257
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

In vitro cytotoxicity, genotoxicity and antioxidant potentials of thymol on human blood cells

&
Pages 133-140 | Received 02 Apr 2013, Accepted 18 Oct 2013, Published online: 21 Nov 2013

References

  • H.C. Grice, Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol., 24, 1127–1130 (1986).
  • H.P. Wichi, Enhanced tumor development by butylated hydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol., 26, 717–723 (1988).
  • H. Luo, Y. Yamamoto, Y. Liu, J.S. Jung, H.Y. Kahng, Y.J. Koh and J.S. Hur, The in vitro antioxidant properties of Chinese highland lichens. J. Microbiol. Biotechnol., 20, 1524–1528 (2010).
  • H.S. Hwang, J.K. Winkler-Moser and S.X. Liu, Structural effect of lignans and sesamol on polymerization of Soybean oil at frying temperature. J. Am. Oil Chem. Soc., 89, 1067–1076 (2012).
  • J.S. Choi, H.Y. Chung, H.A. Jung, H.J. Park and T. Yokozawa, Comparative evaluation of antioxidant potential of alaternin (2-hydroxyemodin) and emodin. J. Agric. Food Chem. Toxicol., 48, 6347–6351 (2000).
  • D. Ziech, R. Franco, A.G. Georgakilas, S. Georgakila, V. Malamou-Mitsi, O. Schoneveld, A. Pappa and M.I. Panayiotidis, The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem. Biol. Interact., 188, 334–339 (2010).
  • G. Gupta-Elera, A.R. Garrett, R.A. Robison and K.L. O’Neill, The role of oxidative stress in prostate cancer. Eur. J. Cancer Prev., 21, 155–162 (2012).
  • S.J. Stohs, The role of free radicals in toxicity and disease. J. Basic. Clin. Physiol. Pharm., 6, 205–228 (2011).
  • V. Chiurchiù and M. Maccarrone, Chronic inflammatory disorders and their redox control: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox. Signal., 15, 2605–2041 (2011).
  • S.A.A.J. Van de Braak and G.C.J.J. Leijten, Essential Oils and Oleoresins: A Survey in the Netherlands and other Major Markets in the European Union. CBI, Centre for the Promotion of Imports from Developing Countries, Rotterdam(1999).
  • S. Prabuseenivasan, M. Jayakumar and S. Ignacimuthu, In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med., 6, 39 (2006).
  • H. Loza-Tavera, Monoterpenes in essential oils. Biosynthesis and properties. Adv. Exp. Med. Biol., 464, 49–62 (1999).
  • R. Mühlbauer, Essential oils and chemically related species for the treatment of increased bone resorption. WO Patent WO, 60, 226–355 (2002).
  • F.A. Al-Bayati, Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J. Ethnopharmacol., 116, 403–406 (2008).
  • A.L. Rozza, and C.H. Pellizzon, Essential oils from medicinal and aromatic plants: A review of the gastroprotective and ulcer-healing activities. Fundam. Clin. Pharmacol., 27, 51–63(2013).
  • L. Yeruva, C. Hall, J.A. Elegbede and S.W. Carper, Perillyl alcohol and methyl jasmonate sensitize cancer cells to cisplatin. Anticancer Drugs, 21, 1–9 (2010).
  • A.A. Saddiq and S.A. Khayyat, Chemical and antimicrobial studies of monoterpene: Citral. Pestic. Biochem. Physiol., 98, 89–93 (2010).
  • G.I. Marei, M.A.A. Rasoul and S.A.M. Abdelgaleil, Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pestic. Biochem. Physiol., 103, 56–61 (2012).
  • P.R. Archana, R.B. Nageshwar and R.B.S. Satish, In vivo radioprotective potential of thymol, a monoterpene phenol derivative of cymene. Mutat. Res., 726, 136–145 (2011).
  • M.L. da Rocha, L.E. Oliveira, C.C. Patrício Santos, D.P. de Sousa, R.N. de Almeidaand D.A. Araújo, Antinociceptive and anti-inflammatory effects of the monoterpene α,β-epoxy-carvone in mice. J. Nat. Med., (in press) (doi:10.1007/s11418-012-0738-8) (2013).
