Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 176, 2021 - Issue 1-2: Editor's Special
232
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis and modification of ZnO thin films by energetic ion beams

, &
Pages 145-166 | Received 23 Dec 2020, Accepted 31 Jan 2021, Published online: 12 Apr 2021

References

  • Hvam, J.M. Temperature-Induced Wavelength Shift of Electron-Beam-Pumped Lasers from CdSe, CdS, and ZnO. Phys. Rev. B 1971, 4, 4459–4464. DOI: 10.1103/PhysRevB.4.4459.
  • Klingshirn, C. The Luminescence of ZnO Under High One- and Two-Quantum Excitation. Phys. Status Solidi B 1975, 71, 547–556. DOI: 10.1002/pssb.2220710216.
  • Service, R.F. Will UV Laser Beat the Blues? Science 1997, 276 (5314), 895. DOI:10.1126/science.276.5314.895.
  • Huang, M.H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Room-Temperature Ultraviolet Nanowire Nanolasers. Science 2001, 292, 1897–1899. DOI: 10.1126/science.1060367.
  • Chen, Y.F.; Bagnall, D.M.; Koh, H.; Park, K.; Hiranga, K.; Zhu, Z.; Yao, T. Plasma Assisted Molecular Beam Epitaxy of ZnO on c-Plane Sapphire: Growth and Characterization. J. Appl. Phys. 1998, 84 (7), 3912–3918. DOI: 10.1063/1.368595.
  • Bethke, S.; Pan, H.; Wessels, B.W. Luminescence of Heteroepitaxial Zinc Oxide. Appl. Phys. Lett. 1988, 52 (2), 138–140. DOI: 10.1063/1.99030.
  • Choopun, S.; Vispute, R.D.; Noch, W.; Balsamo, A.; Sharma, R.P.; Venkatesan, T.; Iliadis, A.; Look, D.C. Oxygen Pressure-Tuned Epitaxy and Optoelectronic Properties of Laser-Deposited ZnO Films on Sapphire. Appl. Phys. Lett. 1999, 75 (25), 3947–3949. DOI: 10.1063/1.125503.
  • Hwang, K.; Lee, Y.J.; Hwangbo, S.M. Growth, Structure and Optical Properties of Amorphous or Nano-Crystalline ZnO Thin Films Prepared by Prefiring-Final Annealing. J. Ceram. Process. Res. 2007, 8 (5), 305–311.
  • Zhao, B.; Yang, H.; Du, G.; Fang, X.; Liu, D.; Gao, C.; Liu, X.; Xie, B. Preparation and Optimization of ZnO Films on Single-Crystal Diamond Substrate by Metal-Organic Chemical Vapour Deposition. Semicond. Sci. Technol. 2004, 19 (6), 770–773. DOI: 10.1088/0268-1242/19/6/020.
  • Kim, I.S.; Jeong, S.H.; Kim, S.S.; Lee, B.T. Magnetron Sputtering Growth and Characterization of High Quality Single Crystal ZnO Thin Films on Sapphire Substrates. Semicond. Sci. Technol. 2004, 19 (3), L29–L31. DOI: 10.1088/0268-1242/19/3/L06.
  • Bagnall, D.M.; Chen, Y.F.; Zhu, Z.; Yao, T.; Koyama, S.; Shen, M.Y.; Goto, T. Optically Pumped Lasing of ZnO at Room Temperature. Appl. Phys. Lett. 1997, 70, 2230–2232. DOI: 10.1063/1.118824.
  • Tang, Z.K.; Wong, G.K.L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Room-Temperature Ultraviolet Laser Emission from Self-Assembled ZnO Microcrystallite Thin Films. Appl. Phys. Lett. 1998, 72, 3270–3272. DOI: 10.1063/1.121620.
  • Bagnall, D.M.; Chen, Y.F.; Zhu, Z.; Yao, T.; Shen, M.Y.; Goto, T. High Temperature Excitonic Stimulated Emission from ZnO Epitaxial Layers. Appl. Phys. Lett. 1998, 73, 1038–1040. DOI: 10.1063/1.122077.
  • Aaronson, C.H.; Amekura, H.; Sato, Y.; Kishimoto, N. Vacuum Fluorescent Displays Utilizing ZnO Nanoparticles. J. App. Phys. 2011, 109, 024506. DOI: 10.1063/1.3536631.
