Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 176, 2021 - Issue 1-2: Editor's Special
110
Views
7
CrossRef citations to date
0
Altmetric
Articles

Carbon-based innovative materials for nuclear physics applications (CIMA), INFN project

ORCID Icon, , , & ORCID Icon
Pages 100-118 | Received 20 Dec 2020, Accepted 31 Jan 2021, Published online: 12 Apr 2021

References

  • Zhen, Z.; Zhu, H. Structure and properties of graphene; Elsevier: Cambridge, MA, 2018.
  • Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.B.T.; Ruoff, R.S. Graphene-based Composite Materials. Nature Letters 2006, 442, 282–286.
  • Banadaki, Y.M.; Sharifi, S. Modeling, Simulation, and Applications in Electronics and Photonics; Jenny Stanford Publishing Pvt. Ltd.: Singapore, 2019.
  • Ke, Q.; Wang, J. Graphene-Based Materials for Supercapacitor Electrodes – A Review. Journal of Materiomics 2016, 2 (1), 37–54.
  • El-Kady, M.F.; Shao, Y.; Kaner, R.B. Graphene for Batteries, Supercapacitors and Beyond. Nature Reviews Materials 2016, 1, 16033. doi:10.1038/natrevmats.2016.33
  • Silipigni, L.; Salvato, G.; Di Marco, G.; Fazio, B.; Torrisi, A.; Cutroneo, M.; Torrisi, L. Band-like Transport in High Vacuum Thermal Reduced Graphene Oxide Films. Vacuum 2019, 165, 254–261.
  • Shih, C.J.; Strano, M.; Blankschtein, D. Wetting Translucency of Graphene. Nature Mater. 2013, 12, 866–869.
  • Torrisi, L.; Silipigni, L.; Salvato, G. Graphene Oxide/Cu Junction as Relative Humidity Sensor. J. Mater. Sci. Mater. Electron. 2020, 31 (14), 11001–11009.
  • Torrisi, L.; Havranek, V.; Torrisi, A.; Cutroneo, M.; Silipigni, L. Laser and Ion Beams Graphene Oxide Reduction for Microelectronic Devices. Rad. Eff. Defects Solids 2020, 175 (3–4), 226–240.
  • Kausar, A.; Rafique, I.; Muhammad, B. Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide, and Nanoclay. Polym. Plast. Technol. Eng. 2017, 56, 13.
  • Lordeus, M.; Estrada, A.; Stewart, D.; Dua, R.; Zhang, C.; Agarwal, A.; Ramaswamy, S., Graphene Nanoplatelet Reinforced Silicone for the Valvular Prosthesis Application. J. Long Term Eff. Med. Implants 2015, 25 (1-2), 95–103.
  • INFN-LNS, Catania, Italy, actual website 2021: https://www-lns.infn.it/it/acceleratori/tandem.html
  • CANAM. Rez, Czech Republic, actual website 2020: https://www.ionbeamcenters.eu/ion-beam-facilities/nuclear-physics-institute/.
  • Torrisi, L.; Havranek, V.; Cutroneo, M.; Mackova, A.; Silipigni, L.; Torrisi, A. Characterization of Reduced Graphene Oxide Films Used as Stripper Foils in a 3.0-MV Tandetron. Radiat. Phys. Chem. 2019, 165, 108397.
  • Torrisi, L.; Cutroneo, M.; Havranek, V.; Silipigni, L.; Fazio, B.; Fazio, M.; Di Marco, G.; Stassi, A.; Torrisi, A. Self-Supporting Graphene Oxide Films Preparation and Characterization Methods. Vacuum 2019, 160, 1–11.
  • Cutroneo, M.; Havranek, V.; Mackova, A.; Malinsky, P.; Torrisi, L.; Silipigni, L.; Fazio, B.; Torrisi, A.; Szokolova, K.; Sofer, Z.; Stammers, J. Effects of the ion Bombardment on the Structure and Composition of GO and rGO Foils. Mater. Chem. Phys. 2019, 232, 272–277.
  • Ziegler, J.; Ziegler, M.D.; Biersak, J.P. SRIM – The Stopping and Range of Ions in Matter. Nucl. Instr. Methods B 2010, 268 (11-12), 1818–1823.
