Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 175, 2020 - Issue 9-10
151
Views
3
CrossRef citations to date
0
Altmetric
Articles

Influence of high gamma radiation on the optical and photoluminescence characteristics of ZnO thin films

&
Pages 791-808 | Received 01 Jan 2020, Accepted 06 May 2020, Published online: 25 May 2020

References

  • Look, D.C. Recent Advances in ZnO Materials and Devices. Mater. Sci. Eng. B 2001, 80, 383–387. doi: 10.1016/S0921-5107(00)00604-8
  • Reynolds, D.; Look, D.C.; Jogai, B.; Litton, C.; Cantwell, G.; Harsch, W. Valence-Band Ordering in ZnO. Phys. Rev. B 1999, 60, 2340. doi: 10.1103/PhysRevB.60.2340
  • Subramanyam, T.; Srinivasulu Naidu, B.; Uthanna, S. Physical Properties of Zinc Oxide Films Prepared by dc Reactive Magnetron Sputtering at Different Sputtering Pressures. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2000, 35, 1193–1202. doi: 10.1002/1521-4079(200010)35:10<1193::AID-CRAT1193>3.0.CO;2-6
  • Djurišić, A.B.; Choy, W.C.; Roy, V.A.L.; Leung, Y.H.; Kwong, C.Y.; Cheah, K.W.; Gundu Rao, T.; Chan, W.K.; Fei Lui, H.; Surya, C. Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures. Adv. Funct. Mater. 2004, 14, 856–864. doi: 10.1002/adfm.200305082
  • Djurišić, A.; Leung, Y.; Tam, K.; Ding, L.; Ge, W.; Chen, H.; Gwo, S. Green, Yellow, and Orange Defect Emission From ZnO Nanostructures: Influence of Excitation Wavelength. Appl. Phys. Lett. 2006, 88, 103107. doi: 10.1063/1.2182096
  • Zhong, J.; Kitai, A.H.; Mascher, P.; Puff, W. The Influence of Processing Conditions on Point Defects and Luminescence Centers in ZnO. J. Electrochem. Soc. 1993, 140, 3644–3649. doi: 10.1149/1.2221143
  • Vanheusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms Behind Green Photoluminescence in ZnO Phosphor Powders. J. Appl. Phys. 1996, 79, 7983–7990. doi: 10.1063/1.362349
  • Schirmer, O.; Zwingel, D. The Yellow Luminescence of Zinc Oxide. Solid State Commun. 1970, 8, 1559–1563. doi: 10.1016/0038-1098(70)90608-3
  • Takata, S.; Minami, T.; Nanto, H.; Kawamura, T. Temperature Dependence of Electro-and Photoluminescence in ZnO Single Crystals. Phys. Status Solidi (a) 1981, 65, K83–K86. doi: 10.1002/pssa.2210650165
  • Nanto, H.; Minami, T.; Takata, S. Photoluminescence in Sputtered ZnO Thin Films. Phys. Status Solidi (a) 1981, 65, K131–K134. doi: 10.1002/pssa.2210650252
  • Kohan, A.; Ceder, G.; Morgan, D.; Van de Walle, C.G. First-principles Study of Native Point Defects in ZnO. Phys. Rev. B 2000, 61, 15019. doi: 10.1103/PhysRevB.61.15019
  • Yang, X.; Du, G.; Wang, X.; Wang, J.; Liu, B.; Zhang, Y.; Liu, D.; Liu, D.; Ong, H.; Yang, S. Effect of Post-Thermal Annealing on Properties of ZnO Thin Film Grown on c-Al2O3 by Metal-Organic Chemical Vapor Deposition. J. Cryst. Growth 2003, 252, 275–278. doi: 10.1016/S0022-0248(03)00898-4
  • Guo, B.; Qiu, Z.; Wong, K. Intensity Dependence and Transient Dynamics of Donor–Acceptor Pair Recombination in ZnO Thin Films Grown on (001) Silicon. Appl. Phys. Lett. 2003, 82, 2290–2292. doi: 10.1063/1.1566482
  • Egelhaaf, H.-J.; Oelkrug, D. Luminescence and Nonradiative Deactivation of Excited States Involving Oxygen Defect Centers in Polycrystalline ZnO. J. Cryst. Growth 1996, 161, 190–194. doi: 10.1016/0022-0248(95)00634-6