  • Zulkifli, Z.; Subramanian, M.; Tsuchiya, T.; Rosmi, M.S.; Ghosh, P.; Kalita, G.; Tanemura, M. Highly Transparent and Conducting C:ZnO Thin Film for Field Emission Displays. RSC Adv. 2014, 4, 64763–64770. DOI: 10.1039/C4RA11837E.
  • Nanto, H.; Minami, T.; Shooji, S.; Takata, S. Electrical and Optical Properties of Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering for Transparent Electrode Applications. J. Appl. Phys. 1984, 55, 1029–1034. DOI: 10.1063/1.333196.
  • Morgan, J.H.; Brodie, D.E. The Preparation and Some Properties of Transparent Conducting ZnO for use in Solar Cells. Can. J. Phys. 1982, 60, 1387–1390. DOI: 10.1139/p82-186.
  • Agarwal, D.C.; Chauhan, R.S.; Avasthi, D.K.; Sulania, I.; Kabiraj, D.; Thakur, P.; Chae, K.H.; Chawla, A.; Chandra, R.; Ogale, S.B.; Pellegrini, G.; Mazzoldi, P. VLS-Like Growth and Characterizations of Dense ZnO Nanorods Grown by e-Beam Process. J. Phys. D 2009, 42, 035310. DOI: 10.1088/0022-3727/42/3/035310.
  • Agarwal, D.C.; Chauhan, R.S.; Kumar, A.; Kabiraj, D.; Singh, F.; Khan, S.A.; Avasthi, D.K.; Pivin, J.C.; Kumar, M.; Ghatak, J.; Satyam, P.V. Synthesis and Characterization of ZnO Thin Film Grown by Electron Beam Evaporation. J. Appl. Phys. 2006, 99, 123105. DOI: 10.1063/1.2204333.
  • Aronovich, J.; Ortiz, A.; Bube, R.H. Optical and Electrical Properties of ZnO Films Prepared by Spray Pyrolysis for Solar Cell Applications. J. Vac. Sci. Technol. 1979, 16, 994–1003. DOI: 10.1116/1.570167.
  • Vispute, R.D.; Talyansky, V.; Choopun, S.; Sharma, R.P.; Venkatesan, T.; He, M.; Tang, X.; Halpern, J.B.; Spencer, M.G., Li, Y.X.; Salamanca-Riba, L.G.; Iliadis, A.A.; Jones, K.A. Heteroepitaxy of ZnO on GaN and its Implications for Fabrication of Hybrid Optoelectronic Devices. Appl. Phys. Lett. 1998, 73, 348–350. DOI: 10.1063/1.121830.
  • Gyorgy, E.; Socol, G.; Mihailescu, I.N.; Santiso, J.; Pantileca, D. Photonik 2005, 2, 58.
  • Agarwal, D.C.; Kabiraj, D.; Singh, F.; Avasthi, D.K.; Pellegrini, G.; Chandra, R.; Mazzoldi, P. Synthesis of ZnO Nanostructures Using Different Metal Catalyst: Morphology and Photoluminescence Characteristics. Nanosci. Nanotechnol. 2010, 10, 2933. DOI: 10.1166/jnn.2010.1429.
  • Kumar, S.; Tripathi, A.; Singh, F.; Khan, S.A.; Baranwal, V.; Avasthi, D.K. Purification/Annealing of Graphene with 100-MeV Ag Ion Irradiation. Nanoscale Res. Lett. 2014, 9, 126. DOI: 10.1186/1556-276X-9-126.
  • Kumar, S.; Tripathi, A.; Khan, S.A.; Pannu, C.; Avasthi, D.K. Radiation Stability of Graphene Under Extreme Conditions. Appl. Phys. Lett. 2014, 105, 13310. DOI: 10.1063/1.4897004.
  • Bajwa, N.; Dharamvir, K.; Jindal, V.K.; Ingale, A.; Avasthi, D.K.; Kumar, R.; Tripathi, A. Swift Heavy Ion Induced Modification of C60 Thin Films. J. Appl. Phys. 2003, 94, 326–333. DOI: 10.1063/1.1581381.
  • Bajwa, N.; Ingale, A.; Avasthi, D.K.; Kumar, R.; Tripathi, A.; Dharamvir, K.; Jindal, V.K. Role of Electron Energy Loss in Modification of C60 Thin Films by Swift Heavy Ions. J. Appl. Phys. 2008, 104, 054306. DOI: 10.1063/1.2968340.
