381
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Essential oil components with antidiabetic and anti-obesity properties: a review of mechanisms of action and toxicity

ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon & show all
Pages 335-371 | Received 06 Jul 2022, Accepted 05 Jul 2023, Published online: 17 Jul 2023

References

  • A. Chobot, K. Górowska-Kowolik, M. Sokołowska and P. Jarosz-Chobot, Obesity and diabetes-Not only a simple link between two epidemics. Diabetes/Metabolism Research and Reviews, 34(7), e3042 (2018). doi: 10.1002/dmrr.3042.
  • D. Aune, N. Keum, E. Giovannucci, L.T. Fadnes, P. Boffetta, D.C. Greenwood, S. Tonstad, L.J. Vatten, E. Riboli and T. Norat, Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ, 353, i2716 (2016 Jun 14). doi: 10.1136/bmj.i2716. PMID: 27301975; PMCID: PMC4908315.
  • E.R. Pulgaron and A.M. Delamater, Obesity and Type 2 Diabetes in Children: Epidemiology and Treatment. Current Diabetes Reports, 14(8), 508 (2014). doi: 10.1007/s11892-014-0508-y.
  • J.P. Wilding, The importance of weight management in Type 2 diabetes mellitus. International Journal of Clinical Practice, 68(6), 682–691 (2014). doi: 10.1111/ijcp.12384.
  • D.R. Leitner, G. Frühbeck, V. Yumuk, K. Schindler, D. Micic, E. Woodward and H. Toplak, Obesity and Type 2 diabetes: Two diseases with a need for combined treatment strategies - EASO can Lead the Way. Obesity Facts, 10(5), 483–492 (2017). doi: 10.1159/000480525.
  • S.N. DuBose, J.M. Hermann, W.V. Tamborlane, R.W. Beck, A. Dost, L.A. DiMeglio, K.O. Schwab, R.W. Holl, S.E. Hofer, D.M. Maahs, S. Willi, T. Lipman, T. Calvano, O. Kucheruk, P. Minnock, C. Nguyen, G. Klingensmith, C. Banion, J. Barker, C. Cain, P. Chase, S. Hoops, M. Kelsy, G. Klingensmith and D. Maahs. Type 1 diabetes exchange clinic network and diabetes prospective follow-up registry. Obesity in youth with Type 1 diabetes in Germany, Austria, and the United States. The Journal of Pediatrics. 167(3), 627-32.e1–4 (2015 Sep). doi: 10.1016/j.jpeds.2015.05.046. Epub 2015 Jul 8. PMID: 26164381.
  • K.E. Minges, R. Whittemore, S.A. Weinzimer, M.L. Irwin, N.S. Redeker and M. Grey, Correlates of overweight and obesity in 5529 adolescents with type 1 diabetes: the T1D Exchange Clinic Registry. Diabetes Research & Clinical Practice, 126, 68–78 (2017). doi: 10.1016/j.diabres.2017.01.012.
  • N. Vilarrasa, P. San Jose, M.Á. Rubio and A. Lecube, Obesity in patients with Type 1 diabetes: Links, risks and management challenges. Diabetes Metabolic Syndrome and Obesity: Targets and Therapy, 14, 2807–2827 (2021). doi: 10.2147/DMSO.S223618.
  • S.O. Oyedemi, K. Eze, O.A. Aiyegoro, R.C. Ibeh, G.C. Ikechukwu, S.S. Swain, E. Ejiofor and B.O. Oyedemi, Computational, chemical profiling and biochemical evaluation of antidiabetic potential of Parkia biglobosa stem bark extract in type 2 model of rats. Journal of Biomolecular Structure & Dynamics, 40(20), 9948–9961 (2021a). doi: 10.1080/07391102.2021.1938228.
  • T. Reinehr, Type 2 diabetes mellitus in children and adolescents. World Journal of Diabetes, 4(6), 270–281 (2013). doi: 10.4239/wjd.v4.i6.270.
  • S.O. Oyedemi, B.O. Oyedemi, I.I. Ijeh, P.E. Ohanyerem, M.R. Coopoosamy and O.A. Aiyegoro, Alpha-amylase inhibition and antioxidative capacity of some antidiabetic plants used by the traditional healers in Southeastern Nigeria. Scientific World Journal, 2017, 1–11 (2017). doi: 10.1155/2017/3592491.
  • S.O. Onoja, G. Daniel-Igwe, E. Ejiofor, C.C. Mbakwe, U.S. Okeke, M.I. Ezeja, Y.N. Omeh and I.U. Asuzu, Hypolipidemic, hepatoprotective, nephroprotective and anti-lipid peroxidation properties of a methanol extract of Paullinia pinnata root-bark, in alloxan-induced hyperglycemic rats. Current Issues in Pharmacy and Medical Sciences, 32(3), 125–129 (2019). doi: 10.2478/cipms-2019-0023.
  • A. Chaudhury, C. Duvoor, V.S. Reddy Dendi, S. Kraleti, A. Chada, R. Ravilla, A. Marco, N.S. Shekhawat, M.T. Montales, K. Kuriakose, A. Sasapu, A. Beebe, N. Patil, C.K. Musham, G.P. Lohani and W. Mirza, Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Frontiers in Endocrinology, 8, 6 (2017). doi: 10.3389/fendo.2017.00006.
  • S.O. Oyedemi, P. Atanes, O.A. Aiyegoro, S.O. Amoo, S.S. Swain and S.J. Persaud, In vitro profiling and functional assessments of the anti-diabetic capacity of phenolic-rich extracts of Bulbine natalensis and Bulbine frutescens. Diabetic Medicine: A Journal of the British Diabetic Association, (2), e14770 (2021b). doi: 10.1111/dme.14770.
  • International Diabetes Federation, IDF Diabetes Atlas 9th. Atlas de la Diabetes de la FID, Brussels (2019).
  • R. Eke, E. Ejiofor, S. Oyedemi, S. Onoja and N. Omeh, Evaluation of nutritional composition of Citrullus lanatus Linn. (watermelon) seed and biochemical assessment of the seed oil in rats. Journal of Food Biochemistry, 45(6), e13763 (2021). doi: 10.1111/jfbc.13763.
  • World Health Organization. Diabetes Country Profile. World Health Organization (2016). http://www.who.int/diabetes/country-profiles/idn_en.pdf
  • E.C. Luna, I.S. Luna, L. Scotti, A.F.M. Monteiro, M.T. Scotti, R.O. de Moura, R.S.A de Araújo, K.L.C. Monteiro, T.M. de Aquino, F.F. Ribeiro and F.J.B. Mendonça, Active essential oils and their components in use against neglected diseases and Arboviruses. Oxidative Medicine and Cellular Longevity, 2019, 1–52 (2019). doi: 10.1155/2019/6587150.
