Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 175, 2020 - Issue 9-10
73
Views
0
CrossRef citations to date
0
Altmetric
Articles

EBT3-based solar ultraviolet dosimeter

& ORCID Icon
Pages 827-843 | Received 30 Jan 2020, Accepted 14 May 2020, Published online: 04 Jun 2020

References

  • Diffey, B.L. Sources and Measurement of Ultraviolet Radiation. Methods 2002, 28, 4–13. doi: 10.1016/S1046-2023(02)00204-9
  • Bais, A.F.; Bernhard, G.; McKenzie, R.L.; Aucamp, P.J.; Young, P.J.; Ilyas, M.; Jöckel, P.; Deushi, M. Ozone-climate Interactions and Effects on Solar Ultraviolet Radiation. Photochem. Photobiol. Sci. 2019, 18, 602–640.
  • World Health Organization. International Agency for Cancer Research: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Internal Report 14/002. Report of the Advisory Group to Recommend Priorities for IARC Monographs during 2015–2019. International Agency for Cancer Research: Lyon, 2014.
  • Yu, K.N.; Chun, S.L.; Chan, P.M. Long-Term Passive Monitoring of Solar UV Radiation Using Radiochromic Films. 3rd Southern African Solar Energy Conference, South Africa, 2015; pp 463–465.
  • Park, S.-J.; Herring, C.M.; Eden, J.G. Microcavity Plasma UV Lamps: Efficient VUV, UV-C and UV-B Generation with Flat Form Factor. 2016 IEEE International Conference Plasma Science, 2016; pp 1–1. doi:10.1109/PLASMA.2016.7534272.
  • Belkin, M.; Césarini, J.P.; Diffey, B.; Hietanen, M.; Kojima, M.; Mariutti, G.; McKinlay, A.; Repacholi, M.; Roy, C.; Rubenstein, R.; Sliney, D. Protection Against Exposure to Ultraviolet Radiation; World Health Organization: Geneva, 1994.
  • Lucas, R.; McMichael, T.; Smith, W.; Armstrong, B. Solar Ultraviolet Radiation: Global Burden of Disease From Solar Ultraviolet Radiation, In Environmental burden of disease series, No. 13: Pruss-Ustun, A., Ed. World Health Organization: Geneva 2006.
  • Panov, V.; Borisova-Papancheva, T. Application of Ultraviolet Light (UV) in Dental Medicine. J. Med. Dental Practice 2015, 194–200. doi:10.18044/MedInform.201522.194.
  • Siegfried, E.C.; Stone, M.S.; Madison, K.C. Ultraviolet Light Burn: A Cutaneous Complication of Visible Light Phototherapy of Neonatal Jaundice. Pediatr. Dermatol. 1992, 9, 278–282. doi:10.1111/j.1525-1470.1992.tb00348.x.
  • Guerrero-Beltrán, J.A.; Barbosa-Cánovas, G.V. Review: Advantages and Limitations on Processing Foods by UV Light. Food Sci. Technol. Int. 2004, 10, 137–147. doi:10.1177/1082013204044359.
  • Turtoi, M. Ultraviolet Light Treatment of Fresh Fruits and Vegetables Surface: A Review. J Agroaliment Process Technol 2013, 19, 325–337.
  • Turtoi, M.; Borda, D. Ultraviolet Light Efficacy for Microbial Inactivation on Fruit Juices, Nectars and Apple Cider. J Agroaliment Process Technol 2013, 19, 130–140.
  • Akiba, N.; Saitoh, N.; Kuroki, K. Fluorescence Spectra and Images of Latent Fingerprints Excited with a Tunable Laser in the Ultraviolet Region. J. Forensic Sci. 2007, 52, 1103–1106. doi:10.1111/j.1556-4029.2007.00532.x.
  • World Health Organization. WHO | UV radiation 2016. http://www.who.int/uv/faq/whatisuv/en/index2.html (accessed Jan 20, 2018).
  • Kim, Y.; Yim, D.; Eom, S.; Lee, J.Y.; Kim, H. The Effect of Sunblock Against Oxidative Stress in Farmers: A Pilot Study. J. Biomed. Res. 2017, 31, 344–349. doi:10.7555/jbr.31.20160092.