  • Lin, B.; Fu, Z.; Jia, Y. Green Luminescent Center in Undoped Zinc Oxide Films Deposited on Silicon Substrates. Appl. Phys. Lett. 2001, 79, 943–945. doi: 10.1063/1.1394173
  • Korsunska, N.; Borkovska, L.; Bulakh, B.; Khomenkova, L.Y.; Kushnirenko, V.; Markevich, I. The Influence of Defect Drift in External Electric Field on Green Luminescence of ZnO Single Crystals. J. Lumin. 2003, 102, 733–736. doi: 10.1016/S0022-2313(02)00634-8
  • Vanheusden, K.; Seager, C.H.; Warren, W.L.; Tallant, D.R.; Voigt, J.A. Correlation Between Photoluminescence and Oxygen Vacancies in ZnO Phosphors. Appl. Phys. Lett. 1996, 68, 403–405. doi: 10.1063/1.116699
  • Vanheusden, K.; Seager, C.; Warren, W.; Tallant, D.; Caruso, J.; Hampden-Smith, M.; Kodas, T. Green Photoluminescence Efficiency and Free-Carrier Density in ZnO Phosphor Powders Prepared by Spray Pyrolysis. J. Lumin. 1997, 75, 11–16. doi: 10.1016/S0022-2313(96)00096-8
  • Studenikin, S.; Golego, N.; Cocivera, M. Fabrication of Green and Orange Photoluminescent, Undoped ZnO Films Using Spray Pyrolysis. J. Appl. Phys. 1998, 84, 2287–2294. doi: 10.1063/1.368295
  • Leiter, F.; Alves, H.; Pfisterer, D.; Romanov, N.G.; Hofmann, D.M.; Meyer, B.K. Oxygen Vacancies in ZnO. Phys. B 2003, 340-342, 201–204. doi: 10.1016/j.physb.2003.09.031
  • Leiter, F.H.; Alves, H.R.; Hofstaetter, A.; Hofmann, D.M.; Meyer, B.K. The Oxygen Vacancy as the Origin of a Green Emission in Undoped ZnO. Phys. Status Solidi (b) 2001, 226, R4–R5. doi: 10.1002/1521-3951(200107)226:1<R4::AID-PSSB99994>3.0.CO;2-F
  • Van de Walle, C.G. Defect Analysis and Engineering in ZnO. Phys. B 2001, 308, 899–903. doi: 10.1016/S0921-4526(01)00830-4
  • Janotti, A.; Van de Walle, C.G. Oxygen Vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102. doi: 10.1063/1.2053360
  • Kuhnert, R.; Helbig, R. Vibronic Structure of the Green Photoluminescence due to Copper Impurities in ZnO. J. Lumin. 1981, 26, 203–206. doi: 10.1016/0022-2313(81)90182-4
  • Reynolds, D.C.; Look, D.C.; Jogai, B.; Morkoc, H. Similarities in the Bandedge and Deep-Centre Photoluminescence Mechanisms of ZnO and GaN. Solid State Commun. 1997, 101, 643–646. doi: 10.1016/S0038-1098(96)00697-7
  • Reynolds, D.; Look, D.C.; Jogai, B. Fine Structure on the Green Band in ZnO. J. Appl. Phys. 2001, 89, 6189–6191. doi: 10.1063/1.1356432
  • Greene, L.E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J.C.; Zhang, Y.; Saykally, R.J.; Yang, P. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays. Angew. Chem., Int. Ed. 2003, 42, 3031–3034. doi: 10.1002/anie.200351461
  • Kwok, W.; Djurišić, A.; Leung, Y.; Chan, W.; Phillips, D. Time-resolved Photoluminescence Study of the Stimulated Emission in ZnO Nanoneedles. Appl. Phys. Lett. 2005, 87, 093108. doi: 10.1063/1.2035871
  • Cox, R.; Block, D.; Hervé, A.; Picard, R.; Santier, C.; Helbig, R. Exchange Broadened, Optically Detected ESR Spectra for Luminescent Donor-Acceptor Pairs in li Doped ZnO. Solid State Commun. 1978, 25, 77–80. doi: 10.1016/0038-1098(78)90361-7
  • Radoi, R.; Fernández, P.; Piqueras, J.; Wiggins, M.; Solis, J. Luminescence Properties of Mechanically Milled and Laser Irradiated ZnO. Nanotechnology 2003, 14, 794. doi: 10.1088/0957-4484/14/7/317
  • Nag, J.; Haglund Jr, R. Synthesis of Vanadium Dioxide Thin Films and Nanoparticles. J. Phys.: Condens. Matter 2008, 20, 264016.