  • Jeet, K.; Jindal, V.K.; Bharadwaj, L.M.; Avasthi, D.K.; Dharamvir, K. Damaged Carbon Nanotubes Get Healed by ion Irradiation. J. Appl. Phys. 2010, 108, 034302. DOI: 10.1063/1.3466774.
  • Agarwal, D.C.; Singh, F.; Kabiraj, D.; Sen, S.; Kulariya, P.K.; Sulania, I.; Nozaki, S.; Chauhan, R.S.; Avasthi, D.K. Thermal and Ion Induced Annealing of Nanocrystalline ZnO Thin Film Deposited by Atom Beam Sputtering. J. Phys. D Appl. Phys 2008, 41, 045305. DOI: 10.1088/0022-3727/41/4/045305.
  • Avasthi, D.K.; Mishra, Y.K.; Kabiraj, D.; Lalla, N.P.; Pivin, J.C. Synthesis of Metal–Polymer Nanocomposite for Optical Applications. Nanotechnology 2007, 18, 125604. DOI: 10.1088/0957-4484/18/12/125604.
  • Mohapatra, S.; Mishra, Y.K.; Kabiraj, D.; Avasthi, D.K.; Ghatak, J.; Varma, S. Synthesis of Gold-Silicon Core-Shell Nanoparticles with Tunable Localized Surface Plasmon Resonance. Appl. Phys. Lett. 2008, 92, 103105. DOI: 10.1063/1.2894187.
  • Mishra, Y.K.; Mohapatra, S.; Kabiraj, D.; Mohanta, B.; Lalla, N.P.; Pivin, J.C.; Avasthi, D.K. Synthesis and Characterization of Ag Nanoparticles in Silica Matrix by Atom Beam Sputtering. Scr. Mater. 2007, 56, 629–632. DOI: scriptamat.2006.12.008.
  • Kabiraj, D.; Abhilash, S.R.; Vanmarcke, L.; Cinausero, N.; Pivin, J.C.; Avasthi, D.K. Atom Beam Sputtering Setup for Growth of Metal Particles in Silica. Nucl. Instrum. Methods Phys. Res. Sect. B 2006, 244, 100–104. DOI: 10.1016/j.nimb.2005.11.018.
  • Ghosh, S.; Srivastava, P.; Pandey, B.; Saurav, M.; Bharadwaj, P.; Avasthi, D.K.; Kabiraj, D.; Shivaprasad, S.M. Study of ZnO and Ni-Doped ZnO Synthesized by Atom Beam Sputtering Technique. Appl. Phys. A 2008, 90, 765–769. DOI: 10.1016/j.nimb.2005.11.018.
  • Pandey, B.; Ghosh, S.; Srivastava, P.; Avasthi, D.K.; Kabiraj, D.; Pivin, J.C. Synthesis and Characterization of Ni-Doped ZnO: A Transparent Magnetic Semiconductor. J. Magn. Magn. Mater. 2008, 320, 3347–3351. DOI: j.jmmm.2008.07.018.
  • Agarwal, D.C.; Sivakumar, V.V.; Kabiraj, D.; Kulriya, P.K.; Sulania, I.; Avasthi, D.K. High-Quality Nanocrystalline ZnO Films Deposited by the Atom Beam Sputtering. J. Nanoeng. Nanomanuf. 2013, 3, 331–336. DOI: 10.1166/jnan.2013.1152.
  • Mishra, Y.K.; Mohapatra, S.; Singhal, R.; Avasthi, D.K.; Agarwal, D.C.; Ogale, S.B. Au–ZnO: A Tunable Localized Surface Plasmonic Nanocomposite. Appl. Phys. Lett. 2008, 92, 043107. DOI: 10.1063/1.2838302.
  • Agarwal, D.C.; Singh, U.B.; Gupta, S.; Singhal, R.; Kulriya, P.K.; Singh, F.; Tripathi, A.; Singh, J.; Joshi, U.S.; Avasthi, D.K. Enhanced Room Temperature Ferromagnetism and Green Photoluminescence in Cu Doped ZnO Thin Film Synthesised by Neutral Beam Sputtering. Sci. Rep. 2019, 9, 6675. DOI: 10.1038/s41598-019-43184-9.
