269
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural similarities of phytochemicals significantly contribute to species delimitation of Nigella and Garidella (Ranunculaceae)

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 11-23 | Received 03 Nov 2021, Accepted 25 Oct 2022, Published online: 21 Nov 2022

References

  • B. Nickavar. Chemical composition of the fixed and volatile oils of Nigella sativa L. from Iran. Zeitschrift für Naturforschung C, 58(9–10), 629–631. (2003). 10.1515/znc-2003-9-1004.
  • C.P. Khare, Indian Medicinal Plants: An Illustrated Dictionary. Berlin/Heidelberg: Springer Science & Business Media. (2008).
  • S.K. Malhotra and K.V. Peter, Handbook of Herbs and Spices. Woodhead Publishing Ltd, Cambridge. (2006)Vol. 2pp. 206–214.
  • M. Tariq. Nigella sativa seeds: folklore treatment in modern day medicine. Saudi Journal of Gastroenterology: Official Journal of the Saudi Gastroenterology Association, 14(3), 105. (2008). 10.4103/1319-3767.41725.
  • B. Salih, T. Sipahi and E.O. Dönmez. Ancient nigella seeds from Boyalı Höyük in north-central Turkey. Journal of Ethnopharmacology, 124(3), 416–420. (2009). 10.1016/j.jep.2009.05.039.
  • A.M. Al-Othman. Effect of dietary supplementation of Elettaria cardamomum and Nigella sativa on the toxicity of rancid corn oil in rats. International Journal of Pharmacology, 2(1), 60–65. (2006). 10.3923/ijp.2006.60.65.
  • C.C. Woo. Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-γ pathway. Biochemical Pharmacology, 82(5), 464–475. (2011). 10.1016/j.bcp.2011.05.030.
  • A. Sahebkar. Nigella sativa (black seed) effects on plasma lipid concentrations in humans: a systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacological Research, 106, 37–50. (2016). 10.1016/j.phrs.2016.02.008.
  • A.F. Majdalawieh and M.W. Fayyad. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: a comprehensive review. International immunopharmacology, 28(1), 295–304. (2015). 10.1016/j.intimp.2015.06.023.
  • B. Elibol. Thymoquinone (TQ) demonstrates its neuroprotective effect via an anti-inflammatory action on the a β (1–42)-infused rat model of Alzheimer’s disease. Psychiatry and Clinical Psychopharmacology, 29(4), 379–386. (2019). 10.1080/24750573.2019.1673945.
  • A.-U.H Gilani, Q. Jabeen and M.A.U. Khan. A review of medicinal uses and pharmacological activities of Nigella sativa. Pakistan Journal of Biological Sciences: PJBS, 7(4), 441–451. (2004). 10.3923/pjbs.2004.441.451.
  • K.E.-D.H El-Tahir and D.M. Bakeet. The black seed Nigella sativa Linnaeus – a mine for multi cures: a plea for urgent clinical evaluation of its volatile oil. Journal of Taibah University Medical Sciences, 1(1), 1–19. (2006). 10.1016/S1658-3612(06)70003-8.
  • L.A. Mbarek. Anti-tumor properties of blackseed (Nigella sativa L.) extracts. Brazilian Journal of Medical and Biological Research, 40(6), 839–847. (2007). 10.1590/S0100-879X2006005000108.
  • N. Li. Fatty acid and lipid transport in plant cells. Trends in plant science, 21(2), 145–158. (2016). 10.1016/j.tplants.2015.10.011.
  • S. Dussert. Effectiveness of the fatty acid and sterol composition of seeds for the chemotaxonomy of coffea subgenus coffea. Phytochemistry, 69(17), 2950–2960. (2008). 10.1016/j.phytochem.2008.09.021.
  • A.P.D.S. Silva. . Biochemistry and Health Benefits of Fatty Acids. In: Biochemistry and Health Benefits of Fatty Acids, Edits., Viduranga Y. Waisundara, London (2018). ISBN: 978-1-78984-873-1.
  • E. Defossez. Spatial and evolutionary predictability of phytochemical diversity. Proceedings of the National Academy of Sciences of the United States of America, 118(3), 1–7. (2021). 10.1073/pnas.2013344118.