  • Feister, U.; Meyer, G.; Kirst, U. Solar UV Radiation Exposure of Seamen - Measurements, Calibration and Model Calculations of Erythemal Irradiance Along Ship Routes. AIP Conf. Proc. 2013, 860–863. doi: 10.1063/1.4804906
  • Schouten, P.W.; Parisi, A.V.; Turnbull, D.J. Evaluation of a High Exposure Solar UV Dosimeter for Underwater Use. Photochem. Photobiol. 2007, 83, 931–937. doi:10.1111/j.1751-1097.2007.00085.x.
  • Thieden, E.; Agren, M.S.; Wulf, H.C. The Wrist is a Reliable Body Site for Personal Dosimetry of Ultraviolet Radiation. Photodermatol. Photoimmunol. Photomed. 2000, 16, 57–61. doi:10.1034/j.1600-0781.2000.d01-4.x.
  • Seckmeyer, G.; Klingebiel, M.; Riechelmann, S.; Lohse, I.; McKenzie, R.L.; Ben Liley, J.; Allen, M.W.; Siani, A.M.; Casale, G.R. A Critical Assessment of Two Types of Personal UV Dosimeters. Photochem. Photobiol. 2012, 88, 215–222. doi:10.1111/j.1751-1097.2011.01018.x.
  • El Naggar, S.; Gustat, H.; Magister, H.; Rochlitzer, R. An Electronic Personal UV-B-Dosimeter. J. Photochem. Photobiol. B 1995, 31, 83–86. doi:10.1016/1011-1344(95)07216-2.
  • Katsuda, T.; Gotanda, R.; Gotanda, T.; Akagawa, T.; Tanki, N.; Kuwano, T.; Noguchi, A.; Yabunaka, K. Intensities of Incident and Transmitted Ultraviolet-A Rays Through Gafchromic Films. J. Med. Phys. 2017, 42, 86–89. doi:10.4103/jmp.JMP. doi: 10.4103/jmp.JMP_136_16
  • Katsuda, T.; Gotanda, R.; Gotanda, T.; Akagawa, T.; Tanki, N.; Kuwano, T.; Yabunaka, K. Comparing Three UV Wavelengths for pre-Exposing Gafchromic EBT2 and EBT3 Films. J. Appl. Clin. Med. Phys. 2015, 16, 449–457. doi: 10.1120/jacmp.v16i6.5663
  • Devic, S. Radiochromic Film Dosimetry: Past, Present, and Future. Phys Medica Eur J Med Phys 2011, 27, 122–134. doi:10.1016/J.EJMP.2010.10.001.
  • Aydarous, A.; Al-omary, E.A.; El Ghazaly, M. Characterization of Gafchromic EBT3 Films for Ultraviolet Radiation Dosimetry. Radiat. Eff. Defects Solids 2013, 169, 249–255. doi:10.1080/10420150.2013.848446.
  • Yu, K.N.; Chun, S.L.; Chan, P.M. Results in Physics Responses of Gafchromic EBT3 Films with Polypropylene Barriers to UV Radiation. Results Phys. 2017, 7, 1976–1977. doi:10.1016/j.rinp.2017.06.006.
  • Chun, S.L.; Yu, P.K.N. Note: Calibration of EBT3 Radiochromic Film for Measuring Solar Ultraviolet Radiation. Rev. Sci. Instrum. 2014, 85, 106103. doi:10.1063/1.4898162.
  • Tsang, P.Y.; Chan, P.M.; Yu, K.N. Measuring Diffuse Ultraviolet Exposures Using Gafchromic EBT3 Films. Results Phys 2017, 7, 1492–1493. doi:10.1016/j.rinp.2017.04.016.
  • Tajuddin, M.A.; Omar, A.F. Measuring Solar Ultraviolet Exposure Dose on EBT3 Film Through the Application of Visible Absorbance Spectroscopy. 9th International Conference on Robotics, Vision, Signal Processing & Power Applications, 2017; pp 639–646. doi:10.1007/978-981-10-1721-6.