  • Kumaravel, R.; Gokulakrishnan, V.; Ramamurthi, K.; Sulania, I.; Kanjilal, D.; Asokan, K.; Avasthi, D.K. Effect of Swift Heavy ion Irradiation on Structural, Optical and Electrical Properties of Cd2SnO4 Thin Films. Nucl. Instrum. Methods B 2010, 268, 2391–2394. doi: 10.1016/j.nimb.2010.04.029
  • El-Nahass, M.M.; Atta, A.A.; El-Shazly, E.A.A.; Faidah, A.S.; Hendi, A.A. Influence of γ-Irradiation on the Optical Properties of Nanocrystalline Tin Phthalocyanine Thin Films. Mater. Chem. Phys. 2009, 117, 390–394. doi: 10.1016/j.matchemphys.2009.06.015
  • El-Nahass, M.M.; El-Deeb, A.F.; Metwally, H.S.; El-Sayed, H.E.A.; Hassanien, A.M. Influence of X-ray Irradiation on the Optical Properties of Iron (III) Chloride Tetraphenylporphyrin Thin Films. Solid State Sci. 2010, 12, 552–557. doi: 10.1016/j.solidstatesciences.2010.01.004
  • Qindeel, R. Effect of Gamma Radiation on Morphological & Optical Properties of ZnO Nanopowder. Results Phys. 2017, 7, 807–809. doi: 10.1016/j.rinp.2017.02.003
  • Reyhani, A.; Gholizadeh, A.; Khanlary, M. Effect of Gamma Radiation on the Optical and Structural Properties of ZnO Nanowires with Various Diameters. Opt. Mater. 2018, 75, 236–242. doi: 10.1016/j.optmat.2017.10.027
  • Tashiro, J.; Torita, Y.; Nishimura, T.; Kuriyama, K.; Kushida, K.; Xu, Q.; Kinomura, A. Gamma-ray Irradiation Effect on ZnO Bulk Single Crystal: Origin of low Resistivity. Solid State Commun. 2019, 292, 24–26. doi: 10.1016/j.ssc.2019.01.019
  • Al-ghamdi, A.A.; Alhumminay, H.; Abdel-wahab, M.S.; Yahia, I. Structure, Optical Constants and non-Linear Properties of High Quality AZO Nano-Scale Thin Films. Opt.-Int. J. Light Electron Opt. 2016, 127, 4324–4328. doi: 10.1016/j.ijleo.2016.01.029
  • Hammad, A.H.; Abdel-wahab, M.S.; Vattamkandathil, S.; Ansari, A.R. Structural and Optical Properties of ZnO Thin Films Prepared by RF Sputtering at Different Thicknesses. Phys. B 2018, 540, 1–8. doi: 10.1016/j.physb.2018.04.017
  • Sundaram, K.; Khan, A. Characterization and Optimization of Zinc Oxide Films by rf Magnetron Sputtering. Thin Solid Films 1997, 295, 87–91. doi: 10.1016/S0040-6090(96)09274-7
  • Kashiwaba, Y.; Katahira, F.; Haga, K.; Sekiguchi, T.; Watanabe, H. Hetero-epitaxial Growth of ZnO Thin Films by Atmospheric Pressure CVD Method. J. Cryst. Growth 2000, 221, 431–434. doi: 10.1016/S0022-0248(00)00729-6
  • Aslan, M.H.; Oral, A.Y.; Menşur, E.; Gül, A.; Başaran, E. Preparation of c-Axis-Oriented Zinc-Oxide Thin Films and the Study of Their Microstructure and Optical Properties. Sol. Energy Mater. Sol. Cells 2004, 82, 543–552.
