282
Views
14
CrossRef citations to date
0
Altmetric
Articles

Dry and wet seasons set the phytochemical profile of the Copaifera langsdorffii Desf. essential oils

, , , &
Pages 292-300 | Received 18 Jan 2013, Accepted 26 Jan 2014, Published online: 24 Feb 2014

References

  • Caruso, F. Chefdor, C. Depierreux, F.M. Delmotte, G. Kahlem and D. Morabito, Physiological characterization and identification of genes 16 differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves. J. Plant Physiol., 165, 932–941 (2008).
  • X. Xu, F. Yang, X. Xiao, S. Shang, S.H. Korpelainen and C. Li, Sex-specific responses of Populus cathayana to drought and elevated temperatures. P. Cell Environ., 31, 850–860 (2008).
  • J. Sheffield and E.F. Wood, Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics, 31, 79–105 (2008).
  • J. Palá-Paúl, M.J. Pérez-Alonso, A. Velasco-Negueruela, R. Palá-Paúl, J. Sanz and F. Conejero, Seasonal variation in chemical constituents of Santolina rosmarinifolia L. ssp. Rosmarinifolia. Biochem. Syst. Ecol., 29, 652–663 (2001).
  • J. Ndamba, E. Lemmich and P. Mølgaard, Investigation of the diurnal, ontogenetic and seasonal variation in the molluscicidal saponin content of Phytolacca dodecandra aqueous berry extracts. Phytochemistry, 35, 95–99 (1994).
  • D.E. Gray, S.G. Pallardy, H.E. Garrett and G.E. Rottinghaus, Effect of acute drought stress and time of harvest on phytochemistry and dry weight of St. John’s wort leaves and flowers. Planta Medica, 69, 1024–1030 (2003).
  • F.M.C. Barros, E.O. Zambarda, B.M. Heinzmann and C.A. Mallmann, Variabilidade sazonal e biossíntese de terpenóides presents no óleo essencial de Lippia alba (Mill.) N. E. Brown (Verbenaceae). Química Nova, 4, 861–867 (2009).
  • J.E. Simon, D. Reiss-Bubenheim, R.J. Joly and D.J. Charles, Water stress-induced alterations in essential oil content and composition of sweet basil. J. Essent. Oil Res, 4, 71–75 (1992).
  • N.V. Gramosa and E.R. Silveira, Volatile constituents of Copaifera langsdorffii from the Brazilian Northeast. J. Essent. Oil Res., 17, 130–132 (2005).
  • M.G.B. Zoghbi, R.C.V. Martins-da-Silva and J.R. Trigo, Volatiles of oleoresins of Copaifera paupera (Herzog) Dwyer, C. piresii Dwyer and C. pubiflora Benth. (Leguminosae). J. Essent. Oil Res., 21, 403–404 (2009).
  • V.F. Veiga and A.C. Pinto, The essential oil composition of Copaifera trapezifolia Hayne leaves. J. Essent. Oil Res., 18, 430–431 (2006).
  • M.G.B. Zoghbi, O.A. Lameira and E.C.P. Oliveira, Seasonal variation of oleoresin and volatiles from Copaifera martii Hayne growing wild in the State of Pará, Brazil. J. Essent. Oil Res., 19, 504–506 (2007).
  • O.A. Lameira, R.C.V. Martins-da-Silva, M.G.B. Zoghbi and E.C.P. Oliveira, Seasonal variation on the volatiles of Copaifera duckei Dwyer growing wild in the State of Pará-Brazil. J. Essent. Oil Res., 21, 105–107 (2009).
  • H. Lorenzi, Árvores Brasileiras: Manual de identificação e cultivo de plantas arbóreas do Brasil, p. 168, Instituto Plantarum de Estudos da Flora Ltda, São Paulo, Nova Odessa (2002).
  • H. Lorenzi and F.J.A. Matos, Plantas Medicinais no Brasil: Nativas e exóticas cultivadas, p. 279, Instituto Plantarum de Estudos da Flora Ltda, São Paulo, Nova Odessa (2002).
  • J.F. Ribeiro, C.E.L. Fonseca and J.C.S. Silva, Cerrado: Caracterização e recuperação de Matas de Galeria, p. 34, Embrapa, Planaltina-DF (2001).
  • F.W. McLafferty and D. Stauffer, The Wiley/NBS Registry of Mass Spectral Data. John Wiley & Sons, New York (1989).
  • R.P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, p. 804, Allured Publ. Corp., Carol Stream, IL (2007).
  • H. Van Den Dool and D.J.A. Kratz, Generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J. Chromat. A., 11, 463–471 (1963).