  • C. Lee, S. Lee and H. Lee, Acaricidal effects of Thymus vulgaris leaf-derived materials and monoterpene alcohols against Dermatophagoides spp. J. Korean Soc. Appl. Biol. Chem., 53, 170–174 (2010).
  • D.A. Costa, G.A. de Oliveira, T.C. Lima, P.S. dos Santos, D.P. de Sousa and R.M. de Freitas, Anticonvulsant and antioxidant effects of cyano-carvone and its action on acetylcholinesterase activity in mice hippocampus. Cell Mol. Neurobiol., 32, 633–640 (2012).
  • K.A. Youdim, S.G. Deans and H.J. Finlayson, The antioxidant properties of thyme (Thymus zygis L.) essential oil: An inhibitor of lipid peroxidation and a free radical scavenger. J. Essent. Oil Res., 14, 210–215 (2002).
  • E. Aydin and H. Turkez, Effects of lichenic extracts (Bryoria capillaris, Peltigera rufescens and Xanthoria elegans) on human blood cells: A cytogenetic and biochemical study. Fresen. Environ. Bull., 20, 2992–2998 (2011).
  • H. Turkez, F. Geyikoğlu, E. Dirican and A. Tatar, In vitro studies on chemoprotective effect of borax against aflatoxin B1-induced genetic damage in human lymphocytes. Cytotechnology, 64, 607–612 (2012).
  • X. Huang Y. Feng Y. Huangab and H. Li, Chemical composition, antioxidant and the possible use as skin-care ingredient of clove oil (Syzygium aromaticum (L.) Merr. & Perry) and citronella oil (Cymbopogon goeringii) from China. J. Essent. Oil Res. (in press) (doi:10.1080/10412905.2013.775082) (2013).
  • V. Lagouri, G. Blekas, M. Tsimidou, S. Kokkini and D. Boskou, Composition and antioxidant activity of essential oils from oregano plants grown wild in Greece. Z. Lebensmitt-Unter. Forsch., 197, 20–23 (1993).
  • A. Sivropoulou, E. Papanikolaou, C. Nikolaou, S. Kokkini, T. Lanaras and M. Arsenakis, Antimicrobial and cytotoxic activities of Origanum essential oils. J. Agric. Food Chem., 44, 1202–1205 (1996).
  • C.M. Priestley, E.M. Williamson, K.A. Wafford and D.B. Sattelle, Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. Br. J. Pharmacol., 140, 1363–1372 (2003).
  • H. Satooka and I. Kubo, Effects of thymol on mushroom tyrosinase-catalyzed melanin formation. J. Agric. Food Chem., 59, 8908–8914 (2011).
  • M.F. Meeran and P.S. Prince, Protective effects of thymol on altered plasma lipid peroxidation and nonenzymic antioxidants in isoproterenol-induced myocardial infarcted rats. J. Biochem. Mol. Toxicol., 26, 368–373 (2012).
  • A. Jaafari, M. Tilaoui, H.A. Mouse, L.A. Mbark, R. Aboufatima, A. Chait, M. Lepoivre and A. Zyad, Comparative study of the antitumor effect of natural monoterpenes: Relationship to cell cycle analysis. Rev. Bras. Farmacogn. (in press) (doi: 10.1590/S0102-695X2012005000021) (2012).
  • J.Y. Zhou, F.D. Tang, G.G. Mao and R.L. Bian, Effect of alpha-pinene on nuclear translocation of NF-kappa B in THP-1 cells. Acta Pharmacol. Sin., 25, 480–484 (2004).
  • Z. Yu, W. Wang, L. Xu, J. Dong and Y. Jing, d-Limonene and d-carvone induce apoptosis in HL-60 cells through activation of caspase-8. Asian J. Trad. Med., 3, 134–143 (2008).
  • M. Buyukleyla and E. Rencuzogullari, The effects of chromatid exchange, chromosome aberration and micronucleus in human lymphocytes. Ecotoxicol. Environ. Saf., 72, 943–947 (2009).
