54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioassay-guided isolation and identification of antibacterial compounds from Piper betle leaf with inhibitory activity against the Vibrio species in shrimp

, , , &
Received 09 Oct 2023, Accepted 29 Apr 2024, Published online: 19 May 2024

References

  • H.M. Abdel-Latif, E. Yilmaz, M.A. Dawood, E. Ringø, E. Ahmadifar and S. Yilmaz, Shrimp vibriosis and possible control measures using probiotics, postbiotics, prebiotics, and synbiotics: a review. Aquaculture, 737951, (2022). doi: 10.1016/j.aquaculture.2022.737951
  • A.K. Ghosh, S.K. Panda and W. Luyten, Anti-Vibrio and immune-enhancing activity of medicinal plants in shrimp: a comprehensive review. Fish & Shellfish Immunology, 117, 192–210 (2021). doi: 10.1016/j.fsi.2021.08.006
  • M.C. Verdegem, Nutrient discharge from aquaculture operations in function of system design and production environment. Reviews in Aquaculture, 5(3), 158–171 (2013). doi: 10.1111/raq.12011
  • M.T. El-Saadony, A.A. Swelum, M.M.A. Ghanima, M. Shukry, A.A. Omar, A.E. Taha … and H.M. Salem, A.M. El-Tahan, K.A. El-Tarabily, M.E. Abd El-Hack, Shrimp production, the most important diseases that threaten it, and the role of probiotics in confronting these diseases: a review. Research in Veterinary Science, 144, 126–140 (2022). doi: 10.1016/j.rvsc.2022.01.009
  • T. Defoirdt, N. Boon, P. Sorgeloos, W. Verstraete and P. Bossier, Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends in Biotechnology, 25(10), 472–479 (2007). doi: 10.1016/j.tibtech.2007.08.001
  • A. Iswarya, T. Marudhupandi, B. Vaseeharan, W.N.W. Ibrahim, L.K. Leong and N. Musa. Shrimp vibriosis. In Aquaculture Pathophysiology. Edits., S.B. Kibenge Frederick, B. Baldisserotto and R. Sie-Maen Chong, pp. 191–206, Academic Press, Netherlands. (2022).
  • M.A. Hannan, M.M. Rahman, M.N. Mondal, D.S. Chandra, G. Chowdhury and M.T. Islam, Molecular identification of causing vibriosis in shrimp and its herbal remedy. Polish Journal of Microbiology, 68(4), 429–438 (2019). doi: 10.33073/pjm-2019-042
  • J. Joshi, J. Srisala, V.H. Truong, I.T. Chen, B. Nuangsaeng, O. Suthienkul … and S. Thitamadee, T.W. Flegel, K. Sritunyalucksana, S. Thitamadee, Variation in Vibrio parahaemolyticus isolates from a single Thai shrimp farm experiencing an outbreak of acute hepatopancreatic necrosis disease (AHPND). Aquaculture, 428, 297–302 (2014). doi: 10.1016/j.aquaculture.2014.03.030
  • S. Chatterjee and S. Haldar, Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. Journal of Marine Science: Research and Development, s1, 1–7 (2012). doi: 10.4172/2155-9910.S1-002
  • X. Liu, J.C. Steele and X.Z. Meng, Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review. Environmental Pollution, 223, 161–169 (2017). doi: 10.1016/j.envpol.2017.01.003
  • J. Davies and D. Davies, Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433 (2010). doi: 10.1128/MMBR.00016-10
  • S.M. Limbu, L. Zhou, S.X. Sun, M.L. Zhang and Z.Y. Du, Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment International, 115, 205–219 (2018). doi: 10.1016/j.envint.2018.03.034
  • A.K. Ghosh, S.K. Panda and W. Luyten, Effectiveness of medicinal plant extracts against vibrio spp. In shrimp aquaculture. Aquaculture Research, 52(12), 6795–6801 (2021b). doi: 10.1111/are.15498
  • E.M. Tekwu, A.C. Pieme and V.P. Beng, Investigations of antimicrobial activity of some Cameroonian medicinal plant extracts against bacteria and yeast with gastrointestinal relevance. Journal of Ethnopharmacology, 142(1), 265–273 (2012). doi: 10.1016/j.jep.2012.05.005
  • S. Das, R. Parida, I.S. Sandeep, S. Nayak and S. Mohanty, Biotechnological intervention in betelvine (Piper betle L.): a review on recent advances and future prospects. Asian Pacific Journal of Tropical Medicine, 9(10), 938–946 (2016). doi: 10.1016/j.apjtm.2016.07.029
  • J.P.M.D. Guzman, P. Yatip, C. Soowannayan and M.B.B. Maningas, Piper betle L. leaf extracts inhibit quorum sensing of shrimp pathogen vibrio harveyi and protect Penaeus vannamei postlarvae against bacterial infection. Aquaculture, 547, 737452 (2022). doi: 10.1016/j.aquaculture.2021.737452
  • U. Taukoorah, N. Lall and F. Mahomoodally, Piper betle L.(betel quid) shows bacteriostatic, additive, and synergistic antimicrobial action when combined with conventional antibiotics. South African Journal of Botany, 105, 133–140 (2016). doi: 10.1016/j.sajb.2016.01.006
  • V. Dwivedi and S. Tripathi, Review study on potential activity of Piper betle. Journal of Pharmacognosy and Phytochemistry, 3(4), 93–98 (2014).