  • B. Onyedikachi, E. Ejiofor, C. Njoku, M. Ejiofor and K. Michael, GC-MS characterization, in vitro antioxidant and anti-inflammatory activities of essential oil from the leaves of Stachytarpheta jamaicensis. Journal of the Mexican Chemical Society, 66(4), 433–443 (2022). doi: 10.29356/jmcs.v66i4.1822.
  • B.E. Omoruyi, A.J. Afolayan and G. Bradley, Chemical composition profiling and antifungal activity of the essential oil and plant extracts of Mesembryanthemum edule (L.) bolus leaves. African Journal of Traditional, Complementary and Alternative Medicines, 11(4), 19–30 (2014). doi: 10.4314/ajtcam.v11i4.4.
  • M. Sharifi-Rad, B. Salehi, J. Sharifi-Rad, W.N. Setzer and M. Iriti, Pulicaria vulgaris Gaertn. Essential oil: An alternative or complementary treatment for Leishmaniasis. Cellular and Molecular Biology, 64(8), 18–21 (2018). doi: 10.14715/cmb/2018.64.8.3. (Noisy-leGrand, France).
  • M.T. Islam, M. Martorell, B. Salehi, W.N. Setzer and J. Sharifi-Rad, Anti-Schistosoma mansoni effects of essential oils and their components. Phytotherapy Research: PTR, 1–9 (2020). doi:10.1002/ptr.6643.
  • B. Deepa and C. Anuradha, Linalool, a plant derived monoterpene alcohol, Rescues kidney from diabetes-induced Nephropathic changes via blood glucose Reduction. Diabetologia Croatica, 40-4, 121–137 (2011).
  • R. Sandhya, Essential oils in the management of diabetes mellitus. International Journal of Science and Research, 6(7), 1321–1326 (2015).
  • W. Dhifi, S. Bellili, S. Jazi, N. Bahloul and W. Mnif, Essential Oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines (Basel, Switzerland), 3(4), 25 (2016). doi: 10.3390/medicines3040025.
  • A. Jelassi, M. Hassine, M. Besbes Hlila and H. Ben Jannet, Chemical cOMPOSITION, ANTIOXIDANT PROPERTIES, Α-GLUCOSIDASE INHIBITORY, AND ANTIMICROBIAL ACTIVITY OF ESSENTIAL OILS FROM ACACIA MOLLISSIMA AND ACACIA CYCLOPS CULTIVated in Tunisia. Chemistry & Biodiversity, 14(10), e1700252 (2017Oct). doi: 10.1002/cbdv.201700252. Epub 2017 Oct 16. PMID: 28670852.
  • M. Lee, Y. Chen, J. Tsai, S. Wang, T. Watanabe and Y. Tsai, Inhibitory effect of β-asarone, a component of acorus calamus essential oil, on inhibition of adipogenesis in 3T3-L1 cells. Food Chemistry, 126(1), 1–7 (2011). doi: 10.1016/j.foodchem.2010.08.052.
  • S.A. Adefegha, T.A. Olasehinde and G. Oboh, Essential oil composition, antioxidant, antidiabetic and antihypertensive properties of two Afromomum species. Journal of Oleo Science, 66(1), 51–63 (2017). 10.5650/jos.ess16029. Epub 2016 Dec 8. PMID: 27928138.
  • Y.A. Selim and M.I. Sakeran, Effect of time distillation on chemical constituents and anti-diabetic activity of the essential oil from dark green parts of Egyptian Allium ampeloprasum L. Journal of Essential Oil Bearing Plants, 17(5), 838–846 (2014). doi: 10.1080/0972060X.2014.935064.
  • M. Fatouma, A. Ayoub, O. Khadija, B. Nabila, M. Jalludin and T. Ainane, In Vitro antidiabetic activity of essential oil of two species of Artemisia: Artemisia heba-alba asso and Artemisia ifranensis. Pharmacologyonline, 3, 812–820 (2021).
  • H. Hajlaoui, S. Arraouadi, E. Noumi, K. Aouadi, M. Adnan, M.A. Khan, A. Kadri and M. Snoussi, Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of CARUm carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination. Molecules (Basel, Switzerland), 26(12), 3625 (2021). doi: 10.3390/molecules26123625.
  • A. Sen, M. Kurkcuoglu, A. Yildirim, I. Senkardes, L. Bitis and C.H. Can Baser, Chemical composition, antiradical, and enzyme inhibitory potential of essential oil obtained from aerial part of Centaurea pterocaula Trautv. Journal of Essential Oil Research, 33(1), 44–52 (2021). doi: 10.1080/10412905.2020.1839585.
  • S. Kumar, N. Vasudeva and S. Sharma, GC-MS analysis and screening of antidiabetic, antioxidant and hypolipidemic potential of Cinnamomum tamala oil in streptozotocin induced diabetes mellitus in rats. Cardiovascular Diabetology, 11(1), 95 (2012 Aug 10). doi: 10.1186/1475-2840-11-95. PMID: 22882757; PMCID: PMC3461457.
  • S. Asnaashari, A. Delazar, B. Habibi, R. Vasfi, L. Nahar, S. Hamedeyazdan and S.D. Sarker, Essential oil from Citrus aurantifolia prevents ketotifen-induced weight-gain in mice. Phytotherapy Research: PTR, 24(12), 1893–1897 (2010). doi: 10.1002/ptr.3227.
  • Y. Parichehr, P. Kazem and M. Haftsavar, Effects of citrus aurantifolia peel essential oil on serum cholesterol levels in Wistar rats. Journal of Paramedical Sciences, 2(1), 29–32 (2011).
  • F.A. Ibrahim, L.A. Usman, J.O. Akolade, O.A. Idowu, A.T. Abdulazeez and A.O. Amuzat, Antidiabetic potentials of citrus aurantifolia leaf essential oil. Drug Research (Stuttg). 69(4), 201–206 (2019 Apr). doi: 10.1055/a-0662-5607. Epub 2018 Oct 1. PMID: 30273946.
  • L. Jing, Y. Zhang, S. Fan, M. Gu, Y. Guan, X. Lu, C. Huang and Z. Zhou, Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity. European Journal of Pharmacology, 715(1–3), 46–55 (2013 Sep 5). doi: 10.1016/j.ejphar.2013.06.022. Epub 2013 Jul 6. PMID: 23838456.
  • G. Oboh, T.A. Olasehinde and A.O. Ademosun, Inhibition of enzymes linked to type-2 diabetes and hypertension by essential oils from peels of orange and lemon. International Journal of Food Properties, 20(sup1), S586–S594 (2017). doi: 10.1080/10942912.2017.1303709.
  • H. Hajlaoui, S. Arraouadi, K. Aouadi, M. Snoussi, E. Noumi and A. Kadri, GC-MS Profile, α-glucosidase inhibition potential, antibacterial and antioxidant evaluation of peels Citrus aurantium (L), essential oil. Journal of Pharmaceutical Research International, 33(60B), 1580–1591, 2021 (2021b). Article no. JPRI.8155. doi: 10.9734/jpri/2021/v33i60B34781.
