Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 177, 2022 - Issue 7-8
67
Views
0
CrossRef citations to date
0
Altmetric
Articles

W–H plot and electron spin resonance spectroscopy of magnetic CoFNPs induced up to 100 kGy Co60 γ-rays

, ORCID Icon, & ORCID Icon
Pages 847-868 | Received 31 Oct 2021, Accepted 18 May 2022, Published online: 04 Jul 2022

References

  • Weil, J.A.; Bolton, J.R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications; John Wiley & Sons: New York City, 2007.
  • Saakov, V.S.; Drapkin, V.Z.; Krivchenko, A.I.; Rozengart, E.V.; Bogachev, Y.V.; Knyazev, M.N. Derivative Spectrophotometry and Electron Spin Resonance (ESR) Spectroscopy for Ecological and Biological Questions; Springer Science & Business Media, 2012.
  • Levitt, M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance; John Wiley & Sons: New York City, 2013.
  • Hayashida, S.; Blosser, D.; Povarov, K.Y.; Yan, Z.; Gvasaliya, S.; Ponomaryov, A.; Zvyagin, S.A.; Zheludev, A. One- and Three-dimensional Quantum Phase Transitions and Anisotropy in Rb2Cu2Mo3O12. Phys. Rev. B. 2019, 100, 134427.
  • Singh, S.; Katyal, S.; Goswami, N. Tuning of Band Gap Energy of Semiconducting Zn-Cu Nanoferrite by Varying Ions (Cu+2, Zn+2) concentration. In AIP Conference Proceedings, Noida, India; AIP Publishing LLC, 2019; p 040018.
  • Alshahrani, B.; ElSaeedy, H.; Korna, A.; Yakout, H.; Maksoud, M.A.; Fahim, R.A.; Gobara, M.; Ashour, A. The Effect of Ce3+ Doping on Structural, Optical, Ferromagnetic Resonance, and Magnetic Properties of ZnFe2O4 Nanoparticles. J. Mater. Sci.: Mater. Electron. 2021, 32, 780–797.
  • Dąbrowski, M.; Hicken, R.J.; Frisk, A.; Newman, D.G.; Klewe, C.; Shafer, P.; van der Laan, G.; Hesjedal, T.; Bowden, G.J. Canted Standing Spin-Wave Modes of Permalloy Thin Films Observed by Ferromagnetic Resonance. New J. Phys. 2021, 23, 023017.
  • Felby, C.; Nielsen, B.; Olesen, P.; Skibsted, L. Identification and Quantification of Radical Reaction Intermediates by Electron Spin Resonance Spectrometry of Laccase-Catalyzed Oxidation of Wood Fibers from Beech (Fagus sylvatica). Appl. Microbiol. Biotechnol. 1997, 48, 459–464.
  • Kopáni, M.; Celec, P.; Danišovič, L.; Michalka, P.; Biró, C. Oxidative Stress and Electron Spin Resonance. Clin. Chim. Acta 2006, 364, 61–66.
  • Pei, S.; You, S.; Ma, J.; Chen, X.; Ren, N. Electron Spin Resonance Evidence for Electro-Generated Hydroxyl Radicals. Environ. Sci. Technol. 2020, 54, 13333–13343.
  • Kong, F.; Zhao, P.; Ye, X.; Wang, Z.; Qin, Z.; Yu, P.; Su, J.; Shi, F.; Du, J. Nanoscale Zero-Field Electron Spin Resonance Spectroscopy. Nat. Commun. 2018, 9, 1–7.
  • Povich, M. Measurement of Dissolved Oxygen Concentrations and Diffusion Coefficients by Electron Spin Resonance. Anal. Chem. 1975, 47, 346–347.
  • Willke, P.; Bae, Y.; Yang, K.; Lado, J.L.; Ferrón, A.; Choi, T.; Ardavan, A.; Fernández-Rossier, J.; Heinrich, A.J.; Lutz, C.P. Hyperfine Interaction of Individual Atoms on a Surface. Science 2018, 362, 336–339.
  • Guisasola, J.; Almudi, J.M.; Zubimendi, J.L. Difficulties in Learning the Introductory Magnetic Field Theory in the First Years of University. Sci. Educ. 2004, 88, 443–464.