  • Liu, Y.X.; Liu, Y.C.; Shen, D.Z.; Zhong, G.Z.; Fan, X.W.; Kong, X.; Mu, R.; Henderson, D.O. Preferred Orientation of ZnO Nanoparticles Formed by Post-Thermal Annealing Zinc Implanted Silica. Solid State Commun. 2002, 121, 531–536. DOI: 10.1016/S0038-1098(02)00006-6.
  • Liu, Y.C.; Xu, H.Y.; Mu, R.; Henderson, D.O.; Lu, Y.M.; Zhang, J.Y.; Shen, D.Z.; Fan, X.W.; White, C.W. Production, Structure, and Optical Properties of ZnO Nanocrystals Embedded in CaF2 Matrix. Appl. Phys. Lett. 2003, 83, 1210–1212. DOI: 10.1063/1.1591248.
  • Krishna, R.; Baranwal, V.; Katharria, Y.S.; Kabiraj, D.; Tripathi, A.; Singh, F.; Khan, S.A.; Pandey, A.C.; Kanjilal, D. Nanostructure Formation on Zinc Oxide Film by Ion Bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B 2006, 244, 78–80. DOI: 10.1016/j.nimb.2005.11.015.
  • Solanki, V.; Kabiraj, D.; Avasthi, D.K.; Varma, S. Topographic Evolution and Scaling Study of ZnO (0001) Single Crystal After Low-Energy Atom Beam Irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 2018, 434, 56–60. DOI: 10.1016/j.nimb.2018.08.015.
  • Pandey, B.; Ghosh, S.; Srivastava, P.; Kumar, P.; Kanjilal, D. Influence of Microstructure on Room Temperature Ferromagnetism in Ni Implanted Nanodimensional ZnO Films. J. Appl. Phys. 2009, 105, 033909. DOI: 10.1063/1.3074517.
  • Chuang, Y.T.; Liou, J.W.; Woon, W.Y. Formation of p-Type ZnO Thin Film Through Co-Implantation. Nanotechnology 2017, 28, 035603. DOI: 10.1088/1361-6528/28/3/035603.
  • Lu, L.W.; So, C.K.; Zhu, C.Y.; Gu, Q.L.; Li, C.J.; Fung, S.; Brauer, G.; Anwand, W.; Skorupa, W.; Ling, C.C. Influence of Electron Irradiation on Hydrothermally Grown Zinc Oxide Single Crystals. Semicond. Sci. Technol. 2008, 23, 095028. DOI: 10.1088/0268-1242/23/9/095028.
  • Agarwal, D.C.; Kumar, A.; Khan, S.A.; Kabiraj, D.; Singh, F.; Tripathi, A.; Pivin, J.C.; Chauhan, R.S.; Avasthi, D.K. SHI Induced Modification of ZnO Thin Film: Optical and Structural Studies. Nucl. Instrum. Methods Phys. Res. Sect. B 2006, 244, 136–140. DOI: 10.1016/j.nimb.2005.11.077.
  • Agarwal, D.C.; Avasthi, D.K.; Singh, F.; Kabiraj, D.; Kulariya, P.K.; Sulania, I.; Pivin, J.C.; Chauhan, R.S. Swift Heavy ion Induced Structural Modification of Atom Beam Sputtered ZnO Thin Film. Surf. Coat. Technol. 2009, 203, 2427–2431. DOI: 10.1016/j.surfcoat.2009.02.109.
  • Agarwal, D.C.; Chauhan, R.S.; Avasthi, D.K.; Khan, S.A.; Kabiraj, D.; Sulania, I. Formation of Self-Affine Nanostructures on ZnO Surfaces by Swift Heavy Ions. J. Appl. Phys. 2008, 104, 024304. DOI: 10.1063/1.2953177.
  • Angadi, B.; Jung, Y.S.; Choi, W.K.; Kumar, R.; Jeong, K.; Shin, S.W.; Lee, J.H.; Song, J.H.; Khan, M.W.; Srivastava, J.P. Ferromagnetism in 200-MeV Ag +15-ion-Irradiated Co Implanted ZnO Thin Films. Appl. Phys. Lett. 2006, 88, 142502. DOI: 10.1063/1.2192577.
  • Kumar, P.M.R.; Sudha, K.C.; Kumar, K.P.V.; Singh, F.; Avasthi, D.K.; Abe, T.; Kashiwaba, Y.; Okram, G.S.; Kumar, M.; Kumar, S. Modifications of ZnO Thin Films Under Dense Electronic Excitation. J. Appl. Phys. 2005, 97, 013509. DOI: 10.1063/1.1823574.