  • H. Neveen, A. Nabila, S.M. Gamila, S. Mohamed, Y. Mona, T. Lamia, M. Fatma and N. Shaffie, Efficacy of Coriandrum Sativum L. essential oil as antidiabetic. 3646. Journal of Applied Sciences Research, 8(7), 3646–3655 (2012).
  • H.U. Tahi, R.A. Sarfraz, A. Ashraf and S. Adil, Chemical Composition and Antidiabetic Activity of Essential Oils Obtained from Two Spices (Syzygium aromaticum and Cuminum cyminum). International Journal of Food Properties, 19(10), 2156–2164 (2016). doi: 10.1080/10942912.2015.1110166.
  • S. Asgary, G.A. Naderi, M.R. Shams Ardekani, A. Sahebkar, A. Airin, S. Aslani, T. Kasher and S.A. Emami, Chemical analysis and biological activities of Cupressus sempervirens Var. Horizontalis Essential Oils. Le Pharmacien biologiste. 51(2), 137–144 (2013 Feb). doi: 10.3109/13880209.2012.715168. Epub 2012 Nov 20. PMID: 23167275.
  • P.C. Lekshmi, R. Arimboor, P.S. Indulekha and A.N. Menon, Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes. International Journal of Food Sciences and Nutrition. 63(7), 832–834 (2012 Nov). doi: 10.3109/09637486.2011.607156. Epub 2012 Mar 5. PMID: 22385048.
  • B. André, J.S. Emilly, V.F. Jéssica, R.D. Leonard, S.L. Emerson, P.B. Daniel, R.S. Elzalina, R. Bruna, V.C. Emmanoel, L.B. Maria, A.B. Giovana, M.A. Felipe, M.D. Nállaret, F.C. José and H.F. Hector, Cytotoxicity and Lipase Inhibition of Essential Oils from Amazon Annonaceae Species. Chemistry, 4(4), 1208–1225 (2022). doi: 10.3390/chemistry4040081.
  • N. Nazir, M. Zahoor, F. Uddin, and M. Nisar, Chemical composition, in vitro antioxidant, anticholinesterase, and antidiabetic potential of essential oil of Elaeagnus umbellata Thunb. BMC Complement Med Ther 21, 73 (2021). doi: 10.1186/s12906-021-03228-y.
  • F. Hichri, A. Omri Hichri, M. Maha, A. Saad Mana Hossan, G. Flamini and H. Ben Jannet, Chemical composition, antibacterial, antioxidant and in vitro antidiabetic activities of essential oils from Eruca vesicaria. Chemistry & Biodiversity. 16(8), e1900183 (2019 Aug). doi: 10.1002/cbdv.201900183. Epub 2019 Jul 30. PMID: 31361076.
  • S. Basak and F. Candan. Chemical composition and In vitro antioxidant and antidiabetic activities of Eucalyptus Camaldulensis Dehnh. Essential oil. JICS 7, 216–226 (2010). doi: 10.1007/BF03245882
  • A. Jerbi, A. Derbali, A. Elfeki and M. Kammoun, Essential Oil composition and biological activities of Eucalyptus Globulus Leaves Extracts from Tunisia. Journal of Essential Oil Bearing Plants, 20(2), 438–448 (2017). doi: 10.1080/0972060X.2017.1304832.
  • Y.I. ElAchaouia, J. Fakhfakh, M. Adhar, M. Affes, S. Tounsi and N. Allouche, Determination of chemical composition, antioxidant, antibacterial and antidiabetic activities during maturation of FICUS-CARICA STEMS BARKS ESSENTIAL OIls. Chemistry Africa, 6(3), 1163–1173 (2023). doi: 10.1007/s42250-023-00600-y.
  • N. El-Soud, N. El-Laithy, G. El-Saeed, M. Wahby, M. Khalil, F. Morsy and N. Shaffie, Antidiabetic activities of Foeniculum Vulgare Mill. essential oil in streptozotocin-induced diabetic rats. Macedonian Journal of Medical Sciences, 4(2), 139–146 (2011). doi: 10.3889/MJMS.1857-5773.2011.0173.
  • M. Tian, X. Wu, T. Lu, X. Zhao, F. Wei, G. Deng and Y. Zhou, Phytochemical Analysis, Antioxidant, Antibacterial, Cytotoxic, and Enzyme Inhibitory Activities of Hedychium flavum Rhizome. Frontiers in Pharmacology, 11, 572659 (2020 Sep 17). doi: 10.3389/fphar.2020.572659. PMID: 33041813; PMCID: PMC7528636.
  • Y. Hong, X. Liu, H. Wang, M. Zhang and T. Minyi, Chemical Composition, Antibacterial, Enzyme-Inhibitory, and Anti-Inflammatory Activities of Essential Oil from Hedychiumpuerense Rhizome. Agronomy, 11. 2506(12), 2506 (2021). doi: 10.3390/agronomy11122506.
  • H. Keskes, M. Kais, H. Khaled, M. Damak, E. Abdelfattah and A. Noureddine, In vitro antidiabetic, anti-obesity and antioxidant proprieties of Juniperus phoenicea L. leaves from Tunisia. Asian Pacific Journal of Tropical Biomedicine, 4, 789–795 (2014). doi: 10.12980/APJTB.4.201414B114.
  • T. Begum, R. Gogoi, N. Sarma, S.K. Pandey and M. Lal, Direct sunlight and partial shading alter the quality, quantity, biochemical activities of Kaempferia parviflora Wall., ex Baker rhizome essential oil: A high industrially important species. Industrial Crops and Products, 180, 114765 (2022). doi: 10.1016/j.indcrop.2022.114765.
  • S.N. Najibullah, J. Ahamad, A. Ahmed, S. Sultana and S. Sultana, Chemical Characterization and α-Glucosidase Inhibitory Activity of Essential Oil of Lavandula angustifolia Flowers. Journal of Essential Oil Bearing Plants, 24(3), 431–438 (2021). doi: 10.1080/0972060X.2021.1942233.
  • H. Sebai, S. Selmi, K. Rtibi, A. Souli, N. Gharbi and M. Sakly, Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids in Health and Disease, 12(1), 189 (2013). doi: 10.1186/1476-511X-12-189.
  • A.A. Ya’ni, O.A. Eldahshan, S.A. Hassan, Z.A. Elwan and H.M. Ibrahim, Antidiabetic-effects-of-essential-oils-of-some-selected-medicinal-lamiaceae-plants-from-yemen-against-a-glucosidase-enzyme. Journal of Phytochemistry Biochemistry, 2(1), 1–5 (2018).