  • N.M.D.M.W. Nayaka, M.M.V. Sasadara, D.A. Sanjaya, P.E.S.K. Yuda, N.L.K.A.A. Dewi, E. Cahyaningsih and R. Hartati, Piper betle (L): recent review of antibacterial and antifungal properties, safety profiles, and commercial applications. Molecules, 26(8), 2321 (2021). doi: 10.3390/molecules26082321
  • R.K. Gupta, P. Guha and P.P. Srivastav, Phytochemical and biological studies of betel leaf (Piper betle L.): review on paradigm and its potential benefits in human health. Acta Ecologica Sinica, 43(5), 721–732 (2022). 10.1016/j.chnaes.2022.09.006. In press.
  • K. Prabhu, P. Sudharsan, P.G. Kumar, B. Chitra and C. Janani, Impact of Piper betle L. bioactive compounds in larvicidal activity against Culex quinquefasciatus. Journal of Natural Pesticide Research, 2, 100013 (2022). doi: 10.1016/j.napere.2022.100013
  • D. Pradhan, K.A. Suri, D.K. Pradhan and P. Biswasroy, Golden heart of the nature: piper betle L. Journal of Pharmacognosy & Phytochemistry, 1(6), 147–167 (2013).
  • D.L. Valle Jr, E.C. Cabrera, J.J.M. Puzon, W.L. Rivera and A.U. Khan, Antimicrobial activities of methanol, ethanol and supercritical CO2 extracts of Philippine Piper betle L. on clinical isolates of gram positive and gram negative bacteria with transferable multiple drug resistance. PLOS ONE, 11(1), e0146349 (2016). doi: 10.1371/journal.pone.0146349
  • G.A. Ataguba, H.T. Dong, T. Rattanarojpong, S. Senapin and K.R. Salin, Piper betle leaf extract inhibits multiple aquatic bacterial pathogens and in vivo streptococcus agalactiae infection in Nile tilapia. Turkish Journal of Fisheries and Aquatic Sciences, 18(5), 671–680 (2018). doi: 10.4194/1303-2712-v18_5_03
  • N. Nafiqoh, M. Zairin Jr, A. Caruso, S. Avarre, D. Lusiastuti, J.C. Sarter, D. Caruso and J.-C. Avarre, Antimicrobial properties against Aeromonas hydrophila and immunostimulant effect on clarias gariepinus of Piper betle, psidium guajava, and tithonia diversifolia plants. Aquaculture International, 28(1), 1–13 (2020). doi: 10.1007/s10499-019-00439-6
  • R. Srinivasan, S. Santhakumari and A.V. Ravi, Inávitro antibiofilm efficacy of Piper betle against quorum sensing mediated biofilm formation of luminescent vibrio harveyi. Microbial Pathogenesis, 110, 232–239 (2017). doi: 10.1016/j.micpath.2017.07.001
  • T. Singh, P. Singh, V.K. Pandey, R. Singh and A.H. Dar, A literature review on bioactive properties of betel leaf (Piper betel L.) and its applications in food industry. Food Chemistry Advances, 3, 100536 (2023). doi: 10.1016/j.focha.2023.100536
  • A.E. Ejele, C.I. Akalezi, I.C. Iwu, L.N. Ukiwe, C.K. Enenebaku and S.U. Ngwu, Bioassay-guided isolation, purification and characterization of antimicrobial compound from acidic metabolite of Piper umbellatum seed extract. International Journal of Chemistry, 6(1), 61–70 (2014). doi: 10.5539/ijc.v6n1p61
  • J. Han, J. Zhang, W. He, P. Huang, A. Oyeleye, X. Liu and L. Zhang. Bioassay-guided identification of bioactive molecules from traditional Chinese medicines. In: Chemical Biology. Edits., Jonathan E. Hempel, Charles H. Williams and Charles C. Hong, pp. 187–196, Humana Press, New York, NY. (2015).