  • B. Aristatile, K.S. Al-Numair, A.H. Al-Assaf C. Veeramani and P.K. Viswanathan, Protective effect of carvacrol on oxidative stress and cellular DNA damage induced by UVB irradiation in human peripheral lymphocytes. J. Biochem. Mol. Toxicol. (doi: 10.1002/jbt.20355) (2010).
  • M. Fenech and A.A. Morley, Measurement of micronuclei in lymphocytes. Mutat. Res., 147, 29–36 (1985).
  • M. Fenech, The cytokinesis-block micronucleus technique: A detailed description of the method and its application to genotoxicity studies in human populations. Mutat. Res., 285, 35–44 (1993).
  • P. Perry and S. Wolff, New Giemsa method for the differential staining of sister chromatids. Nature, 251, 156–158 (1974).
  • J.E. Schneider, J.R. Phillips, Q. Pye, M.L. Maidt, S. Price and R.A. Floyd, Methylene blue and rose bengala photoinactivation of RNA bacteriophages: Comparative studies of 8-oxoguanine formation in isolated RNA. Arch. Biochem. Biophys., 301, 91–97 (1993).
  • R.A. Floyd, J.J. Watson, P.K. Wong, D.H. Altmiller and R.C. Rickard, Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation. Free Radic. Res. Commun., 1, 163–172 (1993).
  • C. Kusano and B. Ferrari, Total antioxidant capacity: A biomarker in biomedical and nutritional studies. J. Cell. Mol. Biol., 7, 1–15 (2008).
  • O. Erel, A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 38, 1103–1111 (2005).
  • O. Erel, A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem., 37, 112–119 (2004).
  • M.R. Gomes-Carneiro, I. Felzenszwalb and F.J. Paumgartten, Mutagenicity testing (+/−)-camphor, 1,8-cineole, citral, citronellal, (−)-menthol and terpineol with Salmonella/microsome assay. Mutat. Res., 416, 129–136 (1998).
  • M.E. Sanchez, A.V. Turina, D.A. García, M.V. Nolan and M.A. Perillo, Surface activity of thymol: Implications for an eventual pharmacological activity. Colloids Surf. B Biointerfaces., 34, 77–86 (2004).
  • A. Karaman, M. Kadı and F. Kara, Sister chromatid exchange and micronucleus studies in patients with Behçet’s disease. J. Cutan. Pathol., 36, 831–837 (2009).
  • A. Erol, Systemic DNA damage response and metabolic syndrome as a premalignant state. Curr. Mol. Med., 10, 321–334 (2010).
  • G.W. Konat, H2O2-induced higher order chromatin degradation: A novel mechanism of oxidative genotoxicity. J. Biosci., 28, 57–60 (2003).
  • D. Slamenova, E. Horvathova, I. Chalupa, L. Wsolova and J. Navarova, Ex vivo assessment of protective effects of carvacrol against DNA lesions induced in primary rat cells by visible light excited methylene blue (VL+MB). Neoplasma, 58, 14–19 (2011).
  • B. Aristatile, K.S. Al-Numair, A.H. Al-Assaf and K.V. Pugalendi, Pharmacological effect of carvacrol on D-galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. J. Nat. Med., 65, 568–577 (2011).
  • S.D. Turner, H. Tinwell, W. Piegorsch, P. Schmezer and J. Ashby, The male rat carcinogens limonene and sodium saccharin are not mutagenic to male Big Blue rats. Mutagenesis, 16, 329–332 (2001).
  • S. Azirak and E. Rencuzogullari, The in vivo genotoxic effects of carvacrol and thymol in rat bone marrow cells. Environ. Toxicol., 23, 728–735 (2008).
  • L.H. Breimer, Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: The role of DNA base damage. Mol. Carcinog., 3, 188–197 (1990).
  • B. Halliwell, Oxidative stress and neurodegeneration: Where are we now? J. Neurochem., 97, 1634–1658 (2006).
  • U. Undeğer, A. Başaran, G.H. Degen and N. Başaran, Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food Chem. Toxicol., 47, 2037–2043 (2009).
  • P.C. Braga, M. Dal Sasso, M. Culici, L. Galastri, M.T. Marceca and E.E. Guffanti, Antioxidant potential of thymol determined by chemiluminescence inhibition in human neutrophils and cell-free systems. Pharmacology, 76, 61–68 (2006).