  • Ryu, Y.; Kim, W.; White, H. Fabrication of Homostructural ZnO p–n Junctions. J. Cryst. Growth 2000, 219, 419–422. doi: 10.1016/S0022-0248(00)00731-4
  • Amirhaghi, S.; Craciun, V.; Craciun, D.; Elders, J.; Boyd, I. Low Temperature Growth of Highly Transparent c-Axis Oriented ZnO Thin Films by Pulsed Laser Deposition. Microelectron. Eng. 1994, 25, 321–326. doi: 10.1016/0167-9317(94)90032-9
  • Bao, D.; Gu, H.; Kuang, A. Sol-gel-derived c-Axis Oriented ZnO Thin Films. Thin Solid Films 1998, 312, 37–39. doi: 10.1016/S0040-6090(97)00302-7
  • Maniv, S.; Zangvil, A. Controlled Texture of Reactively rf-Sputtered ZnO Thin Films. J. Appl. Phys. 1978, 49, 2787–2792. doi: 10.1063/1.325158
  • Alsebaie, D.; Shirbeeny, W.; Alshahrie, A.; Abdel-Wahab, M.S. Ellipsometric Study of Optical Properties of Sm-Doped ZnO Thin Films Co-Deposited by RF-Magnetron Sputtering. Opt.-Int. J. LightElectron Opt. 2017, 148, 172–180. doi: 10.1016/j.ijleo.2017.08.041
  • Sawaby, A.; Selim, M.; Marzouk, S.; Mostafa, M.; Hosny, A. Structure, Optical and Electrochromic Properties of NiO Thin Films. Phys. B 2010, 405, 3412–3420. doi: 10.1016/j.physb.2010.05.015
  • Krishnakumar, V.; Shanmugam, G. Electrical and Optical Properties of Pure and Pb 2+ ion Doped PVA− PEG Polymer Composite Electrolyte Films. Ionics 2012, 18, 403–411. doi: 10.1007/s11581-011-0643-2
  • Mott, N.; Davis, E. Electronic Processes in Non-Crystalline Materials; Oxford University Press: London, 1979.
  • Eid, S.; Ebraheem, S.; Abdel-Kader, N.M. Study the Effect of Gamma Radiation on the Optical Energy gap of Poly (Vinyl Alcohol) Based Ferrotitanium Alloy Film: its Possible use in Radiation Dosimetry. Open J. Polym. Chem. 2014, 4, 21. doi: 10.4236/ojpchem.2014.42003
  • Hammad, A.H.; Abdelghany, A.; Okasha, A.; Marzouk, S. The Influence of Fluorine and Nickel Ions on the Structural, Spectroscopic, and Optical Properties of (100− x)[15NaF–5CaF 2–80B 2 O 3]-XNiO Glasses. J. Mater. Sci.: Mater. Electron. 2017, 28, 8662–8668.
  • Yakuphanoglu, F.; Arslan, M. Determination of Thermo-Optic Coefficient, Refractive Index, Optical Dispersion and Group Velocity Parameters of an Organic Thin Film. Phys. B 2007, 393, 304–309. doi: 10.1016/j.physb.2007.01.017
  • Sharma, S.; Maity, T. Effect of Gamma Radiation on Electrical and Optical Properties of (TeO 2) 0· 9 (In 2 O 3) 0· 1 Thin Films. Bull. Mater. Sci. 2011, 34, 61–69. doi: 10.1007/s12034-011-0027-2
  • Al-Hamdani, N.A.; Al-Alawy, R.D.; Hassan, S.J. Effect of Gamma Irradiation on the Structural and Optical Properties of ZnO Thin Films. IOSR J. Comput. Eng. 2014, 16, 11–16. doi: 10.9790/0661-16191116
  • Urbach, F. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Phys. Rev. 1953, 92, 1324. doi: 10.1103/PhysRev.92.1324
  • Rajalakshmi, R.; Angappane, S. Synthesis, Characterization and Photoresponse Study of Undoped and Transition Metal (Co, Ni, Mn) Doped ZnO Thin Films. Mater. Sci. Eng. B 2013, 178, 1068–1075. doi: 10.1016/j.mseb.2013.06.015
  • Rajalakshmi, R.; Angappane, S. Effect of Thickness on the Structural and Optical Properties of Sputtered ZnO and ZnO: Mn Thin Films. J. Alloys Compd. 2014, 615, 355–362. doi: 10.1016/j.jallcom.2014.06.166
  • Deng, Q.; Yin, Z.; Zhu, R.-y. Radiation-induced Color Centers in La-Doped PbWO4 Crystals. Nucl. Instrum. Methods A 1999, 438, 415–420. doi: 10.1016/S0168-9002(99)00835-9
