Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 176, 2021 - Issue 1-2: Editor's Special
195
Views
3
CrossRef citations to date
0
Altmetric
Articles

Ion-beam-induced crystallization of radiation-resistant MAX phase nanostructures

ORCID Icon, , , , , , , , , & show all
Pages 119-137 | Received 01 Jan 2021, Accepted 30 Jan 2021, Published online: 12 Apr 2021

References

  • Was, G.S. Fundamentals of Radiation Materials Science: Metals and Alloys; Springer: New York, 2017.
  • Murty, K.L.; Charit, I. An Introduction to Nuclear Materials: Fundamentals and Applications; Wiley-VCH Verlag: Weinheim, Germany, 2013.
  • Schofield, P.N.; Kulka, U.; Tapio, S.; Grosche, B. Big Data in Radiation Biology and Epidemiology; An Overview of the Historical and Contemporary Landscape of Data and Biomaterial Archives. Int. J. Radiat. Biol. 2019, 95, 861–878.
  • Andreo, P.; Burns, D.T.; Nahum, A.E.; Seuntjens, J.S.; Attix, F.H. Fundamentals of Ionizing Radiation Dosimetry; Wiley-VCH Verlag: Weinheim, Germany, 2017.
  • Nordlund, K.; Zinkle, S.J.; Sand, A.E.; Granberg, F.; Averback, R.S.; Stoller, R.E.; Suzudo, T.; Malerba, L.; Banhart, F.; Weber, W.J.; Willaime, F.; Dudarev, S.L.; Simeone, D. Primary Radiation Damage: A Review of Current Understanding and Models. J. Nucl. Mater. 2018, 512, 450–479.
  • Was, G.S.; Allen T.R. Radiation Damage from Different Particle Types. In Radiation Effects in Solids; Sickafus K.E., Kotomin E.A., Uberuaga B.P. Eds.; 2007, 235, 65–98. NATO Science Series, Springer: Dordrecht.
  • srim.org. SRIM – The Stopping and Range of Ions in Matter.
  • Novakowski, T.J.; Tripathi, J.K.; Hassanein, A. Effect of High-Flux, low-Energy He+ ion Irradiation on Ta as a Plasma-Facing Material. Sci. Rep. 2016, 6, article 39746.
  • Li, Y.G.; Yang, Y.; Short, M.P.; Ding, Z.J.; Zeng, Z.; Li, J. IM3D: A Parallel Monte Carlo Code for Efficient Simulations of Primary Radiation Displacements and Damage in 3D Geometry. Sci. Rep. 2015, 5, Article 18130.
  • Kharisov, B.I.; Kharissova, O.V.; Mendez, U.O. Editors. Radiation Synthesis of Materials and Compounds; CRC Press: Boca Raton, 2013.
  • Wu, G.; Zhai, M.; Wang, M. Radiation Technology for Advanced Materials: From Basic to Modern Applications; Academic Press: London, 2018.
  • Krasheninnikov, A.V.; Nordlund, K. Ion and Electron Irradiation-Induced Effects in Nanostructured Materials. J. Appl. Phys. 2010, 107, 071301.
  • Guven, O. Ionizing Radiation. A Verstile Tool for Nanostructuring of Polymers. Pure Appl. Chem 2016, 88, 1049–1061.
  • Matthes, C.S.R.; Ghoniem, N.M.; Walgraef, D. Stability and Symmetry of Ion-Induced Surface Patterning. Mater. Theory 2017, 1, article 5.
  • X Sipe, J.E.; Young, J.F.; Preston, J.S.; Van Driel, H.M. Laser-induced Periodic Surface Structure. I. Theory. Phys. Rev. B 1983, 27 (2), 1141–1154.
  • Johannes, A.; Holland-Moritz, H.; Ronning, C. Ion Beam Irradiation of Nanostructures: Sputtering, Dopant Incorporation, and Dynamic Annealing. Semicond. Sci. Technol. 2015, 30, article 033001.
  • Holden, N.E.; Coplen, T.B.; Böhlke, J.K.; Tarbox, L.V.; Benefield, J.; de Laetera, J.R.; Mahaffy, P.G.; O’Connorb, G.; Rotha, E.; Tepper, D.H.; Walczyk, T.; Wieser, M.E.; Yoneda, S. IUPAC Periodic Table of the Elements and Isotopes (IPTEI) for the Education Community (IUPAC Technical Report). Pure Appl. Chem. 2018, 90 (12), 1833–2092.
  • MAX Phases. en.wikipedia.org/wiki/MAX_phases; max.materials.drexel.edu.
  • Barsoum, M.W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides; Wiley-VCH: 2013.
  • Xiao, J.; Yang, T.; Wang, C.; Xue, J.; Wang, Y. Investigations on Radiation Tolerance of Mn+1AXn Phases: Study of Ti3SiC2, Ti3AlC2, Cr2AlC, Cr2GeC, Ti2AlC, and Ti2AlN. J. Am. Ceram. Soc. 2015, 98 (4), 1323–1331.
