100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemical analyses and antioxidant activity of the essential oils from baccharis dracunculifolia DC. In Southern Brazil

ORCID Icon, , ORCID Icon, , , & show all
Received 26 Jan 2023, Accepted 09 Apr 2024, Published online: 25 Apr 2024

References

  • C.M.B. Belini, M.O.M. Marques, G.M. Figueira, M.M. Bajay, J.B. Campos, J.P.G. Viana, J.B. Pinheiro and M.I. Zucchi, Characterization of microsatellite markers for Baccharis dracunculifolia (Asteraceae). (Asteraceae) Applications in Plant Sciences, 4(3), 1–3 (2016). doi: 10.3732/apps.1500093.
  • R.O.S. Paranhos and L.S. Oliveira, Os benefícios medicinais da própolis verde (Baccharis dracunculifolia DC), utilizada popularmente através de suas propriedades antiinflamatória e antibacteriana. Revista Ibero-Americana de Humanidades, Ciências e Educação, 7(10), 1208–1221 (2021). doi: 10.51891/rease.v7i10.2657.
  • Z.C. Gazim, J.S. Valle, I.C. Santos, I.L. Rahal, G.C.C. Silva, A.D. Lopes, S.P. Ruiz, M.G.I. Faria, R. Piau Jr and D.D. Gonçalves, Ethnomedicinal, phytochemical and pharmacological investigations of Baccharis dracunculifolia DC. (Asteraceae) Frontiers in Pharmacology, 13, 1–27 (2022). doi: 10.3389/fphar.2022.1048688.
  • A. Florão, J.M. Budel, M.R. Duarte, A. Marcondes, R.A.F. Rodrigues, M.V.N. Rodrigues, C.A.M. Santos and A.M. Weffort-Santos, Essential oils from baccharis species (asteraceae) have anti-inflammatory effects for human cells. Journal of Essential Oil Research, 24(6), 561–570 (2012). doi: 10.1080/10412905.2012.728081.
  • C.A.S.F. Miranda, M.G. Cardoso, L.R. Batista, L.M.A. Rodrigues and A.C.S. Figueiredo, Essential oils from leaves of various species: antioxidant and antibacterial properties on growth in pathogenic species. Revista Ciência Agronômica, 47(1), 213–220 (2016). doi: 10.5935/1806-6690.20160025.
  • P.H. Raven, R.F. Evert and S.E. Eichhorn, Biology of Plants. W.H. Freeman, New York (2005).
  • F. Pegorini, L.T. Maranhão and L.D. Rocha, Organização estrutural das folhas de Baccharis dracunculifolia DC. Asteraceae. Revista Brasileira de Farmácia, 2008, 89, 272–275.
  • E.S. Monteiro, K.S. Monteiro, P.S. Montes, C.A.G. Camara, M.M. Moraes, C.W. Fagg, D.O. Freire, E.F. Gris, I.C.R. Silva, L.C. Sá-Barreto and D.C. Orsi, Chemical and antibacterial properties of baccharis dracunculifolia DC essential oils from different regions of Brazil. Journal of Essential Oil Research, 2022, 34(6), 524–532. doi: 10.1080/10412905.2022.2103043.
  • R.F. Santos, M.T.C. Isobe, J.G. Lalla, L.L. Haber, M.O.M. Marques and L.C. Ming, Composição química e produtividade dos principais componentes do óleo essencial de Baccharis dracunculifolia DC. em função da adubação orgânica. Revista Brasileira de Plantas Medicinais, 14(spe), 224–234 (2012). doi: 10.1590/S1516-05722012000500017.
  • G.J.T. Salazar, J.P. Sousa, C.N.F. Lima, I.C.S. Lemos, A.R.P. Silva, S. Freitas, H.D.M. Coutinho, L.E. Silva, W. Amaral and C. Deschamps, Phytochemical characterization of the baccharis dracunculifolia DC (asteraceae) essential oil and antibacterial activity evaluation. Industrial Crops and Products, 122, 591–595 (2018). doi: 10.1016/j.indcrop.2018.06.052.
  • S.E. Ugheighele, K.E. Imafidon, M.I. Choudhary, A. Shakil, M. Khan, Z.A. Sherwani and Z. Ul-Haq, Anti-urease and cytotoxic activity of 1-nitro-2-phenylethane and nerolidol; two major compounds isolated from the seeds of dennettia tripetala. Medicinal Chemistry Research, 29(10), 1874–1881 (2020). doi: 10.1007/s00044-020-02607-3.
