236
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Identification of antimicrobial volatile compounds produced by the marine bacterium Bacillus amyloliquefaciens strain S13 newly isolated from brown alga Zonaria tournefortii

, , , , ORCID Icon, , & show all
Pages 203-210 | Received 10 Jun 2018, Accepted 09 Dec 2018, Published online: 29 Jan 2019

References

  • C. Chaves-Lopez, A. Serio, A. Gianotti, G. Sacchetti, M. Ndagijimana, C. Ciccarone, A. Stellarini, A. Corsetti and A. Paparella, Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. Journal of Applied Microbiology, 119, 487–499 (2015).
  • A.A.L. Gunatilaka and E.M.K. Wijeratne. Natural products from bacteria and fungi. In: UNESCO Encyclopedia of Life Support Systems (EOLSS). Phytochemistry & Pharmacognosy. Edits., J. Pezutto and M. Kato, p. 27, UNESCO, University of Arizona (2012).
  • A.A. Popova, O.A. Koksharova, V.A. Lipasova, J.V. Zaitseva, O.A. Katkova-Zhukotskaya, S.I. Eremina, A.S. Mironov, L.S. Chernin and I.A. Khmel, Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. BioMed Research International, 2014, 1–11 (2014).
  • A. Korpi, J. Järnberg and A.L. Pasanen, Microbial volatile organic compounds. Critical Reviews in Toxicology, 39, 139–193 (2009).
  • M.J. Smanski, R.M. Peterson, S.X. Huang and B. Shen, Bacterial diterpene synthases: new opportunities for mechanistic enzymology and engineered biosynthesis. Current Openion in Chemical Biology, 16, 132–141 (2012).
  • J. Echeverría, A. Urzúa, L. Sanhueza and M. Wilkens, Enhanced antibacterial activity of ent-labdane derivatives of salvic acid (7α-hydroxy-8(17)-ent-labden-15-oic acid): effect of lipophilicity and the hydrogen bonding role in bacterial membrane interaction. Molecules, 22, 1–19 (2017).
  • C. Ignea, E. Ioannou, P. Georgantea, S. Loupassaki, F.A. Trikka, A.K. Kanellis, A.M. Makris, V. Roussis and S.C. Kampranis, Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast. Metabolic Engineering, 28, 91–103 (2015).
  • S. Egan, C. Holmstro and S. Kjelleberg, Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. International Journal of Systematic and Evolutionary Microbiology, 51, 1499–1504 (2001).
  • S. Tenorio-Salgado, R. Tinoco, R. Vazquez-Duhalt, J. Caballero-Mellado and E. Perez-Rueda, Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered, 4, 236–243 (2013).
  • M. El Hattab, G. Culioli, L. Piovetti, S.E. Chitour and R. Valls, Comparison of various extraction methods for identification and determination of volatile metabolites from the brown alga Dictyopteris membranacea. Journal of Cromatography A, 1143, 1–7 (2007).
  • M. Balouiri, M. Sadiki and S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis, 6, 71–79 (2016).
  • R.P. Adams, Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th edn. Allured Publ. Corp., Carol Stream, IL (2007).
  • T. Konishi, M. Azuma, R. Itoga, S. Kiyosawa, Y. Fujiwara and Y. Shimada, Three new labdane-type diterpenes from wood, Excoecaria agallocha. Chemical and Pharmaceutical Bulletin, 44, 229–231 (1996).
  • A. Gonzalez, B.M. Fraga, M.G. Hernandez and J.G. Lurs, New diterpenes from sideritis canariensis. Phytochemistry, 12, 1113–1116 (1973).
  • B. Audrain, M.A. Farag, C.M. Ryu and J.M. Ghigo, Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews, 39, 222–233 (2014).
  • E. Palazzolo, F. Saiano, V.A. Laudicina, M.L. Gargano and G. Venturella, Volatile organic compounds in wild fungi from Mediterranean forest ecosystems. Journal of Essential Oil Research, 29(5), 385–390 (2017).
  • F.C. Ziegenbein, W.A. König and H.P. Hanssen, Volatile metabolites from the wood-inhabiting fungi Bjerkandera adusta, Ganoderma applanatum, and Stereum hirsutum. Journal of Essential Oil Research, 22(2), 116–118 (2010).
  • A.R. Padmavathia, B. Abinaya and S.K. Pandian, Phenol, 2, 4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratiamarcescens. Biofouling, 30, 1111–1122 (2014).
  • M.A. Griffin, D.J. Spakowicz, T.A. Gianoulis and S.A. Strobel, Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology, 156, 3814–3829 (2010).
  • R. Kramer and W.R. Abraham, Volatile sesquiterpenes from fungi: what are they good for? Phytochemistry Rewiew, 11, 15–37 (2011).
  • J.S. Dickschat, T. Martens, T. Brinkhoff, M. Simon and S. Schulz, Volatiles released by a Streptomyces species isolated from the North Sea. Chemistry and Biodiversity, 2, 837–865 (2005).
  • J.A. Miller, P.A. Thompson, I.A. Hakim, H.S. Chow and C.A. Thomson, D-limonene: a bioactive food component from Citrus and evidence for a potential role in breast cancer prevention and treatment. Oncology Reviews, 5, 31–42 (2010).