  • W. Si, J. Gong, R. Tsao, M. Kalab, R. Yang and Y. Yin, Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract. Journal of Chromatography A, 1125(2), 204–210 (2006). doi: 10.1016/j.chroma.2006.05.061
  • S.K. Panda, Y.K. Mohanta, L. Padhi and W. Luyten, Antimicrobial activity of select edible plants from Odisha, India against food-borne pathogens. LWT, 113, 108246 (2019). doi: 10.1016/j.lwt.2019.06.013
  • L. Van Puyvelde, A. Aissa, S.K. Panda, W.M. De Borggraeve, M.J. Mukazayire and W. Luyten, Bioassay-guided isolation of antibacterial compounds from the leaves of tetradenia riparia with potential bactericidal effects on food-borne pathogens. Journal of Ethnopharmacology, 273, 113956 (2021).
  • N. Kerkoub, S.K. Panda, M.R. Yang, J.G. Lu, Z.H. Jiang, H. Nasri and W. Luyten, Bioassay-guided isolation of anti-Candida biofilm compounds from methanol extracts of the aerial parts of Salvia officinalis (Annaba, Algeria). Frontiers in Pharmacology, 9, 1418 (2018). doi: 10.3389/fphar.2018.01418
  • M. Liu, C. Veryser, J.G. Lu, T. Wenseleers, W.M. De Borggraeve, Z.H. Jiang and W. Luyten, Bioassay-guided isolation of active substances from Semen Torreyae identifies two new anthelmintic compounds with novel mechanism of action. Journal of Ethnopharmacology, 224, 421–428 (2018). doi: 10.1016/j.jep.2018.06.026
  • H. Hu, C. Hu, J. Peng, A.K. Ghosh, A. Khan, D. Sun and W. Luyten, Bioassay-guided interpretation of antimicrobial compounds in Kumu, a TCM preparation from Picrasma quassioides’ stem via UHPLC-Orbitrap-Ion trap mass spectrometry combined with fragmentation and retention time calculation. Frontiers in Pharmacology, 12, (2021). 10.3389/fphar.2021.761751
  • M. Hartl and H.U. Humpf, Toxicity assessment of fumonisins using the brine shrimp (Artemia salina) bioassay. Food and Chemical Toxicology, 38(12), 1097–1102 (2000). doi: 10.1016/S0278-6915(00)00112-5
  • S. Rahamouz-Haghighi, K. Bagheri and A. Sharafi, In vitro elicitation and detection of apigenin, catalpol and gallic acid in hairy root culture of plantago major L. and assessment of cytotoxicity and anti-bacterial activity of its methanolic extract. Natural Product Research, 37(4), 1–5 (2022). doi: 10.1080/14786419.2022.2068543
  • M.O. Ullah, M. Haque, K.F. Urmi, A.H.M. Zulfiker, E.S. Anita, M. Begum and K. Hamid, Anti–bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh. Asian Pacific Journal of Tropical Biomedicine, 3(1), 1–7 (2013).