  • Roth, M.; Schollmeier M.; Ion Acceleration – Target Normal Sheath Acceleration. Proc. CAS-CERN Accelerator School: Plasma Wake Acceleration, Geneva, Switzerland, 2014, Ed. B. Holzer, CERN, 2016-001, 231–270.
  • Torrisi, L.; Rosinski, M.; Cutroneo, M.; Torrisi, A.; Badziak, J.; Zaras-Szydlowska, A.; Parys, P. Target Normal Sheath ion Acceleration by FS Laser Irradiating Metal/Reduced Graphene Oxide Targets. JINST 2020, 15 (1), 1–15.
  • Cutroneo, M.; Torrisi, L.; Badziak, J.; Rosinski, M.; Havranek, V.; Mackova, A.; Malinsky, P.; Sofer, Z.; Luxa, J.; Cannavò, A.; Lorincik, J. Graphite oxide based targets applied in laser matter interaction, EPJ Web of Conferences, 02004 2018, 167.
  • PALS. Prague, Czech Republic, Actual website 2020. http://www.pals.cas.cz/.
  • Zaraś-Szydłowska, A.; Badziak, J.; Rosiński, M. High Power Laser Laboratory at the Institute of Plasma Physics and Laser Microfusion: Equipment and Preliminary Research. Nukleonika 2015, 60 (2), 245–248.
  • Torrisi, L.; Foti, G.; Giuffrida, L.; Puglisi, D.; Wolowski, J.; Badziak, J.; Parys, P.; Rosinski, M.; Margarone, D.; Krasa, J.; Velyhan, A.; Ullschmied, J. Single Crystal Silicon Carbide Detector of Emitted Ions and Soft x-Rays from Power Laser- Generated Plasmas. J. Appl. Phys. 2009, 105, 123304.
  • Marinelli, M.; Milani, E.; Prestopino, G.; Veronaa, C.; Verona-Rinati, G.; Cutroneo, M.; Torrisi, L.; Margarone, D.; Velyhan, A.; Krasa, J.; Krousky, E. Analysis of Laser-Generated Plasma Ionizing Radiation by Synthetic Single Crystal Diamond Detectors. Appl. Surf. Sci. 2013, 272, 104–108.
  • Cutroneo, M.; Torrisi, L.; Calcagno, L.; Torrisi, A. Characterization of Thin Films for TNSA Laser Irradiation. J. Phys Conf. Ser. 2014, 508, 1–7.
  • Torrisi, L.; Cutroneo, M.; Torrisi, A.; Silipigni, L.; Costa, G.; Rosinski, M.; Badziak, J.; Wołowski, J.; Zaraś-Szydłowska, A.; Parys, P. Protons Accelerated in the Target Normal Sheath Acceleration Regime by a Femtosecond Laser. Phys. Rev. Acc. Beams 2019, 22 (2), 021302.
  • Torrisi, L.; Cutroneo, M.; Andò, L.; Ullschmied, J. Thomson Parabola Spectrometry for Gold Laser-Generated Plasmas. Phys. Plasmas 2013, 20, 023106.
  • Szydlowski, A. Application of CR-39 Track Detectors for Corpuscular Diagnostics of High-Temperature Plasmas. Radiat. Meas. 2003, 36 (1–6), 35–42.
  • Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and Its Sensor-Based Applications: A Review. Sens. Actuat. A 2018, 270, 177–194.
  • Torrisi, L.; Cutroneo, M.; Torrisi, A.; Silipigni, L.; Havranek, V. Small-Field Dosimetry Based on Reduced Graphene Oxide Under MeV Helium Beam Irradiation. Rad. Eff. Def. Solids 2020, 175 (1-2), 120–135.
  • Rogalski, A. Graphene-Based Materials in the Infrared and Terahertz Detector Families: a Tutorial. Adv. Opt. Photon. 2019, 11 (2), 314–379.
  • Rodriguez, S.; Vaziri, S.; Smith, A.; Fregonese, S.; Ostling, M.; Lemme, M.C.; Rusu, A. A Comprehensive Graphene FET Model for Circuit Design. IEEE Trans. Electr. Devices 2014, 61 (4), 1199–1206.
