO J, 12, 3867, 1990.
  • Huber, R., Berendes, R., Burger, A., Schneider, M., Karshikov, A., Luecke, H., Romisch, J., and Paques, E., Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family proteins, J. Mol. Biol., 223, 683, 1992.
  • Berendes, R., Voges, D., Demange, P., Huber, R., and Burger, A., Structure- function analysis of the ion channel selectivity filter in human annexin V, Science, 262, 427, 1993.
  • Concha, N.O., Head, J. F., Kaetzel, M. A., Deadman, J. R., and Seaton, B. A., Rat annexin V crystal structure: Ca2+-induced conformational changes, Science, 261, 1321, 1993.
  • Burger, A., Voges, D., Demange, P., Perez, C. R., Huber, R., and Berendes, R., Structural and electrophysiological analysis of annexin V mutants. Mutagenesis of human annexin V, an in vitro voltage-gated calcium channel, provides information about the structural features of the ion pathway, the voltage sensor and the ion selectivity filter, J. Mol. Biol, 237, 479, 1994.
  • Liemann, S., Benz, J., Burger, A., Voges, D., Hofmann, A., Huber, R., and Gottig, P., Structural and functional characterisation of the voltage-sensor in the ion channel human Annexin V, J. Mol. Biol., 258, 555, 1996.
  • Rizo, J. and Sudhof, T. C., C2-doamins, structure and function of a universal Ca2+- binding domain, J. Biol. Chem, 273, 15879, 1998.
  • Sutton, R.B., Davletov, B. A., Berghuis, A. M., Sudhof, T. C., and Sprang, S. R., Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/Phospho- lipid-binding fold, Cell, 80, 929, 1995.
  • Shao, X., Davletov, B. A., Sutton, R. B., Sudhof, T. C., and Rizo, J., Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C, Science, 273, 248, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.