  • Satyarthi, P.; Ghosh, S.; Mishra, P.; Sekhar, B.R.; Singh, F.; Kumar, P.; Kanjilal, D.; Dhaka, R.S.; Srivastava, P. Defect Controlled Ferromagnetism in Xenon ion Irradiated Zinc Oxide. J. Magn. Magn. Mater. 2015, 385, 318–325. DOI: 10.1016/j.jmmm.2015.03.029.
  • Kuriakose, S.; Avasthi, D.K.; Mohapatra, S. Effects of Swift Heavy Ion Irradiation on Structural, Optical and Photocatalytic Properties of ZnO–CuO Nanocomposites Prepared by Carbothermal Evaporation Method. Beilstein J. Nanotechnol. 2015, 6, 928–937. DOI: 10.3762/bjnano.6.96.
  • Joshi, U.S. Ion Irradiation: A Tool to Understand Oxide RRAM Mechanism. Radiat. Eff. Defects Solids 2011, 166, 724–733. DOI: 10.1080/10420150.2011.583246.
  • Manna, A.; Barman, A.; Joshi, S.R.; Satpati, B.; Dash, P.; Chattaraj, A.; Srivastava, S.K.; Sahoo, P.K.; Kanjilal, A.; Kanjilal, D.; Varma, S. The Effect of Ti+ Ion Implantation on the Anatase-Rutile Phase Transformation and Resistive Switching Properties of TiO2 Thin Films. J. Appl. Phys. 2018, 124, 155303. DOI: 10.1063/1.5045550.
  • Barman, A.; Saini, C.P.; Sarkar, P.K.; Bhattacharjee, G.; Bhattacharya, G.; Srivastava, S.; Satpati, B.; Kanjilal, D.; Ghosh, S.K.; Dhar, S.; Kanjilal, A. Resistive Switching Behavior in Oxygen Ion Irradiated TiO2−x Films. J. Phys. D 2018, 51, 065306. DOI: 10.1088/1361-6463/aaa559.
  • Joshi, U.S.; Trivedi, S.J.; Bhavsar, K.H.; Trivedi, U.N.; Khan, S.A.; Avasthi, D.K. Resistance Switching Properties of Planner Ag/Li:NiO/Ag Structures Induced by Swift Heavy ion Irradiation. J. Appl. Phys. 2009, 105, 073704. DOI: 10.1063/1.3093683.
  • Mistry, B.V.; Trivedi, S.J.; Chhaya, U.V.; Khan, S.A.; Avasthi, D.K.; Joshi, U.S. RRAM Properties of Swift Heavy ion Irradiated Ag/In2O3/Pt/Si Heterostructures. Radiat. Eff. Defects Solids 2013, 168, 625–629. DOI: 10.1080/10420150.2013.792815.
  • Kaushik, S.; Singhal, R.; Avasthi, D.K.; Ramcharan. Thin ZnO Layer for RRAM Applications. 2020 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech) 2020, 22. DOI: 10.1109/EExPolytech50912.2020.9243967.
  • Ranjith, K.S.; Nivedita, L.R.; Asokan, K.; Krishnamurthy, S.; Pandian, R.; Kamruddin, M.; Avasthi, D.K.; Kumar, R.T.R. Robust Water Repellent ZnO Nanorod Array by Swift Heavy Ion Irradiation: Effect of Electronic Excitation Induced Local Chemical State Modification. Sci. Rep. 2017, 7, 3251. DOI: s41598-017-03313-8.
  • Chauhan, R.P.; Gehlawat, D.; Kaur, A. Ion Beam Fluence Induced Variation in Optical Band-gap of ZnO Nanowires. J. Exp. Nanosci. 2014, 9 (8), 871–876. DOI: 10.1080/17458080.2012.736639.
  • Pal, S.; Sarkar, A.; Sanyal, D.; Rakshit, T.; Kanjilal, D.; Kumar, P.; Ray, S.K.; Jana, D. Native Defects And Optical Properties Of Ar Ion Irradiated ZnO. Adv. Mater. Lett. 2015, 6 (4), 365–369. DOI: 10.5185/amlett.2015.5730.
  • Bayan, S.; Mohanta, D. Effect of 80-MeV Nitrogen ion Irradiation on ZnO Nanoparticles: Mechanism of Selective Defect Related Radiative Emission Features. Nucl. Instrum. Methods Phys. Res., Sect. B 2011, 269, 374–379. DOI: 10.1016/j.nimb.2010.11.044.
