125
Views
0
CrossRef citations to date
0
Altmetric
Articles

Silicon nanowires obtained by metal-assisted chemical etching for photonic applications

, , , , ORCID Icon &
Pages 1195-1208 | Received 04 May 2022, Accepted 09 Oct 2022, Published online: 19 Oct 2022

References

  • Leonardi AA, lo Faro MJ, Irrera A. Biosensing Platforms Based on Silicon Nanostructures: A Critical Review. Analyt. Chim. Acta. 2021, 1160, 338393.
  • Garnett, E.C.; Yang, P. Silicon Nanowire Radial p-n Junction Solar Cells. J. Am. Chem. Soc. 2008, 130 (29), 9224–9225. http://pubs.acs.org.
  • Garnett, E.; Yang, P. Light Trapping in Silicon Nanowire Solar Cells. Nano Lett. 2010, 10 (3), 1082–1087. doi:10.1021/nl100161z.
  • Kelzenberg, M.D.; Boettcher, S.W.; Petykiewicz, J.A.; Turner-Evans, D.B.; Putnam, M.C.; Warren, E.L. Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications. Nat. Mater. 2010, 9 (3), 239–244.
  • Paska, Y.; Stelzner, T.; Assad, O.; Tisch, U.; Christiansen, S.; Haick, H. Molecular Gating of Silicon Nanowire Field-Effect Transistors with Nonpolar Analytes. ACS Nano 2012, 6 (1), 335–345.
  • Koo SM, Edelstein MD, Li Q, Richter CA, Vogel EM. Silicon Nanowires as Enhancement-Mode Schottky Barrier Field-Effect Transistors, Nanotechnology. 2005, 16, 1482–1485. doi.org/10.1088/0957-4484/16/9/011.
  • Schmidt, V.; Riel, H.; Senz, S.; Karg, S.; Riess, W.; Gösele, U. Realization of a Silicon Nanowire Vertical Surround-Gate Field-Effect Transistor. Small 2006, 2 (1), 85–88. doi:10.1002/smll.200500181.
  • Lo Faro MJ; Ruello G; Leonardi AA; Morganti D; Irrera A; Priolo F; S. Gigan; G. Volpe; B. Fazio. Visualization of Directional Beaming of Weakly Localized Raman from a Random Network of Silicon Nanowires. Adv. Sci. 2021;2100139. doi:10.1002/advs.202100139
  • Leonardi AA; Nastasi F; Morganti D; lo Faro MJ; Picca RA; Cioffi N; et al. New Hybrid Light Harvesting Antenna Based on Silicon Nanowires and Metal Dendrimers. Adv. Opt. Mater. 2020;2001070. doi:10.1002/adom.202001070
  • Noor MO; Krull UJ. Silicon nanowires as field-effect transducers for biosensor development: A review. Vol. 825, Analytica Chimica Acta. Elsevier; 2014. p. 1–25.
  • Wang, B.; Stelzner, T.; Dirawi, R.; Assad, O.; Shehada, N.; Christiansen, S; et al. Field-effect Transistors Based on Silicon Nanowire Arrays: Effect of the Good and the bad Silicon Nanowires. ACS Appl. Mater. Interf. 2012, 4 (8), 4251–4258. doi:10.1021/am300961d.
  • Irrera, A.; lo Faro, M.J.; D’Andrea, C.; Leonardi, A.A.; Artoni, P.; Fazio, B; et al. Light-emitting Silicon Nanowires Obtained by Metal-Assisted Chemical Etching. Semicond. Sci. Technol. 2017, 32 (4), 043004. http://stacks.iop.org/0268-1242/32/i = 4/a = 043004?key = crossref.36f091b086f71509a9a8a9653fe6503c.
  • Leong, D.; Harry, M.; Reeson, K.J.; Homewood, K.P. A Silicon/Iron-Disllicide Light-Emitting Diode Operating at a Wavelength of 1.5 µm. Nature 1997, 387 (6634), 686–688. https://www.nature.com/articles/42667.
  • Walavalkar, S.S.; Hofmann, C.E.; Homyk, A.P.; Henry, M.D.; Atwater, H.A.; Scherer, A. Tunable Visible and Near-IR Emission from sub-10 nm Etched Single-Crystal Si Nanopillars. Nano Lett. 2010, 10 (11), 4423–4428.
  • Sciuto, E.L.; Santangelo, M.F.; Villaggio, G.; Sinatra, F.; Bongiorno, C.; Nicotra, G; et al. Photo-physical Characterization of Fluorophore Ru(bpy)32+ for Optical Biosensing Applications. Sens Biosens. Res. 2015, 6, 67–71.