  • E. Jongedijk, K. Cankar, M. Buchhaupt, J. Schrader, H. Bouwmeester and J. Beekwilder, Biotechnological production of limonene in microorganisms. Applied Microbiology and Biotechnology, 100, 2927–2938 (2016).
  • C. Demetzos and K.S. Dimas, Labdane-type diterpenes: chemistry and biological activity. Study of National, 25, 235–292 (2001).
  • C. Demetzos, A. Kolocouris and T. Anastasaki, A simple and rapid method for the differentiation of c-13 manoyl oxide epimers in biologically important samples using GC–MS analysis supported with NMR spectroscopy and computational chemistry results. Bioorganic and Medicinal Chemistry Letters, 12, 3605–3609 (2002).
  • K. Motohashi, R. Ueno, M. Sue, K. Furihata, T. Matsumoto, T. Dairi, S. Omura and H. Seto, Studies on terpenoids produced by actinomycetes: oxaloterpins A, B, C, D, and E, diterpenes from Streptomyces sp. KO-3988. Journal of Natural Products, 70, 1712–1717 (2007).
  • Y. Wang, L. Zhang, F. Wang, Z.H. Li, Z.J. Dong and J.K. Liu, New diterpenes from cultures of the fungus Engleromycesgoetzii and their CETP inhibitory activity. National Product Bioprospect, 5, 69–75 (2015).
  • Y. Yamada, T. Kuzuyama, M. Komatsu, K. Shin-Ya, S. Omura, D.E. Cane and H. Ikeda, Terpene synthases are widely distributed in bacteria. Proceedings of the National Academy of Sciences, 112, 857–862 (2015).
  • X. Bian, J. Bai, X. Hu, X. Wu, C. Xue, A. Han, G. Su, H. Hua and Y. Pei, Penioxalicin, a novel 3-nor-2,3-seco-labdane type diterpene from the fungus Penicillium oxalicum TW01-1. Tetrahedron Letters, 56, 5013–5016 (2015).
  • S. Schulz and J.S. Dickschatb, Bacterial volatiles: the smell of small organisms. National Product Reports, 24, 814–842 (2007).
  • T.O. Larsen and L.C. Frisvad, Characterization of volatile metabolites from 47 Penicillium taxa. Mycological Research, 99, 1153–1166 (1995).
  • D. Saîdana, M.A. Mahjoub, O. Boussaada, J. Chriaa, I. Chéraif, M. Daami, Z. Mighri and A.N. Helal, Chemical composition and antimicrobial activity of volatile compounds of Tamarixboveana (Tamaricaceae). Microbiological Research, 163, 445–455 (2008).
  • J.M. Wilkinson, M. Hipwell, T. Ryan and H.A. Cavanagh, Bioactivity of Backhousia citriodora: antibacterial and antifungal activity. Journal of Agricultural and Food Chemistry, 51, 76–81 (2003).
  • J. Deng, B. He, D. He and Z. Chen, A potential biopreservative: chemical composition, antibacterial and hemolytic activities of leaves essential oil from Alpinia guinanensis. Guinanensis Industrial Crops and Products, 94, 281–287 (2016).
  • A.B. Souza, M.G. Souza, M.A. Moreira, M.R. Moreira, N. Furtado, C.H. Martins, J.K. Bastos, R.A. Dos Santos, V.C. Heleno, S.R. Ambrosio and R. Veneziani, Antimicrobial evaluation of diterpenes from Copaifera langsdorffii Oleoresin against periodontal anaerobic bacteria. Molecules, 16, 9611–9619 (2011).
  • M. Singh, M. Pal and R.P. Sharma, Biological activity of the labdane type diterpenes. Planta Medica, 65, 2–8 (1999).
  • E.A. Kurashov, E.V. Fedorova, J.V. Krylova and G.G. Mitrukova, Assessment of the potential biological activity of low molecular weight metabolites of fresh water macrophytes with QSAR. Scientifica, 2016, 1–9 (2016).
  • L.L.D. Da Silva, M.S. Nascimento, A.J. Cavalheiro, D.H.S. Silva, I. Castro-Gamboa, M. Furlan and V.B. Da Silva, Antibacterial activity of labdane diterpenoids from Stemodia foliosa. Journal of Natural Products, 71, 1291–1293 (2008).
  • E. Kalpoutzakis, N. Aligiannis, S. Mitaku, I. Chinou, C. Charvala and A.L. Skaltsounis, New hemisynthetic manoyl oxide derivatives with antimicrobial activity. Chemical and Pharmaceutical Bulletin, 49, 814–817 (2001).
  • M.H. Farjama, A. Rustaiyan, E. Ezzatzadeh and A.R. Jassbi, Labdane-type diterpene and two flavones from Salvia Sharifi Rech. f. and Esfan. and their biological activities. Iranian Journal of Pharmaceutical Research, 12, 395–399 (2013).
  • A. Urzúa, M.C. Rezende, C. Mascayano and L. Vásquez, A structure-activity study of antibacterial diterpenoids. Molecules, 13, 882–891 (2008).
  • M.R. Moreira, A.B. Souza, M.A. Moreira, T.C. Bianchi, L.J. Carneiro, F.T. Estrela, R.A. Dos Santos, A.H. Januário, C.H.G. Martins, S.R. Ambrosio and R.C.S. Veneziani, RP-HPLC analysis of manool-rich Salvia officinalis extract and its antimicrobial activity against bacteria associated with dental caries. Revista Brasileira De Farmacognosia, 23, 870–876 (2013).
  • A. Ulubelen, G. Topcu, C. Eris, U. Sônmez, M. Kartal, S. Kurucu and C.B. Johansso, Terpenoids from Salvia sclarea. Phytochemistry, 36, 971–974 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.