  • Amekura, H.; Okubo, N.; Ishikawa, N.; Tsuya, D.; Mitsuishi, K.; Nakayama, Y.; Singh, U.B.; Khan, S.A.; Mohapatra, S.; Avasthi, D.K. Swift Heavy Ion Irradiation of ZnO Nanoparticles Embedded in Silica: Radiation-Induced Deoxidation and Shape Elongation. Appl. Phys. Lett. 2013, 103, 203106. DOI: 10.1063/1.4829475.
  • Kraft, S.; Schattat, B.; Bolse, W.; Klaumünzer, S.; Harbsmeier, F.; Kulinska, A.; Löffl, A. Ion Beam Mixing of ZnO/SiO2 and Sb/Ni/Si Interfaces Under Swift Heavy ion Irradiation. J. Appl. Phys. 2002, 91, 1129–1134. DOI: 10.1063/1.1425439.
  • Wu, T.; Wang, A.; Zheng, L.; Wang, G.; Tu, Q.; Lv, B.; Liu, Z.; Wu, Z.; Wang, Y. Evolution of Native Defects in ZnO Nanorods Irradiated with Hydrogen ion. Sci. Rep. 2019, 9, 17393. DOI: s41598-019-53951-3.
  • Amekura, H.; Okubo, N.; Ren, F.; Ishikawa, N. Swift Heavy ion Irradiation to ZnO Nanoparticles: Steep Degradation at Low Fluences and Stable Tolerance at High Fluences. J. Appl. Phys 2018, 124, 145901. DOI:10.1063/1.5050080.
  • Lv, S.; Li, M.; Qiu, M.; Wang, Y.; Dong, F.; Chen, C.; Cheng, J.; Li, Z. Effect of Nitrogen ion Irradiation Treatment to the Enhancement of ZnO Photocatalytic Performance. Surf. Interface Anal. 2020, 52, 348–354. DOI:10.1002/sia.674.
  • Kondkar, V.; Rukade, D.; Kanjilal, D.; Bhattacharyya, V. Controlled Morphological Modifications of ZnO Thin Films by ion Irradiation. Mater. Res. Express 2017, 4, 116402. DOI: 10.1088/2053-1591/aa9580.
  • Allah, R.F.; Ben, T.; González, D.; Hortelano, V.; Martínez, O.; Plaza, J.L. Modification of the Optical and Structural Properties of ZnO Nanowires by Low-Energy Ar+ ion Sputtering. Nanoscale Res. Lett. 2013, 8, 162. DOI: 10.1186/1556-276X-8-162.
  • Negi, S.; Rana, M.P.S.; Singh, F.; Ramola, R.C. Effect of Swift Heavy ion on Structural and Optical Properties of Highly Transparent Zinc Oxide Films. J. Sol Gel Sci. Technol. 2015, 76, 608–613. DOI: 10.1007/s10971-015-3811-4.
  • Sarkar, A.; Chakrabarti, M.; Sanyal, D.; Gogurla, N.; Kumar, P.; Brusa, R.S.; Hugenschmidt, C. Depth Resolved Defect Characterization of Energetic ion Irradiated ZnO by Positron Annihilation Techniques and Photoluminescence. J. Phys. Condens. Matter 2020, 32 (8), 085703. DOI: 10.1088/1361-648X/ab3f74.
  • Song, Y.; Zhang, S.; Zhang, C.; Yang, Y.; Lv, K. Raman Spectra and Microstructure of Zinc Oxide Irradiated with Swift Heavy Ion. Crystals 2019, 9 (8), 395. DOI: 10.3390/cryst9080395.
  • Gupta, G.K.; Saini, L.; Ojha, S.; Tripathi, B.; Avasthi, D.K.; Dixit, A. Ag8+ ion Irradiation Modulated Structural, Microstructural, Defect, and Magnetization in ZnO Thin Films. Vacuum 2020, 176, 109342. DOI: 10.1016/j.vacuum.2020.109342.
  • Abdel-Galil, A.; Atta, A.; Balboul, M.R. Effect of Low-Energy Oxygen ion Beam Treatment on the Structural and Physical Properties of ZnO Thin Films. Surf. Rev. Lett. 2020, 27 (12), 1–13. DOI: 10.1142/S0218625X20500195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.