  • Sciuto, E.L.; Bongiorno, C.; Scandurra, A.; Petralia, S.; Cosentino, T.; Conoci, S; et al. Functionalization of Bulk SiO2 Surface with Biomolecules for Sensing Applications: Structural and Functional Characterizations. Chemosensors 2018, 6 (4), 59. https://www.mdpi.com/2227-9040/6/4/59/htm.
  • Chen, M.; Mu, L.; Wang, S.; Cao, X.; Liang, S.; Wang, Y.; et al A Single Silicon Nanowire-Based Ratiometric Biosensor for Ca2+ at Various Locations in a Neuron. ACS Chem. Neurosci. 2020, 11 (9), 1283–1290. doi:10.1021/acschemneuro.0c00041.
  • Mu, L.; Shi, W.; Chang, J.C.; Lee, S.-T. Silicon Nanowires-Based Fluorescence Sensor for Cu(II). Nano Lett. 2007, 8 (1), 104–109. doi:10.1021/nl072164k.
  • Gonchar, K.A.; Moiseev, D.v.; Bozhev, I.; Osminkina, L.A. Influence of H2O2 Concentration on the Structural and Photoluminescent Properties of Porous Silicon Nanowires Fabricated by Metal-Assisted Chemical Etching. Mater. Sci. Semicond. Process. 2021, 125, 105644.
  • Leonardi, A.A.; Battaglia, R.; Morganti, D.; Faro, M.l.; Fazio, B.; Pascali, C.d.; et al A Novel Silicon Platform for Selective Isolation, Quantification, and Molecular Analysis of Small Extracellular Vesicles. Intern. J. Nanomed. 2021, 16, 5153–5165. https://www.dovepress.com/a-novel-silicon-platform-for-selective-isolation-quantification-and-mo-peer-reviewed-fulltext-article-IJN.
  • Irrera, A.; Iacona, F.; Franzò, G.; Miritello, M.; lo Savio, R.; Castagna, M.E.; et al Influence of the Matrix Properties on the Performances of Er-Doped Si Nanoclusters Light Emitting Devices. J. Appl. Phys. 2010, 107 (5), 054302.
  • Öğüt, S.; Chelikowsky, J.R.; Louie, S.G. Quantum Confinement and Optical Gaps in Si Nanocrystals. Phys. Rev. Lett. 1997, 79 (9), 1770–1773. doi:10.1103/PhysRevLett.79.1770.
  • Takagahara, T.; Takeda, K. Theory of the Quantum Confinement Effect on Excitons in Quantum Dots of Indirect-gap Materials. Phys. Rev. B 1992, 46 (23), 15578–15581. doi:10.1103/PhysRevB.46.15578.
  • Lombardo, S.; Coffa, S.; Bongiorno, C.; Spinella, C.; Castagna, E.; Sciuto, A.; et al Correlation of dot Size Distribution with Luminescence and Electrical Transport of Si Quantum Dots Embedded in SiO2. Mater. Sci. Eng. B 2000, 69–70, 295–298.
  • Artoni, P.; Pecora, E.F.; Irrera, A.; Priolo, F. Kinetics of si and ge Nanowires Growth Through Electron Beam Evaporation. Nanosc. Res. Lett. 2011, 6 (1), 162. doi:10.1186/1556-276X-6-162.
  • Yeom, J.; Wu, Y.; Selby, J.C.; Shannon, M.A. Maximum Achievable Aspect Ratio in Deep Reactive ion Etching of Silicon due to Aspect Ratio Dependent Transport and the Microloading Effect. J. Vacuum Sci. Technol. B: Microelectr. Nanometer Struct. 2005, 23 (6), 2319–2329. http://scitation.aip.org/content/avs/journal/jvstb/23/6/10.11161.2101678.
  • Li, X.; Bonn, P.W. Metal-assisted Chemical Etching in HF/H2O2 Produces Porous Silicon. Appl. Phys. Lett. 2000, 77 (16), 2572–2574. doi:10.1063/1.1319191.
  • Peng, K.; Fang, H.; Hu, J.; Wu, Y.; Zhu, J.; Yan, Y.; et al Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution. Chem. A Eur. J. 2006, 12 (30), 7942–7947. doi:10.1002/chem.200600032.
  • Li, S.; Ma, W.; Zhou, Y.; Chen, X.; Xiao, Y.; Ma, M.; et al Fabrication of Porous Silicon Nanowires by MACE Method in HF/H2O2/AgNO3 System at Room Temperature. Nanosc. Res. Lett. 2014, 9 (1), 196. doi:10.1186/1556-276X-9-196.