  • P.R. Quiroga, N.R. Grosso, A. Lante, G. Lomolino, J.A. Zygadlo and V. Nepote, Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia turbinata essential oils. International Journal of Food Science & Technology, 48(3), 642–649 (2013). doi: 10.1111/ijfs.12011.
  • L. González-Palomares, M. Gómez-Barroso, M.A. Vargas-Vargas, C. Cortés-Rojo, A. Saavedra-Molina, R. Salgado-Garciglia and R.M. Pérez, Beneficial Effects of the Melaleuca Alternifolia Essential Oil in the Treatment of Diabetic Ulcers. FASEB Journal, 34(S1), 1–1 (2020). doi: 10.1096/fasebj.2020.34.s1.06404.
  • M. Chung, S. Cho, M. Bhuiyan, K. Kim and S. Lee, Antidiabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice. The British Journal of Nutrition, 104(2), 180–188 (2010). doi: 10.1017/S0007114510001765.
  • S.A. Abdellatief, R.R. Beheiry and S.A.M. El-Mandrawy, Peppermint essential oil alleviates hyperglycemia caused by streptozotocin-nicotinamide-induced type 2 diabetes in rats. Biomedicine & Pharmacotherapy, 95, 990–999 (2017). doi: 10.1016/j.biopha.2017.09.020. Epub 2017 Sep 12. PMID: 28922713.
  • Z.I. Noor, D. Ahmed, H.M. Rehman, M.T. Qamar, M. Froeyen, S. Ahmad and M.U. Mirza, In vitro antidiabetic, anti-obesity and antioxidant analysis of ocimum basilicum aerial biomass and in silico molecular docking simulations with alpha-amylase and lipase enzymes. Biology (Basel), 8(4), 92 (2019 Dec 4). doi: 10.3390/biology8040092. PMID: 31817095; PMCID: PMC6955989.
  • R. Siahbalaei, G. Kavoosi and R. Shakeri, In vitro antioxidant and antidiabetic activity of essential oils encapsulated in gelatin-pectin particles against sugar, lipid and protein oxidation and amylase and glucosidase activity. Food Science & Nutrition, 8(12), 6457–6466 (2020). doi: 10.1002/fsn3.1935.
  • J. Nidal, M. Hawash, M. Qadi, M. Abualhasan, A. Odetallah, G. Qasim, R. Awayssa, A. Akkawi, I. Abdullah and N. Al-Maharik, Chemical Markers and Pharmacological Characters of Pelargonium graveolens Essential Oil from Palestine. Molecules, 27(17), 5721 (2022). doi: 10.3390/molecules27175721.
  • J. Ahamad and S. Uthirapathy, Chemical characterization and antidiabetic activity of essential oils from Pelargonium graveolens leaves. ARO-The Scientific Journal Of Koya University, 9(1), 109–113. doi: 10.14500/aro.10791 (2021).
  • M. Boukhris, M. Bouaziz, I. Feki, H. Jemai, A. El Feki and S. Sayadi, Hypoglycemic and antioxidant effects of leaf essential oil of Pelargonium graveolens L’Hér. in alloxan induced diabetic rats. Lipids in Health and Disease, 11(1), 81 (2012). doi: 10.1186/1476-511x-11-81.
  • J.H. Kim, H.J. Lee, S.J. Jeong, M.H. Lee and S.H. Kim, Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase. Phytotherapy Research: PTR. 26(9), 1314–1319 (2012 Sep). doi: 10.1002/ptr.3734. Epub 2012 Jan 25. PMID: 22275303.
  • S. Kumar, S. Sharma and N. Vasudeva, Screening of antidiabetic and antihyperlipidemic potential of oil from Piper longum and piperine with their possible mechanism. Expert Opinion on Pharmacotherapy. 14(13), 1723–1736 (2013 Sep). doi: 10.1517/14656566.2013.815725. Epub 2013 Jul 23. PMID: 23875561.
  • M.J. Chung, K.W. Park, K.H. Kim, C.T. Kim, J.P. Baek, K.H. Bang, Y.M. Choi and S.J. Lee, Asian plantain (Plantago asiatica) essential oils suppress 3-hydroxy-3-methyl-glutaryl-co-enzyme a reductase expression in vitro and in vivo and show hypocholesterolaemic properties in mice. The British Journal of Nutrition. 99(1), 67–75 (2008 Jan). doi: 10.1017/S0007114507798926. Epub 2007 Aug 15. PMID: 17697428.
  • M.B. Bahadori, G. Zengin, S. Bahadori, F. Maggi and L. Dinparast, Chemical Composition of Essential Oil, Antioxidant, Antidiabetic, Anti-obesity, and Neuroprotective Properties of Prangos gaubae. Natural Product Communications, 12(12), 1934578X1701201 (2017). doi: 10.1177/1934578X1701201233.
  • X. Zhao, Q. Chen, T. Lu, F. Wei, Y. Yang, D. Xie, H. Wang and M. Tian, Chemical Composition, Antibacterial, Anti-Inflammatory, and Enzyme Inhibitory Activities of Essential Oil from Rhynchanthus beesianus Rhizome. Molecules, 26(1), 167 (2021). doi: 10.3390/molecules26010167.
  • J. Ahamad, S. Uthirapathy, M. Ameen and E.T. Anwer, Essential oil composition and antidiabetic, anticancer activity of Rosmarinus officinalis L. leaves from Erbil (Iraq). Ournal of Essential Oil-Bearing Plants, 22(6), 1544–1553 (2019). doi: 10.1080/0972060X.2019.1689179.
  • S. Belhadj, O. Hentati, M. Hammami, A. Ben Hadj, T. Boudawara, M. Dammak, S. Zouari and A. El Feki, Metabolic impairments and tissue disorders in alloxan-induced diabetic rats are alleviated by Salvia officinalis L. essential oil. Biomedicine & Pharmacotherapy, 108, 985–995 (2018Dec). doi: 10.1016/j.biopha.2018.09.108. Epub 2018 Sep 27. PMID: 30372910.
  • K. Raafat and J. Habib, Phytochemical compositions and antidiabetic potentials of salvia sclarea L. Essential oils. Journal of Oleo Science, 67(8), 1015–1025 (2018 Aug 1). doi: 10.5650/jos.ess17187. Epub 2018 Jul 17. PMID: 30012894.
  • B. Kirkan, C. Sarikurkcu and R. Amarowicz, Composition, and antioxidant and enzyme‐inhibition activities, of essential oils from Satureja thymbra and Thymbra spicata var. spicata. Flavour & Fragrance Journal, 34(6), 436–442 (2019). doi: 10.1002/ffj.3522.