  • Feizi, S.; Mehdizadeh, A.; Hosseini, M.A.; Jafari, S.A.; Ashtari, P. Reduced Graphene Oxide/Polymethyl Methacrylate (rGO/PMMA) Nanocomposite for Real Time Gamma Radiation Detection. Nucl. Instr. Methods 2019, 940, 72–77.
  • Silipigni, L.; Salvato, G.; Fazio, B.; Di Marco, G.; Proverbio, E.; Cutroneo, M.; Torrisi, A.; Torrisi, L. Temperature Sensor Based on IR-Laser Reduced Graphene Oxide. JINST 2020, 15 (1), 1–11.
  • Torrisi, L.; Silipigni, L.; Havranek, V.; Cutroneo, M.; Torrisi, A.; Salvato, G. Reduced Graphene Oxide Foils for Ion Stripping Applications. Rad. Eff. and Def. in Solids 2019, 174 (11-12), 973–984.
  • NIST Atomic Spectra Database Ionization Energies Form, actual website 2020: https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
  • Torrisi, L.; Laser contrast and other key parameters enhancing the laser conversion efficiency in ion acceleration regime, EPJ Web of Conferences 167, 02002, 2018.
  • Torrisi, L. Coulomb-Boltzmann-Shifted Distribution in Laser-Generated Plasmas from 1010 up to 1019 W/cm2 Intensity. Rad. Eff. Defects Solids 2016, 171 (1-2), 34–44.
  • Torrisi, L.; Rosinski, M.; Cutroneo, M.; Torrisi, A. Target Normal Sheath Acceleration by fs Laser and Advanced Carbon Foils with Gold Films and Nanoparticles. Phys. Plasma 2020, 27, 043107.
  • Viswanathan, S.; Narayanan, T.N.; Aran, K.; Fink, K.D.; Paredes, J.; Ajayan, P.M.; Filipek, S.; Miszta, P.; Tekin, H.C.; Inci, F.; Demirci, U.; Li, P.; Bolotin, K.I.; Liepmann, D.; Renugopalakrishanan, V. Graphene–Protein Field Effect Biosensors: Glucose Sensing. Mater. Today 2015, 18 (9), 523–522.
  • Parvizi, R.; Azad, S.; Dashtian, K.; Ghaedi, M.; Heidari, H. Natural Source-Based Graphene as Sensitising Agents for Air Quality Monitoring. Sci. Rep. 2019, 3798, 1–15.
  • Xu, F.; Chen, R.; Lin, Z.; Sun, X.; Wang, S.; Yin, W.; Peng, Q.; Li, Y.; He, X. Variable Densification of Reduced Graphene Oxide Foam Into Multifunctional High-Performance Graphene Paper. J. Mater. Chem. C 2018, 6, 12321–12328.
  • Torrisi, L.; Silipigni, L.; Manno, D.; Serra, A.; Nassisi, V.; Cutroneo, M.; Torrisi, A. Investigations on Graphene Oxide for Ion Beam Dosimetry Applications. Vacuum 2020, 178, 109451.
  • Torrisi, L.; Silipigni, L.; Cutroneo, M.; Torrisi, A. Graphene Oxide as a Radiation Sensitive Material for XPS Dosimetry. Vacuum 2020, 173, 1–8.
  • SREM Code. Actual website 2020: http://www.srim.org/SREM.htm
  • CRC. Handbook of Chemistry and Physics; CRC Press: Boca Raton, 2019.
  • Di Bartolomeo, A. Graphene Schottky Diodes: An Experimental Review of the Rectifying Graphene/Semiconductor Heterojunction. Phys. Rep. 2016, 606, 1–58.
  • Graphenea. GFETs, Actual Website 2020: https://www.graphenea.com/pages/what-are-graphene-field-effect-transistors-gfets.
  • Torrisi, L.; Cannavò, A. SiC Detectors to Monitor Ionizing Radiations Emitted from Nuclear Events and Plasmas. Rad. Eff. And Def. in Solids 2016, 171 (9–10), 695–704.
  • CXRO. X-Ray Interactions with Matter. 2020. https://henke.lbl.gov/optical_constants/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.