  • Nassiopoulou, A.G.; Gianneta, V.; Katsogridakis, C. Si Nanowires by a Single-Step Metal-Assisted Chemical Etching Process on Lithographically Defined Areas: Formation Kinetics. Nanosc. Res. Lett. 2011, 6 (1), 1–8. doi:10.1186/1556-276X-6-597.
  • Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Metal-Assisted Chemical Etching of Silicon: A Review. Adv. Mater. 2011, 23 (2), 285–308. doi:10.1002/adma.201001784.
  • Namdari P; Daraee H; Eatemadi A. Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications. Vol. 11, Nanoscale Research Letters. Springer New York LLC; 2016. p. 406. doi:10.1186/s11671-016-1618-z
  • Irrera, A.; Magazzù, A.; Artoni, P.; Simpson, S.H.; Hanna, S.; Jones, P.H.; et al Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires. Nano Lett. 2016, 16 (7), 4181–4188. doi:10.1021/acs.nanolett.6b01059.
  • Han H; Huang Z; Lee W. Metal-Assisted Chemical Etching of Silicon and nanotechnology Applications. Vol. 9, Nano Today. Elsevier; 2014. p. 271–304.
  • Leonardi, A.A.; lo Faro, M.J.; Irrera, A. Silicon Nanowires Synthesis by Metal-Assisted Chemical Etching: A Review. Nanomaterials 2021, 11 (2), 383. https://www.mdpi.com/2079-4991/11/2/383.
  • lo Faro, M.J.; D’andrea, C.; Leonardi, A.A.; Morganti, D.; Irrera, A.; Fazio, B. Fractal Silver Dendrites as 3D SERS Platform for Highly Sensitive Detection of Biomolecules in Hydration Conditions. Nanomaterials 2019, 9 (11).
  • Peng, K.; Hu, J.; Yan, Y.; Wu, Y.; Fang, H.; Xu, Y.; et al Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles. Adv. Funct. Mater. 2006, 16 (3), 387–394. doi:10.1002/adfm.200500392.
  • Huang, Z.; Zhang, X.; Reiche, M.; Ltu, L.; Lee, W.; Shimizu, T.; et al Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching. Nano Lett. 2008, 8 (9), 3046–3051. https://pubs.acs.org/sharingguidelines.
  • de Boor, J.; Geyer, N.; Wittemann, J.; Gösele, U.; Schmidt, V. Sub-100 nm Silicon Nanowires by Laser Interference Lithography and Metal-Assisted Etching. Nanotechnology 2010, 21 (9), 095302. doi:10.1088/0957-4484/21/9/095302.
  • Bodo Fuhrmann; Hartmut S. Leipner; Höche HR; Luise Schubert; Peter Werner and Gösele U. Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy. 2005; doi:10.1021/nl051856a
  • Juhasz R; Elfström N; Linnros J. Controlled Fabrication of Silicon Nanowires by Electron Beam Lithography and Electrochemical Size Reduction. 2004; doi:10.1021/nl0481573
  • Chang, S.W.; Chuang, V.P.; Boles, S.T.; Ross, C.A.; Thompson, C. Densely Packed Arrays of Ultra-High-as Pect-Ratio Silicon Nanowires Fabricated Using Block-Copolymer Lithography and Metal-Assisted Etching. Adv. Funct. Mater. 2009, 19 (15), 2495–2500. doi:10.1002/adfm.200900181.
  • Pecora, E.F.; Lawrence, N.; Gregg, P.; Trevino, J.; Artoni, P.; Irrera, A.; et al Nanopatterning of Silicon Nanowires for Enhancing Visible Photoluminescence. Nanoscale. 2012, 4 (9), 2863–2866.
  • Peng, K.Q.; Yan, Y.J.; Gao, S.P.; Zhu, J. Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry. Adv. Mater. 2002, 14 (16), 1164–1167. doi:10.1002/1521-4095%2820020816%2914%3A16%3C1164%3A%3AAID-ADMA1164%3E3.0.CO%3B2-E.
  • Casiello, M.; Picca, R.; Fusco, C.; D’Accolti, L.; Leonardi, A.A.; lo Faro, M.J.; et al Catalytic Activity of Silicon Nanowires Decorated with Gold and Copper Nanoparticles Deposited by Pulsed Laser Ablation. Nanomaterials 2018, 8 (2), 78. http://www.mdpi.com/2079-4991/8/2/78.
  • Leonardi, A.A.; Faro, M.l.; Miritello, M.; Musumeci, P.; Priolo, F.; Fazio, B.; et al Cost-Effective Fabrication of Fractal Silicon Nanowire Arrays. Nanomaterials 2021, 11 (8), 1972. https://www.mdpi.com/2079-4991/11/8/1972/htm.