  • J. O’brien, I. Wilson, T. Orton and F. Pognan, Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267(17), 5421–5426 (2000). doi: 10.1046/j.1432-1327.2000.01606.x
  • I. Nikolic, D. Vukovic, D. Gavric, J. Cvetanovic, V. Aleksic Sabo, S. Gostimirovic … and J. Narancic, P. Knezevic, An optimized checkerboard method for phage-antibiotic synergy detection. Viruses, 14(7), 1542 (2022). doi: 10.3390/v14071542
  • F.C. Odds, Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy, 52(1), 1–1 (2003). doi: 10.1093/jac/dkg301
  • S.K. Panda, R. Das, P. Leyssen, J. Neyts and W. Luyten, Assessing medicinal plants traditionally used in the Chirang Reserve Forest, Northeast India for antimicrobial activity. Journal of Ethnopharmacology, 225, 220–233 (2018). doi: 10.1016/j.jep.2018.07.011
  • H. Hu, Y. Lee-Fong, J. Peng, B. Hu, J. Li, Y. Li and H. Huang, Comparative research of chemical profiling in different parts of fissistigma oldhamii by ultra-high-performance liquid chromatography coupled with hybrid quadrupole-Orbitrap mass spectrometry. Molecules, 26(4), 960 (2021). doi: 10.3390/molecules26040960
  • M.A. Amatul-Samahah, W.H.H.W. Omar, N.F.M. Ikhsan, M.N.A. Azmai, M. Zamri-Saad and M.Y. Ina-Salwany, Vaccination trials against vibriosis in shrimp: a review. Aquaculture Reports, 18, 100471 (2020). doi: 10.1016/j.aqrep.2020.100471
  • A. Hossain, M. Habibullah-Al-Mamun, I. Nagano, S. Masunaga, D. Kitazawa and H. Matsuda, Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environmental Science and Pollution Research, 29(8), 11054–11075 (2022). doi: 10.1007/s11356-021-17825-4
  • E. Quiroz-Guzmán, Z.P. Morreeuw, A. Peña-Rodríguez, D.R. Barajas-Sandoval, P. Magallón-Servín, A. Mejía and A.G. Reyes, Flavonoid-enriched extract of agave lechuguilla bagasse as a feed supplement to prevent vibriosis in Pacific white shrimp Penaeus vannamei. Aquaculture, 562, 738867 (2023). doi: 10.1016/j.aquaculture.2022.738867
  • S. Das, I.S. Sandeep, P. Mohapatra, B. Kar, R.K. Sahoo and E. Subudhi … and S. Nayak, S. Mohanty, A comparative study of essential oil profile, antibacterial and antioxidant activities of thirty Piper betle landraces towards selection of industrially important chemotypes. Industrial Crops and Products, 187, 115289 (2022). doi: 10.1016/j.indcrop.2022.115289
  • B. Patra, R. Meena, R. Rosalin, M. Singh, R. Paulraj, R.K. Ekka and S.N. Pradhan, Untargeted metabolomics in Piper betle leaf extracts to discriminate the cultivars of coastal Odisha, India. Applied Biochemistry and Biotechnology, 194(10), 4362–4376 (2022). doi: 10.1007/s12010-022-03873-0
  • S. Karak, J. Acharya, S. Begum, I. Mazumdar, R. Kundu and B. De, Essential oil of Piper betle L. leaves: chemical composition, anti-acetylcholinesterase, anti-β-glucuronidase and cytotoxic properties. Journal of Applied Research on Medicinal and Aromatic Plants, 10, 85–92 (2018). doi: 10.1016/j.jarmap.2018.06.006
  • P. Phensri, K. Thummasema, U. Sukatta, S. Morand and C. Pruksakorn, In vitro antimicrobial activity of Piper betle leaf extract and some topical agents against methicillin-resistant and methicillin-susceptible staphylococcus strains from Canine Pyoderma. Animals, 12(22), 3203 (2022). doi: 10.3390/ani12223203
  • A.B. Othman, M.Z. Saad, N.H.N. Yusof and S.Z. Abdullah, In vitro antimicrobial activity of betel, Piper betle leaf extract against Vibrio alginolyticus isolated from Asian sea bass, lates calcarifer. Journal of Applied Biology and Biotechnology, 2018, 6(4), 46–48.
  • B. Kaveti, L. Tan, K.T. Sarnnia and M. Baig, Antibacterial activity of Piper betle leaves. International Journal of Pharmacy Teaching & Practices, 2(3), 129–132 (2011).
  • J.A. Khan and N. Kumar, Evaluation of antibacterial properties of extracts of Piper betel leaf. Journal of Pharmaceutical and Biomedical Sciences, 11(11), 1–3 (2011).
  • P. Tiwari, R. Jain, K. Kumar, R. Mishra and A. Chandy, Antibacterial activity and physicochemical evaluation of roots of butea monosperma. Asian Pacific Journal of Tropical Biomedicine, 2(2), S881–S883 (2012). doi: 10.1016/S2221-1691(12)60328-1
  • G.X. Wang, Z. Zhou, D.X. Jiang, J. Han, J.F. Wang, L.W. Zhao and J. Li, In vivo anthelmintic activity of five alkaloids from Macleaya microcarpa (maxim) Fedde against dactylogyrus intermedius in Carassius auratus. Veterinary Parasitology, 171(3–4), 305–313 (2010). doi: 10.1016/j.vetpar.2010.03.032
  • Y. Desjardins, Physiological and ecological functions and biosynthesis of health-promoting compounds in fruit and vegetables. In: Tomás BFA Y Gil MI, Improving the Health-Promoting Properties of Fruit and Vegetable Products, Edit. Edits., F.A Tomas Barberan and M.I. Gil, pp. 201–247. Vol. 23, Elsevier, USA. (2008).