  • S.R. Jensen, H. Franzyk and E. Wallander. Chemotaxonomy of the Oleaceae: iridoids as taxonomic markers. Phytochemistry, 60(3), 213–231. (2002). 10.1016/S0031-9422(02)00102-4.
  • S. Ankanna, D. Suhrulatha and N. Savithramma. Chemotaxonomical studies of some important monocotyledons. Botany Research International, 5(4), 90–96. (2012).
  • O. Sarangowa. Flavonol glycosides in the petal of rosa species as chemotaxonomic markers. Phytochemistry, 107, 61–68. (2014). 10.1016/j.phytochem.2014.08.013.
  • A.P. de Candolle, Essai sur les propriétés médicales des plantes, comparées avec leurs formes extérieures et leur classification naturelle. In: Par AP Decandolle, pp. 103–116., Paris, De l’imprimerie de Didot Jeune (1804).
  • J.B. McNair. Angiosperm phylogeny on a chemical basis. Bulletin of the Torrey Botanical Club, 62(9), 515–532. (1935). 10.2307/2481192.
  • C.A. Stace, Plant Taxonomy and Biosystematics. Cambridge, Cambridge University Press. (1991).
  • T.F. Stuessy, Plant Taxonomy: The Systematic Evaluation of Comparative Data. New York: Columbia University Press. (2009).
  • M. Wink and P.G. Waterman. Chemotaxonomy in relation to molecular phylogeny of plants. Annual Plant Reviews Online 2 . 295–335. (2018).
  • K. Aitzetmüller. Wien, Springer, Vol. 9, pp. 229–240 (1995).
  • T. Dias, S.P. Gaudêncio and F. Pereira. A computer-driven approach to discover natural product leads for methicillin-resistant Staphylococcus aureus infection therapy. Marine drugs, 17(1), 16. (2018). 10.3390/md17010016.
  • D. Karade. Design of novel drug-like molecules using informatics rich secondary metabolites analysis of Indian medicinal and aromatic plants. Combinatorial Chemistry & High Throughput Screening, 23(10), 1113–1131. (2020). 10.2174/1386207323666200606211342.
  • X. Moreira. Plant domestication decreases both constitutive and induced chemical defences by direct selection against defensive traits. Scientific reports, 8(1), 1–11. (2018). 10.1038/s41598-018-31041-0.
  • G. Carrillo-Galván. Domestication of aromatic medicinal plants in Mexico: Agastache (Lamiaceae)—an ethnobotanical, morpho-physiological, and phytochemical analysis. Journal of Ethnobiology and Ethnomedicine, 16(1), 1–16. (2020). 10.1186/s13002-020-00368-2.
  • M. Mohammadi Bazargani, M. Falahati-Anbaran and J. Rohloff. Comparative analyses of phytochemical variation within and between congeneric species of willow herb, Epilobiumhirsutum and E. parviflorum: contribution of environmental factors. Frontiers in plant science, 11(February), 1–16. (2021). 10.3389/fpls.2020.595190.
  • A.A. Dönmez, Z.U. Aydın and E.O. Dönmez. Taxonomic monograph of the tribe Nigelleae (Ranunculaceae): a group including ancient medicinal plants. Turkish Journal of Botany, 45(5), 468–502. (2021). 10.3906/bot-2105-39.
  • F.W. McLafferty and D.B. Stauffer. The Wiley/NBS Registry of Mass Spectral Data. J Wiley and Sons, New York. (1989).
  • D.H. Hochmuth. MassFinder 4.0. Hochmuth Scientific Consulting, Hamburg, Germany. (2008).
  • P.J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. (1987). 10.1016/0377-0427(87)90125-7.
  • J.H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. (1963). 10.1080/01621459.1963.10500845.
  • I. Patil and C. Powell. ggstatsplot. “Ggplot2 Based Plots with Statistical Details. CRAN, p. 10. (2018). doi.
  • Z. Gu, R. Eils and M. Schlesner. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 32(18), 2847–2849. (2016). 10.1093/bioinformatics/btw313.
  • S. Lê, J. Josse and F. Husson. FactoMiner: an R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. (2008). 10.18637/jss.v025.i01.