  • Peng, K.; Yan, Y.; Gao, S.; Zhu, J. Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition. Adv. Funct. Mater. 2003, 13 (2), 127–132. doi:10.1002/adfm.200390018.
  • Kim, Y.; Tsao, A.; Lee, D.H.; Maboudian, R. Solvent-induced Formation of Unidirectionally Curved and Tilted Si Nanowires During Metal-Assisted Chemical Etching. J. Mater. Chem. C 2013, 1 (2), 220–224.
  • Chen, H.; Wang, H.; Zhang, X.H.; Lee, C.S.; Lee, S.T. Wafer-scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles. Nano Lett. 2010, 10 (3), 864–868. https://pubs.acs.org/sharingguidelines.
  • Kim, J.; Kim, Y.H.; Choi, S.H.; Lee, W. Curved Silicon Nanowires with Ribbon-Like Cross Sections by Metal-Assisted Chemical Etching. ACS Nano 2011, 5 (6), 5242–5248. www.acsnano.org.
  • Sandu, G.; Avila Osses, J.; Luciano, M.; Caina, D.; Stopin, A.; Bonifazi, D.; et al Kinked Silicon Nanowires: Superstructures by Metal-Assisted Chemical Etching. Nano Lett. 2019, 19 (11), 7681–7690. https://pubs.acs.org/sharingguidelines.
  • Chang, S.W.; Chuang, V.P.; Boles, S.T.; Thompson, C.V. Metal-Catalyzed Etching of Vertically Aligned Polysilicon and Amorphous Silicon Nanowire Arrays by Etching Direction Confinement. Adv. Funct. Mater. 2010, 20 (24), 4364–4370. doi:10.1002/adfm.201000437.
  • Peng, K.; Xu, Y.; Wu, Y.; Yan, Y.; Lee, S.T.; Zhu, J. Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications. Small 2005, 1 (11), 1062–1067. doi:10.1002/smll.200500137.
  • Sivakov, V.A.; Voigt, F.; Berger, A.; Bauer, G.; Christiansen, S.H. Roughness of Silicon Nanowire Sidewalls and Room Temperature Photoluminescence. Phys. Rev. B Conden. Matter Mater. Phys. 2010, 82 (12), 125446. doi:10.1103/PhysRevB.82.125446.
  • Huang, Z.; Shimizu, T.; Senz, S.; Zhang, Z.; Zhang, X.; Lee, W.; et al Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallographically Preferred <100> Etching Directions. Nano Lett. 2009, 9 (7), 2519–2525. https://pubs.acs.org/sharingguidelines.
  • Chern, W.; Hsu, K.; Chun, I.S.; Azeredo, B.P.D.; Ahmed, N.; Kim, K.H.; et al Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays. Nano Lett. 2010, 10 (5), 1582–1588. https://pubs.acs.org/sharingguidelines.
  • Fang, H.; Wu, Y.; Zhao, J.; Zhu, J. Silver Catalysis in the Fabrication of Silicon Nanowire Arrays. Nanotechnology 2006, 17 (15), 3768–3774. doi:10.1088/0957-4484/17/15/026.
  • Leonardi, A.A.; lo Faro, M.J.; Irrera, A. CMOS-Compatible and Low-Cost Thin Film MACE Approach for Light-Emitting Si NWs Fabrication. Nanomaterials 2020, 10 (5), 966. https://www.mdpi.com/2079-4991/10/5/966.
  • Morganti, D.; Leonardi, A.A.; Faro, M.l.; Leonardi, G.; Salvato, G.; Fazio, B.; et al Ultrathin Silicon Nanowires for Optical and Electrical Nitrogen Dioxide Detection. Nanomaterials 2021, 11 (7), 1767. /pmc/articles/PMC8308154/.
  • Leonardi, A.A.; lo Faro, M.J.; Fazio, B.; Spinella, C.; Conoci, S.; Livreri, P.; et al Fluorescent Biosensors Based on Silicon Nanowires. Nanomaterials 2021, 11 (11), 2970. https://www.mdpi.com/2079-4991/11/11/2970/htm.
  • Irrera, A.; Artoni, P.; Iacona, F.; Pecora, E.F.; Franzò, G.; Galli, M.; et al Quantum Confinement and Electroluminescence in Ultrathin Silicon Nanowires Fabricated by a Maskless Etching Technique. Nanotechnology 2012, 23 (7), 75204–75211. doi:10.1088/0957-4484/23/7/075204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.