  • Deepty, M.; Srinivas, C.; Kumar, E.R.; Mohan, N.K.; Prajapat, C.; Rao, T.C.; Meena, S.S.; Verma, A.K.; Sastry, D.; Edx, X.R.D. FTIR and ESR Spectroscopic Studies of Co-Precipitated Mn-Substituted Zn-Ferrite Nanoparticles. Ceram. Int. 2019, 45, 8037–8044.
  • Pubby, K.; Babu, K.V.; Narang, S.B. Magnetic, Elastic, Dielectric, Microwave Absorption and Optical Characterization of Cobalt-Substituted Nickel Spinel Ferrites. Mater. Sci. Eng.: B 2020, 255, 114513.
  • Massoudi, J.; Smari, M.; Nouri, K.; Dhahri, E.; Khirouni, K.; Bertaina, S.; Bessais, L. Magnetic and Spectroscopic Properties of Ni–Zn–Al Ferrite Spinel: From the Nanoscale to Microscale. RSC Adv. 2020, 10, 34556–34580.
  • Jalaiah, K.; Babu, K.V. Structural, Magnetic and Electrical Properties of Nickel Doped Mn–Zn Spinel Ferrite Synthesized by Sol-Gel Method. J. Magn. Magn. Mater. 2017, 423, 275–280.
  • Mahmoud, K.; Hemeda, O.; Sharshar, T.; Hamad, M.A. Strong Correlations Between Positron Annihilation Spectroscopy and ESR for Mn0.1MgxZn 0.9−xFe2O4 Ceramics. J. Supercond. Novel Magn. 2017, 30, 3143–3154.
  • Mulushoa, S.Y.; Murali, N.; Wegayehu, M.T.; Veeraiah, V.; Samatha, K. Investigation of Structural, DC-Resistivity and Magnetic Properties of Mg Ferrite. Mater. Today: Proc. 2018, 5, 26460–26468.
  • Lavorato, G.C.; Das, R.; Masa, J.A.; Phan, M.-H.; Srikanth, H. Hybrid Magnetic Nanoparticles as Efficient Nanoheaters in Biomedical Applications. Nanoscale Adv. 2021, 3, 867–888.
  • Valdés, D.P.; Lima, E.; Zysler, R.D.; Goya, G.F.; De Biasi, E. Role of Anisotropy, Frequency, and Interactions in Magnetic Hyperthermia Applications: Noninteracting Nanoparticles and Linear Chain Arrangements. Phys. Rev. Appl. 2021, 15, 044005.
  • Monisha, P.; Priyadharshini, P.; Gomathi, S.; Pushpanathan, K. Influence of Mn Dopant on the Crystallite Size, Optical and Magnetic Behaviour of CoFe2O4 Magnetic Nanoparticles. J. Phys. Chem. Solids 2021, 148, 109654.
  • Liu, Y.; Cao, F.; Sun, B.; Bellanti, J.A.; Zheng, S.G. Magnetic Nanoparticles: A New Diagnostic and Treatment Platform for Rheumatoid Arthritis. J. Leukocyte Biol. 2021, 109, 415–424.
  • Thakur, P.; Taneja, S.; Chahar, D.; Ravelo, B.; Thakur, A. Recent Advances on Synthesis, Characterization and High Frequency Applications of Ni–Zn Ferrite Nanoparticles. J. Magn. Magn. Mater. 2021, 530, 167925.
  • Passeri, D.; Angeloni, L.; Rossi, M. Magnetic Force Microscopy and Magnetic Nanoparticles: Perspectives and Challenges. In New Trends in Nanoparticle Magnetism, Springer: Cham, 2021, pp. 285–300.
  • Jendrzejewska, I.; Knizek, K.; Kubacki, J.; Goraus, J.; Goryczka, T.; Pietrasik, E.; Barsova, Z.; Jampilek, J.; Witkowska-Kita, B. Structure and Properties of Nano- and Polycrystalline Mn-Doped CuCr2Se4 Obtained by Ceramic Method and High-Energy Ball Milling. Mater. Res. Bull. 2021, 137, 111174.
  • Zhang, Y.; Zhang, W.; Yu, C.; Liu, Z.; Yu, X.; Meng, F. Synthesis, Structure and Supercapacitive Behavior of Spinel NiFe2O4 and NiO@ NiFe2O4 Nanoparticles. Ceram. Int. 2021, 47, 10063–10071.