  • W.K. Chan, L.T. Tan, K. Chan, L. Lee and B. Goh, Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules, 21(529), 1–40 (2016). doi: 10.3390/molecules21050529.
  • A. Lapczynski, S.P. Bhatia, C.S. Letizia and and A.M. Api, Fragrance material review on nerolidol (isomer unspecified). Food & Chemical Toxicology, 46, S247–S250 (2008). doi: 10.1016/j.fct.2008.06.063.
  • R.G.A. Costa, T.A. Anunciação, M.S. Araujo, C.A. Souza, R.B. Dias, C.B.S. Sales, C.A.G. Rocha, M.B.P. Soares, F.M.A. Silva, H.H.F. Koolen, E.V. Costa and D.P. Bezerra, In vitro and in vivo growth inhibition of human acute promyelocytic leukemia HL-60 cells by guatteria megalophylla diels (annonaceae) leaf essential oil. Biomedicine & Pharmacotherapy, 122, 1–10 (2020). doi: 10.1016/j.biopha.2019.109713.
  • P. Asgharian, M. Zadehkamand, A. Delazar, E. Safarzadeh and S. Asnaashari, Chemical composition and some biological activities of artemisia marschalliana essential oil. Research Journal of Pharmacognosy, 2019, 6(4), 71–77. doi: 10.22127/rjp.2019.93527.
  • A.C.M. Andrade, P.L. Rosalen, I.A. Freires, L. Scotti, M.T. Scotti, S.G. Aquino and R.D. Castro, Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-β-pinene enantiomers against Candida spp. Current Topics in Medicinal Chemistry, 2018, 18(29), 2481–2490. doi: 10.2174/1568026618666181115103104.
  • M.F. Borges, R.S. Lacerda, J.P.A. Correia, T.R. de Melo and S.B. Ferreira, Potential antibacterial action of α-pinene. Medicinal Science Forum, 2022, 12(1), 1–5. doi: 10.3390/eca2022-12709.
  • N. Salem, S. Kefi, O. Tabben, A. Ayed, S. Jallouli, N. Feres, M. Hammami, S. Khammasi, I. Hrigua, S. Nefisi, A. Sghaiera, F. Limam and S. Elkahoui, Variation in chemical composition of eucalyptus globulus essential oil under phenological stages and evidence synergism with antimicrobial standards. Industrial and Crops Products, 124, 115–125 (2018). doi: 10.1016/j.indcrop.2018.07.051.
  • J. Fejér, D. Grul’Ová, A. Eliašová, I. Kron and V. FEO, Influence of environmental factors on content and composition of essential oil from common juniper ripe berry cones (Juniperus communis. L) Plant Biosystems, 152(6), 1227–1235 (2018). doi: 10.1080/11263504.2018.1435577.
  • Y. Pieracci, F. Fulvio, V. Isca, L. Pistelli, L. Bassolino, M. Montanari, A. Moschella, G. Flamini and R. Paris, The phenological stage of hemp inflorescences affects essential oil yield and its chemical composition. Industrial Crops and Products, 197, 1–8 (2023). doi: 10.1016/j.indcrop.2023.116605.
  • M.E. Maffei, Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany, 76(4), 612–631 (2010). doi: 10.1016/j.sajb.2010.03.003.
  • H. Liu, X. Cao, X. Liu, R. Xin, J. Wang, J. Gao, B. Wu, L. Gao, C. Xu, B. Zhang, D. Grierson and K. Chen, UV-B irradiation differentially regulates terpene synthases and terpene content of peach. Plant Cell Environment, 40(10), 2261–2275 (2017). doi: 10.1111/pce.13029.
  • F.G. Silva, C.B.A. Oliveira, J.E.B.P. Pinto, V.E. Nascimento, S.C. Santos, J.C. Seraphin and P.H. Ferri, Seasonal variability in the essential oils of wild and cultivated baccharis trimera. Journal of the Brazilian Chemical Society, 18(5), 990–997 (2007). doi: 10.1590/S0103-50532007000500017.
  • C.A. Alvares, J.L. Stape, P.C. Sentelhas, J.L.M. Gonçalves and G. Sparovek, Koppen’s climate classification map for Brazil. Meteorol Zeitschrift, 22(6), 711–728 (2013). doi: 10.1127/0941-2948/2013/0507.