  • Z. Zhang, G. Qin, B. Li and S. Tian, Effect of cinnamic acid for controlling gray mold on table grape and its possible mechanisms of action. Current Microbiology, 71(3), 396–402 (2015). doi: 10.1007/s00284-015-0863-1
  • S.E.V.D.A.N. Yilmaz, M. Sova and S. Ergün, Antimicrobial activity of trans‐cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates. Journal of Applied Microbiology, 125(6), 1714–1727 (2018). doi: 10.1111/jam.14097
  • S.A. Heleno, I.C. Ferreira, A.P. Esteves, A. Ćirić, J. Glamočlija, A. Martins … and M. Queiroz, M.J.R.P. Queiroz, Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food and Chemical Toxicology, 58, 95–100 (2013). doi: 10.1016/j.fct.2013.04.025
  • P. Biswas, U. Anand, S.C. Saha, N. Kant, T. Mishra and H. Masih … and A. Bar, D.K. Pandey, N. Jha, M. Majumder, N. Das, V. Gadekar, M.S. Shekhawat, M. Kumar, J. Proćków, J.M.P.D.L. Lastra, A. Dey, Betelvine (Piper betle L.): a comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. Journal of Cellular and Molecular Medicine, 26(11), 3083–3119 (2022). doi: 10.1111/jcmm.17323
  • M. Sova, Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Reviews in Medicinal Chemistry, 12(8), 749–767 (2012). doi: 10.2174/138955712801264792
  • S.G. Hawkins, Antimicrobial Activity of Cinnamic Acid, Citric Acid, Cinnamaldehyde, and Levulinic Acid Against Foodborne Pathogens. University of Tennessee –, Knoxville (2014).
  • M. Mingoia, C. Conte, A. Di Rienzo, M.P. Dimmito, L. Marinucci, G. Magi … and H. Turkez, M.C. Cufaro, P. Del Boccio, A. Di Stefano, I. Cacciatore, Synthesis and biological evaluation of novel cinnamic acid-based antimicrobials. Pharmaceuticals, 15(2), 228 (2022). doi: 10.3390/ph15020228
  • A.N. Aziz, H. Ibrahim, D.R. Syamsir, M. Mohtar, J. Vejayan and K. Awang, Antimicrobial compounds from Alpinia conchigera. Journal of Ethnopharmacology, 145(3), 798–802 (2013). doi: 10.1016/j.jep.2012.12.024
  • H.N.T. Thanh, M.T.T. Ai, Q.N.D. Vu, Q.P. Tu, L.N. Tien, P.N. Vinh … and N.N.T. Ai, T. Nguyen Thi Thu, N. Nguyen Thi Ai, Inhibition of rice-blast fungus magnaporthe oryzae by Piper betle extracts: in vitro evidence and in silico prediction. Vietnam Journal of Catalysis and Adsorption, 10(1S), 74–80 (2021). doi: 10.51316/jca.2021.094
  • D. Singh, S. Narayanamoorthy, S. Gamre, A.G. Majumdar, M. Goswami and U. Gami … and S. Cherian, M. Subramanian, Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division. Free Radical Biology and Medicine, 120, 62–71 (2018). doi: 10.1016/j.freeradbiomed.2018.03.021
  • J. Jesonbabu, N. Spandana and K.A. Lakshmi, The potential activity of hydroxychavicol against pathogenic bacteria. Journal of Bacteriology and Parasitology, 2(6), 2–5 (2011). doi: 10.4172/2155-9597.1000121
  • S. Sharma, I.A. Khan, I. Ali, F. Ali, M. Kumar, A. Kumar … and G.N. Qazi, S.T. Abdullah, S. Bani, A. Pandey, K.A. Suri, B.D. Gupta, N.K. Satti, P. Dutt, G.N. Qazi, Evaluation of the antimicrobial, antioxidant, and anti-inflammatory activities of hydroxychavicol for its potential use as an oral care agent. Antimicrobial Agents and Chemotherapy, 53(1), 216–222 (2009). doi: 10.1128/AAC.00045-08
  • D. Arome and E. Chinedu, The importance of toxicity testing. Journal of Pharmaceutical and Biological Sciences, 2013, 4, 146–148.