  • Khan, M.A.; uz Zaman, M.Q.; Majeed, A.; Akhtar, M.N.; Abbas, W. Structural, Spectral, Dielectric and Magnetic Properties of Sr2CuxNi2−xFe28−xCrxO46 (0 ≤ x ≥ 0.5) Ferrites Synthesized Via Micro-Emulsion Route. Mater. Chem. Phys. 2021, 259, 124066.
  • Raut, A.V.; Jadhav, S.; Shengule, D.; Jadhav, K. Structural and Magnetic Characterization of 100-kGy Co 60 γ-Ray-Irradiated ZnFe2O4 NPs by XRD, W–H Plot and ESR. J. Sol-Gel Sci. Technol. 2016, 79, 1–11.
  • Prasad, P.D.; Hemalatha, J. The Structural, Morphological and Magnetic Force Microscopy Studies of Highly Crystalline Cobalt Ferrite (CoFe2O4) Fibers. In AIP Conference Proceedings, Jodhpur, India; AIP Publishing LLC, 2020, p. 030105.
  • Andhare, D.D.; Patade, S.R.; Kounsalye, J.S.; Jadhav, K. Effect of Zn Doping on Structural, Magnetic and Optical Properties of Cobalt Ferrite Nanoparticles Synthesized Via. Co-Precipitation Method. Phys. B 2020, 583, 412051.
  • Raut, A.; Kurmude, D.; Jadhav, S.; Shengule, D.; Jadhav, K. Effect of 100 kGy γ-Irradiation on the Structural, Electrical and Magnetic Properties of CoFe2O4 NPs. J. Alloys Compd. 2016, 676, 326–336.
  • Raut, A.V.; Khirade, P.P.; Shengule, D.; Jadhav, K. 50 kGy–100 kGy 60 Co γ-Irradiation Effects on Structural and DC-Electrical Properties of Sol–Gel Synthesized ZnF NPs. J. Mater. Sci.: Mater. Electron. 2021, 32, 11017–11027.
  • Rehani, B.R.; Joshi, P.; Lad, K.N.; Pratap, A. Crystallite Size Estimation of Elemental and Composite Silver Nano-Powders Using XRD Principles, 2006.
  • Holzwarth, U.; Gibson, N. The Scherrer Equation Versus The ‘Debye-Scherrer Equation’. Nat. Nanotechnol. 2011, 6, 534–534.
  • Sen, S.K.; Barman, U.C.; Manir, M.; Mondal, P.; Dutta, S.; Paul, M.; Chowdhury, M.; Hakim, M. X-Ray Peak Profile Analysis of Pure and Dy-Doped α-MoO3 Nanobelts Using Debye-Scherrer, Williamson-Hall and Halder-Wagner Methods. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2020, 11, 025004.
  • Devesa, S.; Rooney, A.; Graça, M.; Cooper, D.; Costa, L. Williamson-Hall Analysis in Estimation of Crystallite Size and Lattice Strain in Bi1.34Fe0.66Nb1.34O6.35 Prepared by the Sol-Gel Method. Mater. Sci. Eng: B 2021, 263, 114830.
  • Mustapha, S.; Ndamitso, M.; Abdulkareem, A.; Tijani, J.; Shuaib, D.; Mohammed, A.; Sumaila, A. Comparative Study of Crystallite Size Using Williamson-Hall and Debye-Scherrer Plots for ZnO Nanoparticles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2019, 10, 045013.
  • Prasad, S.; Deepty, M.; Ramesh, P.; Prasad, G.; Srinivasarao, K.; Srinivas, C.; Babu, K.V.; Kumar, E.R.; Mohan, N.K.; Sastry, D. Synthesis of MFe2O4 (M = Mg2+, Zn2+, Mn2+) Spinel Ferrites and Their Structural, Elastic and Electron Magnetic Resonance Properties. Ceram. Int. 2018, 44, 10517–10524.
  • Sharma, R.; Yadav, A.; Arora, S.; Kishore, N. To Study the Structural Properties of Cobalt Doped Tin Oxide Nanostructured by Using Williamson-Hall and Size-Strain Plot Methodology. Mater. Today: Proc. 2020, 44, 4651–4656.