  • H. Van Den Dool and P.D. Kratz, A generalisation of the retention index system including linear temperature programmed gas-liquid chromatography. Journal of Chromatography, 11, 463–471 (1963). doi: 10.1016/S0021-9673(01)80947-X.
  • R.P. Adams. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4.1 edn, Allured Publishing Corporation, Carol Stream, Illinois, USA (2017)
  • W. Brand-Williams, M.E. Cuvelier and C. Berset, Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30 (1995). doi: 10.1016/S0023-6438(95)80008-5.
  • F.A.S. Silva and C.A.V. Azevedo, The assistat software version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, 11(39), 3733–3740 (2016). doi: 10.5897/AJAR2016.11522.
  • R Core Team, a Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2018). https://www.r-project.org/contributors.html.
  • W.A. Wannes and B. Marzouk, Maturational Effect on Essential Oil Yield and Composition of Myrtus communis var. Baetica Fruit. Baetica Fruit Journal of Essent Oil- Bearing Plants, 15(5), 847–853 (2012). doi: 10.1080/0972060X.2012.10644130.
  • M.H. Mirjalili, P. Salehi, A. Sonboli and M.M. Vala, Essential oil variation of salvia officinalis aerial parts during its phenological cycle. Chemistry of Natural Compounds, 42(1), 19–23 (2006). doi: 10.1007/s10600-006-0027-4.
  • B. Rabiei, S. Bahador and M. Kordrostami, The expression of monoterpene synthase genes and their respective end products are affected by gibberellic acid in thymus vulgaris. Journal of Plant Physiology, 230, 101–108 (2018). doi: 10.1016/j.jplph.2018.10.014.
  • P.P. Botrel, J.E.B.P. Pinto, V. Ferraz, S.K.V. Bertolucci and F.C. Figueiredo, Teor e composição química do óleo essencial de Hyptis marrubioides Epl. Lamiaceae em função da sazonalidade. Acta Scientiarum Agronomy, 32(3), 533–538 (2010). doi: 10.4025/actasciagron.v32i3.3415.
  • S. Mehalaine and H. Chenchouni, Quantifying how climatic factors influence essential oil yield in wild-growing plants. Arabian Journal of Geosciences, 14, 1–12 (2021). doi: 10.1007/s12517-021-07582-6.
  • R.C. Lopes, V.W.D. Casali, L.C.A. Barbosa and P.R. Cecon, Different hydric regimes influencing essential oil production from plygonum punctatum ell. Revista Brasileira de Plantas Medicinais, 3, 7–10 (2001). doi: 10.5555/20013092361.
  • A.I. Hussain, F. Anwat, S.T.H. Sherazi and R. Przybylski, Chemical composition, antioxidant and antimicrobial activities of basil (ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry, 108(3), 986–995 (2008). doi: 10.1016/j.foodchem.2007.12.010.
  • S. Takshak and S.B. Agrawal, Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of Photochemistry & Photobiology, B: Biology, 193, 51–88 (2019). doi: 10.1016/j.jphotobiol.2019.02.002.
  • M. Takur, S. Bhattacharya, P.K. Khosla and S. Puri, Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants, 12, 1–12 (2019). doi: 10.1016/j.jarmap.2018.11.004.
  • P. Tiiva, R. Rinnan, P. Faubert, J. Rasanen, T. Holopainen, E. Kurö and J.K. Holopainen, Isoprene emission from a subarctic peatland under enhanced UV-B radiation. New Phytologist, 176(2), 346–355 (2007). doi: 10.1111/j.1469-8137.2007.02164.x.
  • L. Pazouki and Ü. Niinemets, Multi-substrate terpene synthases: their occurrence and physiological significance. Frontiers in Plant Science, 7, 1–16 (2016). doi: 10.3389/fpls.2016.01019.
  • N.B. Perry, R.E. Anderson, N.J. Brennan, M.H. Douglas, A.J. Heaney, J.A. McGimpsey and B.M. Smallfield, Essential oils from dalmatian sage (salvia officinalis L.): variations among individuals, plant parts, seasons, and sites. Journal of Agricultural and Food Chemistry, 47(5), 2048–2054 (1999). doi: 10.1021/jf981170m.