  • R. Suzuki and H. Shimodaira. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics, 22(12), 1540–1542. (2006). 10.1093/bioinformatics/btl117.
  • Y. Djoumbou Feunang. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. Journal of Cheminformatics, 8(1), 1–20. (2016). 10.1186/s13321-016-0174-y.
  • M. Lovric, J.S. Molero and R. Kern. PySpark and RDKit: moving towards big data in cheminformatics. Molecular informatics, 38(6), 1800082. (2019). 10.1002/minf.201800082.
  • R. Gols. Temporal changes affect plant chemistry and tritrophic interactions. Basic and Applied Ecology, 8(5), 421–433. (2007). 10.1016/j.baae.2006.09.005.
  • R.N. Kigathi. Plant volatile emission depends on the species composition of the neighboring plant community. BMC plant biology, 191, 1–17. (2019). 10.1186/s12870-018-1541-9.
  • L. Kokoska. Chemical composition of the essential oil of Nigella orientalis L. seeds. Flavour and fragrance journal, 20(4), 419–420. (2005). 10.1002/ffj.1449.
  • A. Moretti, L.F. D’Antuono and S. Elementi. Essential oils of Nigella sativa L. and Nigella damascena L. seed. Journal of Essential Oil Research, 16(3), 182–183. (2004). 10.1080/10412905.2004.9698690.
  • A.A. Dönmez and B. Mutlu. A new species of Nigella (Ranunculaceae) from Turkey. Botanical Journal of the Linnean Society, 146(2), 251–255. (2004). 10.1111/j.1095-8339.2004.00325.x.
  • H. Rchid. Volatile components of Nigella damascena L. and Nigella sativa L. seeds. Journal of Essential Oil Research, 16(6), 585–587. (2004). 10.1080/10412905.2004.9698804.
  • Z. Uğurlu Aydın and A.A. Dönmez. Numerical analyses of seed morphology and its taxonomic significance in the tribe Nigelleae (Ranunculaceae). Nordic Journal of Botany, 375, (2019). 10.1111/njb.02323.
  • A.E. Edris. Evaluation of the volatile oils from different local cultivars of Nigella sativa L. grown in Egypt with emphasis on the effect of extraction method on thymoquinone. Journal of Essential Oil Bearing Plants, 13(2), 154–164. (2010). 10.1080/0972060X.2010.10643805.
  • I. Zribi, F. Omezzine and R. Haouala. Variation in phytochemical constituents and allelopathic potential of Nigella sativa with developmental stages. South African Journal of Botany, 94, 255–262. (2014). 10.1016/j.sajb.2014.07.009.
  • A. Koshak, E. Koshak and M. Heinrich. Medicinal benefits of Nigella sativa in bronchial asthma: a literature review. Saudi pharmaceutical journal, 25(8), 1130–1136. (2017). 10.1016/j.jsps.2017.07.002.
  • S. Saxena. Genetic diversity in fatty acid composition and antioxidant capacity of Nigella sativa L. genotypes. LWT, 78, 198–207. (2017). 10.1016/j.lwt.2016.12.033.
  • C. Bittkau and H.P. Comes. Molecular inference of a late Pleistocene diversification shift in Nigella s. lat.(Ranunculaceae) resulting from increased speciation in the Aegean archipelago. Journal of Biogeography, 36(7), 1346–1360. (2009). 10.1111/j.1365-2699.2008.02003.x.
  • A.G. Heiss. Seed morphology of Nigella sl (Ranunculaceae): identification, diagnostic traits, and their potential phylogenetic relevance. International Journal of Plant Sciences, 172(2), 267–284. (2011). 10.1086/657676.
  • V.I. Babushok, P.J. Linstrom and I.G. Zenkevich. Retention indices for frequently reported compounds of plant essential oils. Journal of Physical and Chemical Reference Data, 40(4), 043101. (2011). 10.1063/1.3653552.
  • The Pherobase Database. http://www.pherobase.com/database/kovats/kovatsdetailsulcatone.php (22 October. 2021)
  • PubChem Database. https://pubchem.ncbi.nlm.nih.gov/22 October. 2021)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.