  • Mohammad Saleh, I.N.; Osman, U.S.; Omar, A.F. The Measurement of Solar Ultraviolet Ambient Dose Using EBT3 Film. In Space Science and Communication for Sustainability. Springer Singapore, Singapore, 2018; pp 213–222. doi:10.1007/978-981-10-6574-3_18.
  • Butson, E.T.; Cheung, T.; Yu, P.K.N.; Butson, M.J. Measuring Solar UV Radiation with EBT Radiochromic Film. Phys. Med. Biol. 2010, 55, N487–N493. doi:10.1088/0031-9155/55/20/N01.
  • Butson, E.T.; Yu, P.K.N.; Butson, M.J. Solar Ultraviolet Radiation Response of EBT2 Gafchromic, Radiochromic Film. Phys. Med. Biol. 2013, 58, N287–N294. doi:10.1088/0031-9155/58/21/N287.
  • Welch, D.; Randers-Pehrson, G.; Spotnitz, H.M.; Brenner, D.J. Unlaminated Gafchromic Ebt3 Film for Ultraviolet Radiation Monitoring. Radiat. Prot. Dosim. 2017, 176, 341–346. doi:10.1093/rpd/ncx016.
  • Yusof, N.A.M.; Osman, U.S.; Omar, A.F. Measuring UV LEDs Radiation Dose using EBT3 Film. 2016 Int Conf Adv Electr Electron Syst Eng 2016:5–10.
  • Farah, N.; Francis, Z.; Abboud, M. Analysis of the EBT3 Gafchromic Film Irradiated with 6 MV Photons and 6 MeV Electrons Using Reflective Mode Scanners. Phys. Med. 2014, 30, 708–712. doi:10.1016/j.ejmp.2014.04.010.
  • León Marroquin, E.Y.; Herrera González, J.A.; Camacho López, M.A.; Villarreal Barajas, J.E.; García-Garduño, O.A. Evaluation of the Uncertainty in an EBT3 Film Dosimetry System Utilizing net Optical Density. J. Appl. Clin. Med. Phys. 2016, 17, 466–481. doi:10.1120/jacmp.v17i5.6262.
  • Spelleken, E.; Crowe, S.B.; Sutherland, B.; Challens, C.; Kairn, T. Accuracy and Efficiency of Published Film Dosimetry Techniques Using a Flat-bed Scanner and EBT3 Film. Aust. Phy. Eng, Sci. Med. 2018, 41, 117–128. doi:10.1007/s13246-018-0620-4.
  • Aldelaijan, S.; Devic, S. Comparison of Dose Response Functions for EBT3 Model GafChromicTM Film Dosimetry System. Phys. Med. 2018, 49, 112–118. doi:10.1016/j.ejmp.2018.05.014.
  • Callens, M.; Crijns, W.; Simons, V.; De Wolf, I.; Depuydt, T.; Maes, F.; Haustermans, K.; D'hooge, J.; D'Agostino, E.; Wevers, M.; Pfeiffer, H. A Spectroscopic Study of the Chromatic Properties of EBT3 GafChromic Films. Med. Phys. 2016, 43, 1156–1166. doi:10.1118/1.4941312.
  • Callens, M.B.; Crijns, W.; Depuydt, T.; Haustermans, K.; Maes, F.; D’Agostino, E.; Wevers, M.; Pfeiffer, H.; Van Den Abeele, K. Modeling the Dose Dependence of the vis-Absorption Spectrum of EBT3 GafChromic Films. Med. Phys. 2017, 44, 2532–2543. doi:10.1002/mp.12246.
  • Carrasco, M.A.; Perucha, M.; Luis, F.J.; Baeza, M.; Herrador, M. A Comparison Between Radiochromic EBT2 Film Model and its Predecessor EBT Film Model. Phys. Med. 2013, 29, 412–422. doi:10.1016/j.ejmp.2012.05.008.
  • Kovac, J.; Peternai, L.; Lengyel, O. Advanced Light Emitting Diodes Structures for Optoelectronic Applications. Thin Solid Films 2003, 433, 22–26. doi:10.1016/S0040-6090(03)00314-6.
  • Fairuz Omar, A.; Matjafri, M.Z. Development of Optical Instrument as Turbidimeter: a Comparative Study. Sens. Rev. 2012, 32, 134–141. doi:10.1108/02602281211209428.