  • C.N. Banti and S.K. Hadjikakou, Evaluation of toxicity with brine shrimp assay. Bio-protocol, 11(2), e3895–e3895 (2021). doi: 10.21769/BioProtoc.3895
  • B.S. Nunes, F.D. Carvalho, L.M. Guilhermino and G. Van Stappen, Use of the genus Artemia in ecotoxicity testing. Environmental Pollution, 144(2), 453–462 (2006). doi: 10.1016/j.envpol.2005.12.037
  • G. Primahana, T. Ernawati, N.P. Dewi, I.D. Dwiyatmi, A. Darmawan and M. Hanafi, Synthesis of 2-allylphenyl cinnamate and brine shrimp lethality test activity evaluation. Procedia Chemistry, 16, 694–699 (2015). doi: 10.1016/j.proche.2015.12.014
  • J.M. Huang, K. Nakade, M. Kondo, C.S. Yang and Y. Fukuyama, Brine shrimp lethality test active constituents and new highly oxygenated seco-prezizaane-type sesquiterpenes from Illicium merrillianum. Chemical and Pharmaceutical Bulletin, 50(1), 133–136 (2002). doi: 10.1248/cpb.50.133
  • M.J. Moshi, E. Innocent, J.J. Magadula, D.F. Otieno, A. Weisheit, P.K. Mbabazi and R.S.O. Nondo, Brine shrimp toxicity of some plants used as traditional medicines in Kagera Region, north western Tanzania. Tanzania Journal of Health Research, 12(1), 63–67 (2010). doi: 10.4314/thrb.v12i1.56287
  • E.L.D.O. Niero and G.M. Machado-Santelli, Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells. Journal of Experimental & Clinical Cancer Research, 32(1), 1–14 (2013). doi: 10.1186/1756-9966-32-31
  • S.R. Gundala, C. Yang, R. Mukkavilli, R. Paranjpe, M. Brahmbhatt and V. Pannu … and A. Cheng, M.D. Reid, R. Aneja, Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicology and Applied Pharmacology, 280(1), 86–96 (2014). doi: 10.1016/j.taap.2014.07.012
  • A. Yardley-Jones, D. Anderson and D.V. Parke, The toxicity of benzene and its metabolism and molecular pathology in human risk assessment. Occupational and Environmental Medicine, 48(7), 437–444 (1991). doi: 10.1136/oem.48.7.437
  • P.C. Asuzu, N.S. Trompeter, C.R. Cooper, S.A. Besong and A.N. Aryee, Cell Culture-Based assessment of toxicity and therapeutics of phytochemical antioxidants. Molecules, 27(3), 1087 (2022). doi: 10.3390/molecules27031087
  • Y. Zhang, Cell toxicity mechanism and biomarker. Clinical and Translational Medicine, 7(1), 1–6 (2018). doi: 10.1186/s40169-018-0212-7
  • W.T. Langeveld, E.J. Veldhuizen and S.A. Burt, Synergy between essential oil components and antibiotics: a review. Critical Reviews in Microbiology, 40(1), 76–94 (2014). doi: 10.3109/1040841X.2013.763219
  • L. Sanhueza, R. Melo, R. Montero, K. Maisey, L. Mendoza, M. Wilkens and G. Agbor, Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against staphylococcus aureus and Escherichia coli. PLOS ONE, 12(2), e0172273 (2017). doi: 10.1371/journal.pone.0172273
  • W.H. Himratul-Aznita, C.O. Nor-Zulaila and K. Nurul-Fatihah, Antifungal activity of dual combination of hydroxychavicol with commercialized agents against oral candida species. Springer Plus, 5(1), 1–6 (2016). doi: 10.1186/s40064-016-3396-6
  • A. Abdul Rahman, W.Z. Wan Ngah, R. Jamal, S. Makpol, R. Harun and N. Mokhtar, Inhibitory mechanism of combined hydroxychavicol with epigallocatechin-3-gallate against glioma cancer cell lines: a transcriptomic analysis. Frontiers in pharmacology, 13, 844199 (2022).
  • Y. Xie, W. Yang, F. Tang, X. Chen and L. Ren, Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Current Medicinal Chemistry, 22(1), 132–149 (2015). doi: 10.2174/0929867321666140916113443
  • L. Liu, W.R. Hudgins, S. Shack, M.Q. Yin and D. Samid, Cinnamic acid: a natural product with potential use in cancer intervention. International Journal of Cancer, 62(3), 345–350 (1995). doi: 10.1002/ijc.2910620319
  • R.J. Lubbers and R.P. de Vries, Degradation of homocyclic aromatic compounds by fungi. Encyclopedia of Mycology, 2, 477–488 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.