  • N. Lammari, T. Demautis, O. Louaer, A.H. Meniai, H. Casabianca, C. Bensouici, G. Devouassoux, H. Fessi, A. Bentaher and A. Elaissari, Nanocapsules containing Saussurea lappa essential oil: Formulation, characterization, antidiabetic, anti-cholinesterase and anti-inflammatory potentials. International Journal of Pharmaceutics, 593, 120138 (2021 Jan 25). doi: 10.1016/j.ijpharm.2020.120138. Epub 2020 Dec 3. PMID: 33278497.
  • L. Aksoy, İ. Güzey and M. Düz, Essential oil content, antioxidative characteristics and enzyme inhibitory activity of sideritis akmanii Aytaç, Ekici & Dönmez. Turkish Journal of Pharmaceutical Sciences, 19(1), 76–83 (2022 Feb 28). doi: 10.4274/tjps.galenos.2021.86422. PMID: 35227053; PMCID: PMC8892552.
  • M.B. Bahadori, F. Maggi, G. Zengin, B. Asghari and M. Eskandani, Essential oils of hedgenettles (Stachys inflata, S. lavandulifolia, and S. byzantina) have antioxidant, anti-Alzheimer, antidiabetic, and anti-obesity potential: A comparative study. Industrial Crops and Products, 45, 112089 (2020). doi: 10.1016/j.indcrop.2020.112089.
  • I.N. Irahal, I. Guenaou, F.A. Lahlou, F. Hmimid and N. Bourhim, Syzygium aromaticum bud (clove) essential oil is a novel and safe aldose reductase inhibitor: in silico, in vitro, and in vivo evidence. Hormones (Athens, Greece), 21(2), 229–240 (2022). doi: 10.1007/s42000-021-00347-6.
  • M. Aminizadeh, G. Kavoosi and A. Kariminia, In vitro and ex vivo antidiabetic and anti-hyperglycemic properties of Zataria multiflora essential oil. Molecular Biology Reports. 47(10), 7805–7813 (2020 Oct). doi: 10.1007/s11033-020-05857-x. Epub 2020 Oct 1. PMID: 33006014.
  • K. Mnafgui, M. Kchaou, H. Ben Salah, R. Hajji, G. Khabbabi, A. Elfeki, N. Allouche and N. Gharsallah, Essential oil of Zygophyllum album inhibits key-digestive enzymes related to diabetes and hypertension and attenuates symptoms of diarrhea in alloxan-induced diabetic rats. Pharmaceutical Biology, 54(8), 1326–1333 (2016). doi: 10.3109/13880209.2015.1075049.
  • S. Nicole and A. Kathryn, Antidiabetic potential of volatile cinnamon oil: A review and exploration of mechanisms using in silico molecular docking simulations. Molecules, 27(3), 853 (2022). doi: 10.3390/molecules27030853.
  • V.S. Kumawat and G. Kaur, Insulinotropic and antidiabetic effects of β-caryophyllene with l-arginine in type 2 diabetic rats. Journal of Food Biochemistry, 00(4), e13156 (2020). doi: 10.1111/jfbc.13156.
  • R.H. Basha and C. Sankaranarayanan, β-Caryophyllene, a natural sesquiterpene lactone attenuates hyperglycemia mediated oxidative and inflammatory stress in experimental diabetic rats, Chemico-Biological Interactions. Chemico-Biological Interactions, 245, 50–58 (2016). doi: 10.1016/j.cbi.2015.12.019.
  • T. Fevzi, Anticholinergic and antidiabetic effects of isoeugenol from clove (Eugeniacaryophylata) oil. International Journal of Food Properties, 22(1), 583–592 (2019). doi: 10.1080/10942912.2019.1597882.
  • H. Genç Bilgiçli, A. Kestane, P. Taslimi, O. Karabay, A. Bytyqi-Damoni, M. Zengin and G. İ, Novel eugenol bearing oxypropanolamines: Synthesis, characterization, antibacterial, antidiabetic, and anticholinergic potentials. Bioorganic Chemistry, 88, 102931 (2019Jul). doi: 10.1016/j.bioorg.2019.102931. Epub 2019 Apr 16. PMID: 31015178.
  • S. Srinivasan and U. Muruganathan, Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Chemico-Biological Interactions, 250, 38–46 (2016 Apr 25). doi: 10.1016/j.cbi.2016.02.020. Epub 2016 Mar 2. PMID: 26944432.
  • F. Tunnisa, D. Nur Faridah, A. Afriyanti, D. Rosalina, S. Mohamad Ana, N. Darmawan and N. Dewi Yuliana, Antioxidant and antidiabetic compounds identification in several Indonesian underutilized Zingiberaceae spices using SPME-GC/MS-based volatilomics and in silico methods. Food Chemistry: X, 14, 100285 (2022 30 June 2022). doi: 10.1016/j.fochx.2022.100285.
  • R. Murali and R. Saravanan, Antidiabetic effect of d-limonene, a monoterpene in streptozotocin-induced diabetic rats. Biomedicine & Preventive Nutrition, 2(4), 269–275 (2012). doi: 10.1016/j.bionut.2012.08.008.
  • M.H. Siddique, A. Ashraf, S. Hayat, B. Aslam, M. Fakhar-E-Alam, S. Muzammil, M. Atife, M. Shahid, S. Shafeeq, M. Afzal and S. Ahmad, Antidiabetic and antioxidant potentials of Abelmoschus esculentus: In vitro combined with molecular docking approach. Journal of Saudi Chemical Society, 26(2), 101418 (2022). doi: 10.1016/j.jscs.2021.101418.
  • X.C. Tan, K.H. Chua, M. Ravishankar Ram and U.R. Kuppusamy, Monoterpenes: Novel insights into their biological effects and roles on glucose uptake and lipid metabolism in 3T3-L1 adipocytes. Food Chemistry, 196, 242–250 (2016). doi: 10.1016/j.foodchem.2015.09.042.
  • H. Özbek and B.S. Yılmaz, Anti-inflammatory and hypoglycemic activities of alpha-pinene. Acta Pharmaceutica Sciencia, 55(4), 4 (2017). doi: 10.23893/1307-2080.APS.05522.
  • T. More and B.R. Kulkarni, Antidiabetic activity of linalool and limonene in streptozotocin- induced diabetic rat: A combinatorial therapy approach. International Journal of Pharmacy and Pharmaceutical Sciences, 6(8), 159–163 (2014).
  • B. Cheng, L. Sheen and S. Chang, Hypolipidemic effects of S-(+)-linalool and essential oil from Cinnamomum osmophloeum ct. linalool leaves in mice. Journal of Traditional and Complementary Medicine, 8(1), 46–52 (2018). doi: 10.1016/j.jtcme.2017.02.002.
  • S. Cho, Y. Choi, S. Park and T. Park, Carvacrol prevents diet-induced obesity by modulating gene expressions involved in adipogenesis and inflammation in mice fed with high-fat diet. The Journal of Nutritional Biochemistry. 23(2), 192–201 (2012 Feb). doi: 10.1016/j.jnutbio.2010.11.016. Epub 2011 Mar 29. PMID: 21447440.