  • Yahaya, O.K.M.; Jafri, M.Z.M.; Aziz, A.A.; Omar, A.F. Simplified Optical Fiber RGB System in Evaluating Intrinsic Quality of Sala Mango. Opt. Eng. 2015, 54, 067108. doi:10.1117/1.OE.54.6.067108.
  • Bui, D.A.; Hauser, P.C. Analytical Devices Based on Light-Emitting Diodes – A Review of the State-of-the-art. Anal. Chim. Acta 2015, 853, 46–58. doi:10.1016/J.ACA.2014.09.044.
  • Ashland Inc Gafchromic TM Dosimetry Media, Type EBT-3 Specifications. n.d.
  • Butson, E.; Alnawaf, H.; Yu, P.K.N.; Butson, M. Scanner Uniformity Improvements for Radiochromic Film Analysis with Matt Reflectance Backing. Aust. Phys. Eng. Sci. Med. 2011, 34, 401–407. doi:10.1007/s13246-011-0086-0.
  • Avago Technologies T-1 3/4 (5 mm) Precision Optical Performance AlLnGaP LED Lamps Data Sheet n.d.; p. 8.
  • Bin Omar, A.F.; MatJafri, M. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity. Sensors 2009, 9, 8311–8335. doi:10.3390/s91008311.
  • Omar, A.F.; Matjafri, M.Z. Specialized Optical Fiber Sensor for Nondestructive Intrinsic Quality Measurement of Averrhoa Carambola. Photonic Sensors 2013, 3, 272–282. doi:10.1007/s13320-013-0111-x.
  • TAOS Inc. Texas Advanced Optoelectronic Solutions. TSL257 High-sensitivity light-to-voltage converter. Technical Datasheet. TAOS023E – September 2007. Plano, Texas.
  • Godfrey, L. Choosing the Detector for Your Unique Light Sensing Application. PerkinElmer, Inc; 2003. http://denethor.wlu.ca/pc300/sensors/ChoosingTheDetector.pdf ( accessed April 10, 2020).
  • MiC Quality. SIX SIGMA Glossary: Repeatability and Reproducibility 2014. http://www.micquality.com/six_sigma_glossary/repeatability_reproducibility.htm (accessed Nov 22, 2017).
  • Minitab Inc. Repeatability and reproducibility in measurement systems 2017. http://support.minitab.com/en-us/minitab/17/topic-library/quality-tools/measurement-system-analysis/gage-r-r-analyses/repeatability-and-reproducibility/ (accessed November 22, 2017).
  • AZO materials. Gage Reproducibility and Repeatability – A Guide 2018. https://www.azom.com/article.aspx?ArticleID=15124 (accessed May 29, 2018).
  • Williams, M.J.; Metcalfe, P.E. Radiochromic film dosimetry and its applications in radiotherapy. AIP Conf. Proc. 2011, 1345, 75–99. doi:10.1063/1.3576160.
  • Mirza, J.A.; Park, H.; Park, S.-Y.; Ye, S.-J. Use of Radiochromic Film as a High-Spatial Resolution Dosimeter by Raman Spectroscopy. Med. Phys. 2016, 43, 4520–4528. doi:10.1118/1.4955119.
  • Ahmad Shah, W.I.S.; Omar, A.F. Spectroscopy and Light Emitting Diodes Based System in Characterizing External Beam Therapy 3 Films for Solar Ultraviolet Measurement. Photonic Sensors 2020, 10, 34–44. doi:10.1007/s13320-019-0565-6.
  • Alsaee, S.K.; Omar, A.F.; Ahmed, N.M.; Alsadig, A.; Sulieman, A.; Alzimami, K. EBT3 Films in Low Solar Ultraviolet and X-Ray Dose Measurement: A Comparative Analysis. Dose. Response. 2019, 17, 1–6. doi:10.1177/1559325819855532.
  • Tan, K.C.; Omar, A.F.; Osman, U.S. Characterizing the discoloration of EBT3 films in solar UV A+B measurement using red LED. Optics in Atmospheric Propagation and Adaptive Systems XX, vol. 10425, SPIE. The international society for optics and photonics; 2017, p 1042505. doi:10.1117/12.2278160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.