  • Badizi, A.M.; Maleki, H. One-Step Combustion Synthesis of SiO2–CoFe2O4 Nanocomposites and Characterization for Structural, Thermal, Optical and Magnetic Properties. Mater. Sci. Semicond. Process. 2021, 124, 105594.
  • Mustapha, S.; Tijani, J.; Ndamitso, M.; Abdulkareem, A.; Shuaib, D.; Amigun, A.; Abubakar, H. Facile Synthesis and Characterization of TiO2 Nanoparticles: X-Ray Peak Profile Analysis Using Williamson–Hall and Debye–Scherrer Methods. Int. Nano Lett. 2021, 11, 241–261.
  • Di Nunzio, P.E. A Theoretical Interpretation of Self-Similar Right-Skewed Particle Size Distributions in Ostwald Ripening of Cementite in Ferrite. Philos. Mag. 2018, 98, 388–407.
  • Petrila, I.; Tudorache, F. Effects of Sintering Temperature on the Microstructure, Electrical and Magnetic Characteristics of Copper-Zinc Spinel Ferrite With Possibility Use as Humidity Sensors. Sens. Actuators A 2021, 332, 113060.
  • Serry, F.M.; Schmit, J. Characterization and Measurement of Microcomponents With the Atomic Force Microscope (AFM). In Optical Inspection of Microsystems; Osten, W., Ed.; CRC Press, 2019, pp. 155–176.
  • Guo, L.; Hua, G.; Yang, B.; Lu, H.; Qiao, L.; Yan, X.; Li, D. Electron Work Functions of Ferrite and Austenite Phases in a Duplex Stainless Steel and Their Adhesive Forces With AFM Silicon Probe. Sci. Rep. 2016, 6, 1–7.
  • Kaupp, M.; Buhl, M.; Malkin, V.G. Calculation of NMR and EPR Parameters; Wiley Online Library, 2004.
  • Lokesha, H.; Chithambo, M. A Combined Study of the Thermoluminescence and Electron Paramagnetic Resonance of Point Defects in ZrO2:Er3+. Radiat. Phys. Chem. 2020, 172, 108767.
  • Uddin, M.A.; Yu, H.; Wang, L.; Naveed, K.u.R.; Haq, F.; Amin, B.U.; Mehmood, S.; Nazir, A.; Xing, Y.; Shen, D. Recent Progress in EPR Study of Spin Labeled Polymers and Spin Probed Polymer Systems. J. Polym. Sci. A 2020, 58, 1924–1948.
  • Wang, Z.; Yuan, Q.; Zhang, Y.; Ma, M.; Gao, D.; Bi, J.; Wu, J. Oxygen Vacancy-Induced Short-Range Ordering as a Sole Mechanism for Enhanced Magnetism of Spinel ZnFe2O4 Prepared Via a One-Step Treatment. Ceram. Int. 2021, 47, 17877–17882.
  • Zhao, Y.; Yao, Q.; Liu, P.; Han, J.; Wang, Z.; Liu, Q. Polymorphous Density-Functional Description of Paramagnetic Phases of Quantum Magnets, 2021, arXiv:2101.02539 preprint.
  • Hassoon, A.A.; Harrison, R.G.; Nawar, N.; Smith, S.J.; Mostafa, M.M. Synthesis, Single Crystal X-ray, Spectroscopic Characterization and Biological Activities of Mn2+, Co2+, Ni2+ and Fe3+ Complexes. J. Mol. Struct. 2020, 1203, 127240.
  • Eaton, G.R.; Eaton, S.S.; Ohno, K. EPR Imaging and In Vivo EPR; CRC Press: Boca Raton, FL, 2018.
  • Djurišić, A.B.; Choy, W.C.; Roy, V.A.L.; Leung, Y.H.; Kwong, C.Y.; Cheah, K.W.; Gundu Rao, T.; Chan, W.K.; Fei Lui, H.; Surya, C. Photoluminescence and Electron Paramagnetic Resonance of ZnO Tetrapod Structures. Adv. Funct. Mater. 2004, 14, 856–864.
  • Gharaati, A. Lande g-Factor in Semiconductor Cylinder Quantum Dots Under Magnetic Fields and Spin–Orbit Interaction. Solid State Commun. 2017, 258, 17–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.