  • J. Mastelic, I. Jerkovic, I. Blazevic, M. Poljak-Blazi, S. Borovic, I. Ivancic-Bace, V. Smrecki, N. Zarkovic, K. Brcic-Kostic, D. Vikic-Topic and N. Müller, Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J. Agric. Food Chem., 56, 3989–3996 (2008).
  • A. Luna, M.C. Labaque, J.A. Zygadlo and R.H. Marin, Effects of thymol and carvacrol feed supplementation on lipid oxidation in broiler meat. Poult. Sci., 89, 366–370 (2010).
  • K.C. Phi, G.N. Kim and H.D. Jang, In vitro and intracellular antioxidant capacity of thymyl methyl ether as a major component in Blumea lanceolaria (Roxb.) Druce leaf oil. Food Chem. Toxicol., 50, 1583–1538 (2012).
  • A. Esmaeili and A. Khodadadi, Antioxidant activity of a solution of thymol in ethanol. Zahedan J. Res. Med. Sci., 14, 14–18 (2012).
  • D. Kumar Beena, D.S. Rawat, Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases. Bioorg. Med. Chem. Lett., 23, 641–645 (2013).
  • C.M. Park, Y.S. Cha, H.J. Youn, C.W. Cho and Y.S. Song, Amelioration of oxidative stress by dandelion extract through CYP2E1 suppression against acute liver injury induced by carbon tetrachloride in Sprague–Dawley rats. Phytother. Res., 24, 1347–1353 (2010).
  • K. Yokogawa, M. Watanabe, H. Takeshita, M. Nomura, Y. Mano and K. Miyamoto, Serum aminotransferase activity as a predictor of clearance of drugs metabolized by CYP isoforms in rats with acute hepatic failure induced by carbon tetrachloride. Int. J. Pharm., 269, 479–489 (2004).
  • S.L. Silva P.M. Figueiredoand T. Yano, Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. leaves. Acta Amaz., 37, 281–286 (2007).
  • T. Rabi and A. Bishayee, d-Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: Generation of reactive oxygen species and induction of apoptosis. J. Carcinog., 8, 9 (2009).
  • F.B. Rassouli, M.M. Matin, M. Iranshahi and A.R. Bahrami, Investigating the cytotoxic and apoptosis inducing effects of monoterpenoid stylosin in vitro. Fitoterapia, 82, 742–749 (2011).
  • A. Constantinou, R. Mehta, C. Runyan, K. Rao, A. Vaughan and R. Moon, Flavonoids as DNA topoisomerase antagonists and poisons: Structure–activity relationships. J. Nat. Prod., 58, 217–225 (1995).
  • D.M. Lepley, B. Li, D.F. Birt and J.C. Pelling, The chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes. Carcinogenesis, 17, 2367–2375 (1996).
  • B. Plaumann, M. Fritsche, H. Rimpler, G. Brandner and R.D. Hess, Flavonoids activate wild-type p53. Oncogene, 13, 1605–1614 (1996).
  • G. Agullo, L. Gamet-Payrastre, S. Manenti, C. Viala, C. Remesy, H. Chap and B. Payrastre, Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: A comparison with tyrosine kinase and protein kinase C inhibition. Biochem. Pharmaco., 53, 1649–1657 (1997).
  • Z.P. Chen, J.B. Schell, C.T. Ho and K.Y. Chen, Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett., 129, 173–179 (1998).
  • A. Kazi, Z. Wang, N. Kumar, S.C. Falsetti, T.H. Chan and Q.P. Dou, Structure activity relationships of synthetic analogs of (−)-epigallocatechin-3-gallate as proteasome inhibitors. Anticancer Res., 24, 943–954 (2004).
  • D. Chen, K.G. Daniel, M.S. Chen, D.J. Kuhn, K.R. Landis-Piwowar and Q.P. Dou, Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol., 69, 1421–1432 (2005).
  • K. Brusselmans, R. Vrolix, G. Verhoeven and J.V. Swinnen, Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem., 280, 5636–5645 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.