  • Dalouji, V.; Solaymani, S.; Dejam, L.; Elahi, S.M.; Rezaee, S.; Mehrparvar, D. Gap States of ZnO Thin Films by new Methods: Optical Spectroscopy, Optical Conductivity and Optical Dispersion Energy. Chin. Phys. Lett. 2018, 35, 027701. doi: 10.1088/0256-307X/35/2/027701
  • Ilican, S.; Caglar, Y.; Caglar, M.; Yakuphanoglu, F. Electrical Conductivity, Optical and Structural Properties of Indium-Doped ZnO Nanofiber Thin Film Deposited by Spray Pyrolysis Method. Physica E 2006, 35, 131–138. doi: 10.1016/j.physe.2006.07.009
  • Neumann, H.; Hörig, W.; Reccius, E.; Sobotta, H.; Schumann, B.; Kühn, G. Growth and Optical Properties of CuGaTe2 Thin Films. Thin Solid Films 1979, 61, 13–22. doi: 10.1016/0040-6090(79)90494-2
  • Giulio, M.D.; Micocci, G.; Rella, R.; Siciliano, P.; Tepore, A. Optical Absorption of Tellurium Suboxide Thin Films. Phys. Status Solidi (a) 1993, 136, K101–K104. doi: 10.1002/pssa.2211360236
  • El-Nahass, M.; Atta, A.; El-Raheem, M.A.; Hassanien, A. Structural and Optical Properties of DC Sputtered Cd2SnO4 Nanocrystalline Films. J. Alloys Compd. 2014, 585, 1–6. doi: 10.1016/j.jallcom.2013.09.079
  • Wemple, S.; DiDomenico Jr, M. Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials. Phys. Rev. B 1971, 3, 1338. doi: 10.1103/PhysRevB.3.1338
  • Wemple, S. Refractive-index Behavior of Amorphous Semiconductors and Glasses. Phys. Rev. B 1973, 7, 3767. doi: 10.1103/PhysRevB.7.3767
  • Solomon, I.; Schmidt, M.; Sénémaud, C.; Khodja, M.D. Band Structure of Carbonated Amorphous Silicon Studied by Optical, Photoelectron, and x-ray Spectroscopy. Phys. Rev. B 1988, 38, 13263. doi: 10.1103/PhysRevB.38.13263
  • El-Raheem, M.A. Optical Properties of GeSeTl Thin Films. J. Phys.: Condens. Matter 2007, 19, 216209.
  • Dingle, R. Luminescent Transitions Associated with Divalent Copper Impurities and the Green Emission From Semiconducting Zinc Oxide. Phys. Rev. Lett. 1969, 23, 579. doi: 10.1103/PhysRevLett.23.579
  • Mishra, K.; Schmidt, P.; Johnson, K.; DeBoer, B.; Berkowitz, J.; Dale, E. Bands Versus Bonds in Electronic-Structure Theory of Metal Oxides: Application to Luminescence of Copper in Zinc Oxide. Phys. Rev. B 1990, 42, 1423. doi: 10.1103/PhysRevB.42.1423
  • Neugebauer, J.; Van de Walle, C.G. Gallium Vacancies and the Yellow Luminescence in GaN. Appl. Phys. Lett. 1996, 69, 503–505. doi: 10.1063/1.117767
  • Morkoç, H.; Özgür, U.m. Zinc Oxide: Fundamentals, Materials and Device Technology; Wiley-VCH: Weinheim, 2009.
  • Reynolds, D.; Look, D.; Jogai, B.; Van Nostrand, J.; Jones, R.; Jenny, J. Source of the Yellow Luminescence Band in GaN Grown by gas-Source Molecular Beam Epitaxy and the Green Luminescence Band in Single Crystal ZnO. Solid State Commun. 1998, 106, 701–704. doi: 10.1016/S0038-1098(98)00048-9
  • Ogino, T.; Aoki, M. Mechanism of Yellow Luminescence in GaN. Jpn J. Appl. Phys. 1980, 19, 2395. doi: 10.1143/JJAP.19.2395
  • Hofmann, D.; Kovalev, D.; Steude, G.; Meyer, B.; Hoffmann, A.; Eckey, L.; Heitz, R.; Detchprom, T.; Amano, H.; Akasaki, I. Properties of the Yellow Luminescence in Undoped GaN Epitaxial Layers. Phys. Rev. B 1995, 52, 16702. doi: 10.1103/PhysRevB.52.16702
  • Glaser, E.; Kennedy, T.; Doverspike, K.; Rowland, L.; Gaskill, D.; Freitas Jr, J.; Khan, M.A.; Olson, D.; Kuznia, J.; Wickenden, D. Optically Detected Magnetic Resonance of GaN Films Grown by Organometallic Chemical-Vapor Deposition. Phys. Rev. B 1995, 51, 13326. doi: 10.1103/PhysRevB.51.13326

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.