  • B. Huang, H.D. Yuan, D.Y. Kim, H.Y. Quan and S.H. Chung, Cinnamaldehyde prevents adipocyte differentiation and adipogenesis via regulation of peroxisome proliferator-activated receptor-γ (PPARγ) and AMP-activated protein kinase (AMPK) pathways. Journal of Agricultural & Food Chemistry, 59(8), 3666–3673 (2011 Apr 27). doi: 10.1021/jf104814t. Epub 2011 Mar 22. PMID: 21401097.
  • T. Kostrzewa, P. Przychodzen, M. Gorska-Ponikowska and A. Kuban-Jankowska, Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential. Anticancer Research. 39(2), 745–749 (2019 Feb). doi: 10.21873/anticanres.13171. PMID: 30711953.
  • S. Camacho, S. Michlig, C. de Senarclens-Bezençon, J. Meylan, J. Meystre, M. Pezzoli, H. Markram J. le Coutre, et al., Anti-obesity and anti-hyperglycemic effects of cinnamaldehyde via altered ghrelin secretion and functional impact on food intake and gastric emptying. Scientific Reports, 5(1), 7919 (2015 Published 2015 Jan 21). doi: 10.1038/srep07919.
  • M. Kodikonda and P.R. Naik, Ameliorative effect of borneol, a natural bicyclic monoterpene against hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic Wistar rats. Biomedicine & Pharmacotherapy, 96, 336–347 (2017). doi: 10.1016/j.biopha.2017.09.122.
  • P. Drikvandi, S. Bahramikia and M. Alirezaei, Modulation of the antioxidant defense system in liver, kidney, and pancreas tissues of alloxan-induced diabetic rats by camphor. Journal of Food Biochemistry, 44(12), e13527 (2020). doi: 10.1111/jfbc.13527.
  • H. Alkhateeb and A. Bonen, Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 299(3), R804–R812 (2010). doi: 10.1152/ajpregu.00216.2010.
  • N.W. Baddar, T.A. Aburjai, M.O. Taha and A.M. Disi, Thujone corrects cholesterol and triglyceride profiles in diabetic rat model. Natural Product Research, 25(12), 1180–1184 (2011). doi: 10.1080/14786419.2010.496116.
  • S. Abbasi, S. Gharaghani, A. Benvidi and M. Rezaeinasab, New insights into the efficiency of thymol synergistic effect with p-cymene in inhibiting advanced glycation end products: a multi-way analysis based on spectroscopic and electrochemical methods in combination with molecular docking study. Journal of Pharmaceutical & Biomedical Analysis, 150, 436–451 (2018). doi: 10.1016/j.jpba.2017.12.042.
  • P. Lotfi, P. Yaghmaei and A. Ebrahim-Habibi, Cymene and Metformin treatment effect on biochemical parameters of male NMRI mice fed with high fat diet. Journal of Diabetes and Metabolic Disorders, 14(1), 1–5 (2015). doi: 10.1186/s40200-015-0182-x.
  • S. Alsanea and D. Liu, BITC and S-carvone restrain high-fat diet-induced obesity and ameliorate hepatic steatosis and insulin resistance. Pharmaceutical Research, 34(11), 2241–2249 (2017). doi: 10.1007/s11095-017-2230-3.
  • U. Muruganathan, S. Srinivasan and D. Indumathi, Antihyperglycemic effect of carvone: Effect on the levels of glycoprotein components in streptozotocin-induced diabetic rats. Journal of Acute Disease, 2(4), 310–315 (2013). doi: 10.1016/S2221-6189(13)60150-X.
  • M. Hiroko, S. Daisuke, A. Masaya, O. Shinper, S. Ritsuki, O. Ryo and S. Takaaki, Effects of dietary phytol on glucose uptake and insulin secretion in vitro and in vivo. Food and Nutrition Current Research, 1(1), 29–37 (2017).
  • M.M. Elmazar, H.S. El-Abhar, M.F. Schaalan, N.A. Farag and F. Folli, Phytol/Phytanic acid and insulin resistance: potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations. PloS One, 8(1), e45638 (2013). doi: 10.1371/journal.pone.0045638.
  • S.Y. Chae, S.G. Seo, H. Yang, J.G. Yu, S.J. Suk, E.S. Jung, H. Ji, J.Y. Kwon, H.J. Lee and W. Lee, Anti-adipogenic effect of erucin in early stage of adipogenesis by regulating Ras activity in 3T3-L1 preadipocytes. Journal of Functional Foods, 19, 700–709 (2015). doi: 10.1016/j.jff.2015.09.060.
  • N. Jiang and Y. Zhang, Antidiabetic effects of nerolidol through promoting insulin receptor signaling in high-fat diet and low dose streptozotocin-induced type 2 diabetic rats. Human & Experimental Toxicology, 41, 41 (2022). doi: 10.1177/09603271221126487.
  • H.M. El-Bassossy, H. Ghaleb, A.A. Elberry, K.S. Balamash, S.A. Ghareib, A. Azhar and Z. Banjar, Geraniol alleviates diabetic cardiac complications: Effect on cardiac ischemia and oxidative stress. Biomedicine & Pharmacotherapy, 88, 1025–1030 (2017). doi: 10.1016/j.biopha.2017.01.131.
  • S.N. Prasad and M. Muralidhara, Analysis of the antioxidant activity of geraniol employing various in-vitro models: relevance to neurodegeneration in diabetic neuropathy. Asian Journal of Pharmaceutical and Clinical Research, 10(7), 101–105 (2017). doi: 10.22159/ajpcr.2017.v10i7.18564.
  • S. Babukumar, V. Vinothkumar, C. Sankaranarayanan and S. Srinivasan, Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharmaceutical Biology, 55(1), 1442–1449 (2017). doi: 10.1080/13880209.2017.1301494.
  • M. Jayachandran, B. Chandrasekaran and N. Namasivayam, Effect of geraniol, a plant derived monoterpene on lipids and lipid metabolizing enzymes in experimental hyperlipidemic hamsters. Molecular and Cellular Biochemistry, 398(1–2), 39–53 (2015). doi: 10.1007/s11010-014-2203-3.
  • Y.A.M. El-Said, N.A.A. Sallam, A.A. Ain-Shoka and H.A. Abdel-Latif, Geraniol ameliorates diabetic nephropathy via interference with miRNA-21/PTEN/Akt/mTORC1 pathway in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 393(12), 2325–2337 (2020). doi: 10.1007/s00210-020-01944-9.
  • U. Muruganathan, S. Srinivasan and V. Vinothkumar, Antidiabetogenic efficiency of menthol, improves glucose homeostasis and attenuates pancreatic β-cell apoptosis in streptozotocin–nicotinamide induced experimental rats through ameliorating glucose metabolic enzymes. Biomedicine & Pharmacotherapy, 92, 229–239 2017. doi: 10.1016/j.biopha.2017.05.068.