  • Tallman, D.J.; He, L.; Gan, J.; Caspi, E.N.; Hoffman, E.N.; Barsoum, M.W. Effects of Neutron Irradiation of Ti3SiC2 and Ti3AlC2 in the 121–1085 °C Temperature Range. J. Nucl. Mater. 2017, 484, 120–134.
  • Low, I.; Zhou, Y. MAX Phases: Microstructure, Properties, and Applications; Nova Science Publishers: New York, 2012.
  • Mantovani, R.; Teodoro, R.J.; Sydney, A.; Santos, F. Synthesis, Structure, Properties and Applications of MXenes: Current Status and Perspectives. Ceram. Int. 2019, 45 (15), 18167–18188.
  • Zhao, S.; Meng, X.; Zhu, K.; Du, F.; Chen, G.; Wei, Y.; Gogotsi, Y.; Gao, Y. Li-ion Uptake and Increase in Interlayer Spacing of Nb4C3 MXene. Energy Storage Mater. 2017, 8, 42–48.
  • Vacík, J.; Horák, P.; Bakardjieva, S.; Bejsovec, V.; Ceccio, G.; Cannavo, A.; Torrisi, A.; Lavrentiev, V.; Klie, R. Ion Sputtering for Preparation of Thin MAX and MXene Phases. Radiat. Eff. Def. Solids 2020, 175 (1-2), 177–189.
  • Bakardjieva, S.; Vacik, J.; Horak, P.; Jakubec, I. TiSn and Ti2SnC Nanolaminates Prepared by Ion Beam Sputtering of Individual Phase Elements: Materials for Future Nuclear Application. Microsc. Microanal. 2018, 24 (1), 1618–1619.
  • Horak, P.; Bakardjieva, S.; Vacik, J.; Klie, R.; Lavrentiev, V.; Nemecek, J.; Plocek, J.; Kupcik, J.;Cannavo, A.; Ceccio, G. Synthesis and Modification of Ti2SnC Nano-Laminates with High-Fluence 35 keV Ar Ions. AIP Conf. Proc. 2019, 2160, 060004-1.
  • Horak, P.; Bakardjieva, S.; Vacik, J.; Rui, X.; Klie, R. Preparation of Ti2C MXene Phase by ion Beam Sputtering and ion Irradiation. Nucl. Instrum. Methods B 2020, 469, 49–51.
  • Plocek, J.; Ismagulov, B.; Kupčík, J.; Jakubec, I.; Bakardjieva, S.; Vacík, J. Manufacturing of Ti2AlC Using a Simplified Method of Elemental Powders Sintering. Submitted (2020) for publication to Materialia.
  • American Elements. www.americanelements.com.
  • Barsoum, W.; Amini, S. Max-based metal matrix composites. Patent Application Publication, Pub. No. US 2010/0055492 A1, March. 4, 2010.
  • Rizza, G. From ion-Hammering to Ion-Shaping: An Historical Overview. J. Phys.: Conf. Ser. 2015, 629, 012005.
  • Bakhtina, N.V.; Mashin, A.I.; Pavlov, A.P.; Pitirimova, E.A. Effect of ion Irradiation of Amorphous-Silicon Films on Their Crystallization. Semiconductors 1998, 32, 316–319.
  • Koo, Y.C.; Perrin, R.; Zukotynski, S. Radiation Induced Crystallization of Amorphous Si: H Alloy. Metall. Trans. A 1988, 19, 1345–1349.
  • Carter, J. Radiation induced nanocrystal formation in metallic glasses. PhD. Dissertation, 2009, Texas A&M University, August; core.ac.uk/download/pdf/4276228.pdf.
  • Nagata, S.; Higashi, S.; Tsuchiya, B.; Toh, K.; Shikama, T.; Takahiro, K.; Ozaki, K.; Kawatusra, K.; Yamamoto, S.; Inouye, A. Ion Irradiation Effects on Amorphization and Thermal Crystallization in ZrAlNiCu Alloys. Nucl. Instrum. Methods B 2007, 257, 420–423.
  • Patel, K. Crystallinity and the Effect of Ionizing Radiation in Polyethylene. I. Crosslinking and the Crystal Core. J. Polym. Sci.: Polym. Phys. 1975, 13 (2), 303–321.
  • Fink, D.; Hnatowicz, V.; Apel, P.Yu. (D. Fink ed.) Modification on the molecular and supramolecular level of: Fundamentals of Ion-irradiated polymers. 2004, Chapter 8, 312-319, Springer Series in Materials Science, vol. 63., Springer: Berlin/Heidelberg/New York.
  • Papaleo, R.M. Fast-ion induced sputtering and modification of molecular solids. PhD. Thesis, 1996, Uppsala University, and refs. Therein.
  • Nastasi, M.A.; Mayer, J.W.; Hirvonen, J.K. Ion-solid Interactions: Fundamentals and Applications; Cambridge University Press: Cambridge; New York, 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.