  • P.S. Oliveira and R.J. Marquis, The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, 1st edn, p. 289, Columbia University Press, New York (2002).
  • M.F. Siqueira and G. Durigan, Modelagem da distribuição geográfica de espécies lenhosas do cerrado no Estado de São Paulo. Rev. Bras. Bot., 30, 233–243 (2007).
  • S.J. Bucci, F.G. Scholz, G. Goldstein, F.C. Meinzer, A.C. Franco, Y. Zhang and G.Y. Hao, Water relations and hydraulic architecture in Cerrado trees: Adjustments to seasonal changes in water availability and evaporative demand. J. Brazil. Soc. Plant Physiol., 30, 233–245 (2008).
  • J.E. Mantovani, and A. Pereira, Estimativa da integridade da cobertura vegetal do cerrado através de dados TM/Landsat. In: Simpósio Brasileiro de Sensoriamento remoto, Santos-SP, Vol 9, pp. 1455–1466, Anais, Instituto Nacional e Pesquisas Espaciais, São José dos Campos-SP (1998).
  • IPCC, Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Edits., R.K. Pachauri and A. Reisinger], p. 104, IPCC, Geneva (2007).
  • E. Marengo, C. Baiocchi, M.C. Gennaro, P.L. Bertolo, S. Lanteri and W. Garrone, Classification of essential mint oils of different geographic origin by applying pattern-recognition methods to gas-chromatographic data. Chemometr. Intell. Lab., 11, 75–88 (1991).
  • Beier, B. Emmett, P. Gundersen, A. Tietema, J. Peñuenas, M. Estiarte, C. Gordon, A. Gorissen, L. Llorens, F. Roda and D. Willians, Novel approaches to study climate change effects on terrestrial ecosystems in the field: Drought and passive hightime warming. Ecosystems, 7, 583–597 (2004).
  • T. Keenan, U. Niinemets, S. Sabate, C. Garcia and J. Peñuelas, Seasonality of monoterpene emission potentials in Quercus ilex and Pinus pinea: Implications for regional VOC emissions modeling. J. Geophys. R., 114, D22202, doi: 10.1029/2009JD011904 (2009).
  • T. Vuorinen, G.V.P. Reddy, A.M. Nerg and J.K. Holopainen, Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO2 concentration. Atmos. Environ., 38, 675–682 (2004).
  • R. Seco, J. Peñuelas and I. Filella, Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos. Environ., 41, 2477–2499 (2007).
  • E. Grøndahl and B.K. Ehlers, Local adaptation to biotic factors: Reciprocal transplants of four species associated with aromatic Thymus pulegioides and T. serpyllum. J. Ecol., 96, 981–992 (2008).
  • T. Vuorinen, A.M. Nerg, E. Vapaavuori and J.K. Holopainen, Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations. Atmos. Environ., 39, 1185–1197 (2005).
  • Y.F. Wang, S.M. Owen, Q.J. Li and J. Peñuelas, Monoterpene emissions from rubber trees (Hevea brasiliensis) in a changing landscape and climate: Chemical speciation and environmental control. Global Change Biol., 13, 2270–2282 (2007).
  • N.R. Azevedo, S.I.F.O. Campo, H.D. Ferreira, T.A. Portes, J.C. Seraphin, J.R. Paula, S.C. Santos and P.H. Ferri, Essential oil chemotypes in Hyptis suaveolens from Brazilian Cerrado. Biochem. Syst. Ecol., 30, 205–216 (2002).
  • M. Wink, Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64, 3–19 (2003).
  • S. Teles, J.A. Pereira, C.H.B. Santos, R.V. Menezes, R. Malheiro, A.M. Lucchese and F. Silva, Effect of geographical origin on the essential oil content and composition of fresh and dried Mentha × villosa Hudson leaves. Ind. Crop. Prod., 46, 1–7 (2013).
  • A.C. Figueiredo, J.G. Barroso, L.G. Pedro and J.J.C. Scheffer, Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Frag. J., 23, 213–226 (2008).
  • A. Takahasi and B.G. Fina, Síndromes de dispersão de sementes de uma área do Morro do Paxixi, Aquidauana, MS, Brasil. Paper IV Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal Corumbá/MS, Brazil (2004).
  • Rabello, F.N. Ramos and E. Hasui, Efeito do tamanho do fragmento na dispersão de sementes de copaiba (Copaifera langsdorffii Delf.). Biota Neotrop., 10, 47–54 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.