  • A.S. Rashwan, M.A. El-Beltagy, S.Y. Saleh and I.A. Ibrahim, Potential role of cinnamaldehyde and costunolide to counteract metabolic syndrome induced by excessive fructose consumption. Beni-Suef University Journal of Basic and Applied Sciences, 8(1), 17– (2019). doi: 10.1186/s43088-019-0025-9.
  • E.U. Ejiofor, S.O. Oyedemi, S.O. Onoja and N.Y. Omeh, Amaranthus hybridus Linn. leaf extract ameliorates oxidative stress and hepatic damage abnormalities induced by thioacetamide in rats. South African Journal of Botany, 146, 213–221 (2022). doi: 10.1016/j.sajb.2021.10.029.
  • D.R. Webb, G.M. Ridder and C.L. Alden, Acute and sub chronic nephrotoxicity of d-limonene in Fischer 344 rats. Food & Chemical Toxicology, 27(10), 639–664 (1989). doi: 10.1016/0278-6915(89)90118-X.
  • S. Jidong, D-Limonene: Safety and clinical applications alt. Medicina em revista, 12, 259–264 (2007).
  • J. Whysner and G.M. Williams, D-limonene mechanistic data and risk assessment: absolute species-specific cytotoxicity, enhanced cell proliferation, and tumor promotion. Pharmacology & Therapeutics, 71(1–2), 127–136 (1996). doi: 10.1016/0163-7258(96)00065-4.
  • G.A. Brownlee, Pharmacological examination of cineole and phellandrone. Quarterly Journal of Pharmacy and Pharmacology, 13, 130–137 (1940).
  • P.M. Jenner, E.C. Hagan, J.M. Taylor, E.L. Cook and O.G. Fitzhugh, Food flavourings and compounds of related structure. I. Acute oral toxicity. Food and Cosmetics Toxicology, 2(3), 327–343 (1964). doi: 10.1016/S0015-6264(64)80192-9.
  • R.C. Hindle, Eucalyptus oil ingestion. New Zealand Medical Journal, 107(977), 185–186 (1994).
  • M. De Vincenzi, M. Silano, A. De Vincenzi, F. Maialetti and B. Scazzocchio, Constituents of aromatic plants: eucalyptol. Fitoterapia, 73(3), 269–275 (2002Jun). doi: 10.1016/s0367-326x(02)00062-x. PMID: 12048025.
  • G.F. Caldas, M.M. Limeira, A.V. Araújo, G.S. Albuquerque, J.D. Silva-Neto, T.G. Silva, J.H. Costa-Silva, I.R. Menezes, J.G. Costa and A.G. Wanderley, Repeated-doses and reproductive toxicity studies of the monoterpene 1,8-cineole (eucalyptol) in Wistar rats. Food & Chemical Toxicology, 97, 297–306 (2016). doi: 10.1016/j.fct.2016.09.020. Epub 2016 Sep 16. PMID: 27644596.
  • S.E. Wright, D.A. Baron and J.E. Heffner, Intravenous eugenol causes hemorrhagic lung edema in rats: proposed oxidant mechanisms. The Journal of Laboratory and Clinical Medicine, 125, 257–264 (1995).
  • H.A. Sober, F. Hollander and E.K. Sober, Toxicity of Eugenol: Determination of LD50 on Rats. Proceedings of the Society for Experimental Biology and Medicine, 73(1), 148–151 (1950). doi: 10.3181/00379727-73-17608.
  • D. Schmitt, R. Levy and B. Carroll, Toxicological evaluation of β-caryophyllene oil: Subchronic toxicity in rats. International Journal of Toxicology, 35(5), 558–567 (2016). doi: 10.1177/1091581816655303.
  • G. Oliveira, K.C. Machado, K.C. Machado, A. da Silva, C.M. Feitosa and F.R. de Castro Almeida, Non-clinical toxicity of β-caryophyllene, a dietary cannabinoid: Absence of adverse effects in female Swiss mice. Regulatory Toxicology and Pharmacology: RTP, 92, 338–346 (2018Feb). doi: 10.1016/j.yrtph.2017.12.013. Epub 2017 Dec 16. PMID: 29258925.
  • L. Monzote, W. Stamberg, K. Staniek and L. Gille, Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria. Toxicology & Applied Pharmacology, 240(3), 337–347 (2009 Nov 1). doi: 10.1016/j.taap.2009.08.001.
  • V.T. Politano, E.M. Lewis, A.M. Hoberman, M.S. Christian, R.M. Diener and A.M. Api, Evaluation of the developmental toxicity of linalool in rats. International Journal of Toxicology. 27(2), 183–188 (2008 Mar-Apr). doi: 10.1080/10915810801977948. PMID: 18404542.
  • D.W. Bristol, NTP 3-month toxicity studies of estragole (CAS No. 140-67-0) administered by gavage to F344/N rats and B6C3F1 mice. Toxicity Report Series, 82, 1–111 (2011Jan). PMID: 21445103.
  • O.T. Somade, D.M. Ogunberu, T.T. Fakayode and A.O. Animashaun, Edible camphor-induced histopathological changes in hippocampus and cerebral cortex following oral administration into rats. Journal of Interdisciplinary Histopathology, 5(1), 1–11 (2017a). doi: 10.5455/jihp.20161208124017.
  • O.T. Somade, K.D. Adeniji, A.A. Adesina and O.J. Olurinde, Oral acute toxicity study as well as tissues oxidative stress and histopathological disorders in edible camphor administered rats. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 69(2), 99–108 (2017b). doi: 10.1016/j.etp.2016.12.001.
  • O.T. Somade, B.O. Ajayi, N.O. Tajudeen, E.M. Atunlute, A.S. James and S.A. Kehinde, Camphor elicits up-regulation of hepatic and pulmonary pro-inflammatory cytokines and chemokines via activation of NF-Kb in rats. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 26(3–4), 305–313 (2019). doi: 10.1016/j.pathophys.2019.07.005.
  • O.T. Somade, B.O. Ajayi, O.A. Safiriyu, O.S. Oyabunmi and A.J. Akamo, Renal and testicular up-regulation of pro-inflammatory chemokines (RANTES and CCL2) and cytokines (TNF-α, IL-1β, IL-6) following acute edible camphor administration is through activation of NF-Kb in rats. Toxicology Reports, 6, 759–767 (2019). doi: 10.1016/j.toxrep.2019.07.010.
  • H.L. Bonkovsky, E.E. Cable, J.W. Cable, S.E. Donohue, E.C. White, Y.J. Greene, R.W. Lambrecht, K.K. Srivastava and W.N. Arnold, Porphyrogenic properties of the terpenes camphor, pinene, and thujone (with a note on historic implications for absinthe and the illness of Vincent van Gogh). Biochemical Pharmacology, 43(11), 2359–2368 (1992). doi: 10.1016/0006-2952(92)90314-9.