  • P.C. Santos-Gomes and M. Fernandes-Ferreira, Organ- and season-dependent variation in the essential oil composition of salvia officinalis L. cultivated at two different sites. Journal of Agricultural and Food Chemistry, 49(6), 2908–2916 (2001). doi: 10.1021/jf001102b.
  • M. Dudareva, E. Pichersky and J. Gershenzon, Biochemistry of plant volatiles. Plant Physiology, 135(4), 1893–1902 (2004). doi: 10.1104/pp.104.049981.
  • C. Zhang and K. Hong, Production of terpenoids by synthetic biology approaches. Frontiers in Bioengineering and Biotechnology, 8, 1–9 (2020). doi: 10.3389/fbioe.2020.00347.
  • P.T.P. Ferreira Neto, T.R. Santos and C.J.M. Tellis, Desenvolvimento de novos derivados de plantas medicinais para doenças negligenciadas: uma análise bibliométrica. Revista Fitos, 2(Supl. 2), 267–292 (2022). doi: 10.32712/2446-4775.2022.1287.
  • D.F. Moura, T.A. Rocha, D.M. Barros, M.M. Silva, M.S. Santana, B.M. Neta, I.M.F. Cavalcanti, R.D. Martins and M.V. Silva, Evaluation of the antioxidant, antibacterial, and antibioflm activity of the sesquiterpene nerolidol. Archives of Microbiology, 203(7), 4303–4311 (2021). doi: 10.1007/s00203-021-02377-5.
  • U. Aqeel, T. Aftab, M.M.A. Khan and M. Naeem, Regulation of essential oil in aromatic plants under changing environment. Journal of Applied Research on Medicinal and Aromatic Plants, 32, 1–13 (2023). doi: 10.1016/j.jarmap.2022.100441.
  • D.T. Tingey, M. Manning, L.C. Grothaus and W.F. Burns, Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiology, 65(5), 797–801 (1980). doi: 10.1104/pp.65.5.797.
  • A.G. Pirbalouti, E. Mahdad and L. Craker, Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chemistry, 141(3), 2440–2449 (2013). doi: 10.1016/j.foodchem.2013.05.098.
  • P. Anandakumar, S. Kamaraj and M.K. Vanitha, D-limonene: a multifunctional compound with potent therapeutic effects. Journal of Food Biochemistry, 45(1), 1–10 (2021). doi: 10.1111/jfbc.13566.
  • J. Vinholes, P. Gonçalves, F. Martel, M.A. Coimbra and S.M. Rocha, Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in vitro caco-2 cell models. Food Chemistry, 156, 204–211 (2014). doi: 10.1016/j.foodchem.2014.01.106.
  • P. Taheri, P. Yaghmaei, Z. Hajebrahimi and K. Parivar, Neuroprotective effects of nerolidol against alzheimer’sdisease in wistar rats. Drug Development Research, 83(8), 1858–1866 (2022). doi: 10.1002/ddr.22002.
  • K. Rahman, Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging, 2007, 2(2), 219–236.
  • V.I. Lushchak, Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224, 164–175 (2014). doi: 10.1016/j.cbi.2014.10.016.
  • L. Taiz and E. Zeiger, Fisiologia Vegetal. Ed. Artmed, Porto Alegre (2013).
  • M.N. Xavier, J.M. Alves, N.S. Carneiro, E.L. Souchie, E.A.J. Silva, C.H.G. Martins, M.A.L.V. Ambrosio, M.B. Egea, C.C.F. Alves and M.L.D. Miranda, Chemical composition from essential oil of cardiopetalum calophyllum schltdl. (annonaceae) and their antioxidant, antibacterial and antifungal activities. Revista Virtual de Química, 8(5), 1433–1448 (2016). doi: 10.1590/0103-8478cr20150371.
  • T.T. Chai, N.M. Fadzillah, M. Kusnan and M. Mahmood, Water stress-induced oxidative damage and antioxidant responses in micropropagated banana plantlets. Biologia Plantarum, 49(1), 153–156 (2005). doi: 10.1007/s00000-005-3156-9.
  • P.R. Jeyaramraja, S.N. Meenakshi, R.S. Kumar, S.D. Joshi and B. Ramasubramanian, RETRACTED: water deficit induced oxidative damage in tea (camellia sinensis) plants. Journal of Plant Physiology, 162(4), 413–419 (2005). doi: 10.1016/j.jplph.2004.09.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.