  • K.S. Siveen and G. Kuttan, Augmentation of humoral and cell mediated immune responses by Thujone. International Immunopharmacology, 11(12), 1967–1975 (2011). doi: 10.1016/j.intimp.2011.08.006.
  • K.M. Höld, N.S. Sirisoma, T. Ikeda, T. Narahashi and J.E. Casida, Alpha-thujone (the active component of absinthe): gamma-aminobutyric acid type a receptor modulation and metabolic detoxification. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 3826–3831 (2000). doi: 10.1073/pnas.070042397.
  • O. Pelkonen, K. Abass and J. Wiesner, Thujone and thujone-containing herbal medicinal and botanical products: toxicological assessment. Regulatory Toxicology and Pharmacology: RTP, 65(1), 100–107 (2013). doi: 10.1016/j.yrtph.2012.11.002.
  • I.B. Araujo, C.A.M. Souza, R.R. De-Carvalho, S.N. Kuriyama, R.P. Rodrigues, R.S. Vollmer, E.N. Alves and F.J.R. Paumgartten, Study of the embryofoetotoxicity of α-terpinene in the rat. Food and Chemical Toxicology, 34(5), 477–482 (1996). doi: 10.1016/0278-6915(96)87358-3.
  • M.D. Baldissera, C.F. Souza, T.H. Grando, M.R. Sagrillo, G.F. De Brum, K. Nascimento, D.S. Peres, M.F. Maciel, S.O. Silveira, S.C.A. Da Luz, P.H. Doleski, D.B.R. Leal, A.S. da Silva and S.G. Monteiro, Memory deficit, toxic effects and activity of Na(+), K(+)-ATPase and NTPDase in brain of Wistar rats submitted to orally treatment with alpha-terpinene. Environmental Toxicology and Pharmacology, 46, 1–8 (2016). doi: 10.1016/j.etap.2016.06.024.
  • I. Seal, S. Sil, A. Das and S. Roy, et al., Assessment of toxicity and genotoxic safety profile of novel fisetin ruthenium-p-cymene complex in mice. Toxicological Research, 39(2), 213–229 (2023). doi: 10.1007/s43188-022-00158-w.
  • National Toxicology Program. Toxicological and carcinogenesis studies of d-carvone in B6C3F1 mice. Technical Report Series, 381 (1990)
  • G.M. Taghi, E.M. Hassan, J. Ali, H. Seyedhossein and M. Mohammad, Antimicrobial Activity, Toxicity and Stability of Phytol as a Novel Surface Disinfectant. Environmental Health Engineering and Management Journal, 2(1), 13–16 (2015).
  • M.T. Islam, L. Streck, M.V. de Alencar, S.W. Cardoso Silva, K. da Conceição Machado, K. da Conceição Machado, A.L. Gomes Júnior, M.F. Paz, A.M. da Mata, J.M. de Castro E Sousa, J.S. da Costa Junior, H.M. Lins Rolim, A.A. da Silva-Junior and A.A. de Carvalho Melo-Cavalcante, Evaluation of toxic, cytotoxic and genotoxic effects of phytol and its nanoemulsion. Chemosphere, 177, 93–101 (2017). doi: 10.1016/j.chemosphere.2017.02.145.
  • M. Baibars, S. Eng, K. Shaheen, A.H. Alraiyes and M.C. Alraies, Menthol toxicity: an unusual cause of coma. Case Reports in Medicine, 187039 (2012). doi: 10.1155/2012/187039.
  • V. Soundran, T. Namagiri, S. Manonayaki and G. Vanithakumari, Hepatotoxicity of eugenol. Ancient Science of Life, 13(2), 217–220 (1994). doi: 10.1017/S0730938400018396.
  • S. Levorato, L. Dominici, C. Fatigoni, C. Zadra, R. Pagiotti, M. Moretti and M. Villarini, In vitro toxicity evaluation of estragole-containing preparations derived from Foeniculum vulgare Mill. (fennel) on HepG2 cells. Food & Chemical Toxicology, 111, 616–622 (2018Jan). doi: 10.1016/j.fct.2017.12.014. Epub 2017 Dec 9. PMID: 29233689.
  • T. Yooboon, K. Kuramitsu, V. Bullangpoti, Y. Kainoh and S. Furukawa, Cytotoxic effects of β-asarone on Sf9 insect cells. Archives of Insect Biochemistry and Physiology, 102(1), e21596 (2019). doi: 10.1002/arch.21596.
  • D.N. Patel, H.K. Ho, L.L. Tan, M.M. Tan, Q. Zhang, M.Y. Low, C.L. Chan and H.L. Koh, Hepatotoxic potential of asarones: in vitro evaluation of hepatotoxicity and quantitative determination in herbal products. Frontiers in Pharmacology, 6, 25 (2015 Feb 20). doi: 10.3389/fphar.2015.00025. PMID: 25750624; PMCID: PMC4335289.
  • P. Unger and M.F. Melzig, Comparative study of the cytotoxicity and genotoxicity of alpha- and Beta-asarone. Scientia Pharmaceutica, 80(3), 663–668 (2012). doi: 10.3797/scipharm.1204-21.
  • E. Horváthová, D. Slamenová, L. Marsálková, M. Sramková and L. Wsólová, Effects of borneol on the level of DNA damage induced in primary rat hepatocytes and testicular cells by hydrogen peroxide. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 47(6), 1318–1323 (2009). doi: 10.1016/j.fct.2009.03.002.
  • X. Ni, X. Yin, C. Qi, C. Liu, H. Chen, Y. Zhou, W. Ao, S. Bao, J. Xue, J. Yang and W. Dong, Cardiotoxicity of (-)-borneol,(+)-borneol, and isoborneol in zebrafish embryos is associated with Na+/K+ -ATPase and Ca2+ -ATPaseinhibition. Journal of Applied Toxicology: JAT, 43(3), 373–386 (2023). doi: 10.1002/jat.4388.
  • J.L. Singulani, R.S. Pedroso, A.B. Ribeiro, H.D. Nicolella, K.S. Freitas, J.L. Damasceno, T.M. Vieira, A.E. Crotti, D.C. Tavares, C.H. Martins, M.J. Mendes-Giannini and R.H. Pires, Geraniol and linalool anticandidal activity, genotoxic potential and embryotoxic effect on zebrafish. Future Microbiology, 13(15), 1637–1646 (2018). doi: 10.2217/fmb-2018-0200.
  • V.S. Bernson and B. Pettersson, The toxicity of menthol in short-term bioassays. Chemico-Biological Interactions, 46(2), 233–246 1983. doi: 10.1016/0009-2797(83)90031-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.