Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 178, 2023 - Issue 7-8
133
Views
0
CrossRef citations to date
0
Altmetric
Articles

Cluster formation by the precise joining of iron oxide nanoparticles on low energy nitrogen ion irradiation

, , , & ORCID Icon
Pages 976-989 | Received 27 Oct 2022, Accepted 23 Mar 2023, Published online: 06 Apr 2023

References

  • Lee, J.S.; Cha, J.M.; Yoon, H.Y.; Lee, J.K.; Kim, Y.K. Magnetic Multi-Granule Nanoclusters: A Model System That Exhibits Universal Size e_ect of Magnetic Coercivity. Sci. Rep. 2015, 5, 12135.
  • Kostopoulou, A.; Lappas, A. Colloidal Magnetic Nanocrystal Clusters: Variable Length-Scale Interaction Mechanisms, Synergetic Functionalities and Technological Advantages. Nanotechnol. Rev. 2015, 4, 595–624.
  • Dolci, M.; Bryche, J.F.; Leuvrey, C.; Zafeiratos, S.; Gree, S.; Begin-Colin, S.; Barbillon, G.; Pichon, B.P. Robust Clicked Assembly Based on Iron Oxide Nanoparticles for a New Type of SPR Biosensor. J. Mater. Chem. C. 2018, 6 (34), 9102–9110.
  • Dolci, M.; Bryche, J.F.; Moreau, J.; Leuvrey, C.; Begin-Colin, S.; Barbillon, G.; Pichon, B.P. Investigation of the Structure of Iron Oxide Nanoparticle Assemblies in Order to Optimize the Sensitivity of Surface Plasmon Resonance-Based Sensors. Appl. Surf. Sci. 2020, 527, 146773.
  • Dasri, T.; Chingsungnoen, A. Surface Plasmon Resonance Enhanced Light Absorption and Wavelength Tuneable in Gold-Coated Iron Oxide Spherical Nanoparticle. J. Magn. Magn. Mater. 2018, 456, 368–371.
  • Wu, M.; Zhang, D.; Zeng, Y.; Wu, L.; Liu, X.; Liu, J. Nanocluster of Superparamagnetic Iron Oxide Nanoparticles Coated with Poly (Dopamine) for Magnetic Field-Targeting, Highly Sensitive MRI and Photothermal Cancer Therapy. Nanotechnology 2015, 26 (11), 115102.
  • Qiang, Y.; Antony, J.; Sharma, A.; Nutting, J.; Sikes, D.; Meyer, D. Iron/Iron Oxide Core-Shell Nanoclusters for Biomedical Applications. J. Nanopart. Res. 2006, 8 (3), 489–496.
  • Nikitin, A.A.; Shchetinin, I.V.; Tabachkova, N.Y.; Soldatov, M.A.; Soldatov, A.V.; Sviridenkova, N.V.; Beloglazkina, E.K.; Savchenko, A.G.; Fedorova, N.D.; Abakumov, M.A.; Majouga, A.G. Synthesis of Iron Oxide Nanoclusters by Thermal Decomposition. Langmuir 2018, 34 (15), 4640–4650.
  • Ge, J.; Hu, Y.; Biasini, M.; Beyermann, W.P.; Yin, Y. Superparamagnetic Magnetite Colloidal Nanocrystal Clusters. Angew. Chem., Int. Ed. 2007, 46 (23), 4342–4345.
  • Sherwood, J.; Rich, M.; Lovas, K.; Warram, J.; Bolding, M.S.; Bao, Y. T 1-Enhanced MRI-Visible Nanoclusters for Imaging-Guided Drug Delivery. Nanoscale. 2017, 9 (32), 11785–11792.
  • Paquet, C.; de Haan, H.W.; Leek, D.M.; Lin, H.Y.; Xiang, B.; Tian, G.; Kell, A.; Simard, B. Clusters of Superparamagnetic Iron Oxide Nanoparticles Encapsulated in a Hydrogel: A Particle Architecture Generating a Synergistic Enhancement of the T2 Relaxation. Acs Nano. 2011, 5 (4), 3104–3112.
  • Kluth, P.; Johannessen, B.; Foran, G.J.; Cookson, D.J.; Kluth, S.M.; Ridgway, M.C. Disorder and Cluster Formation During ion Irradiation of Au Nanoparticles in SiO2. Phys. Rev. B. 2006, 74 (1), 014202.
  • Xu, A.; Beck, C.; Armstrong, D.E.; Rajan, K.; Smith, G.D.; Bagot, P.A.; Roberts, S.G. Ion-irradiation-induced Clustering in W–Re and W–Re–Os Alloys: A Comparative Study Using Atom Probe Tomography and Nanoindentation Measurements. Acta Mater. 2015, 87, 121–127.
  • Agarwal, P. Fast Sonochemical Exfoliation of Hematene Type Sheets and Flakes from Hematite Nanoarchitectures Shows Enhanced Photocurrent Density. 2021.
  • Das, P., Dhal, S.; Susanta, G.; Sriparna, C.; Chandra S. R.; Niranjan, R.; Shyamal, C. Superhydrophobic to Hydrophilic Transition of Multi-Walled Carbon Nanotubes Induced by Na+ ion Irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 2017, 413, 31–36.
  • Kluth, P.; Johannessen, B.; Foran, G.J.; Cookson, D.J.; Kluth, S.M.; Ridgway, M.C. Disorder and Cluster Formation During ion Irradiation of Au Nanoparticles in SiO2. Phys. Rev. B. 2006, 74 (1), 014202.
  • Xu, A.; Beck, C.; Armstrong, D.E.; Rajan, K.; Smith, G.D.; Bagot, P.A.; Roberts, S.G. Ion-irradiation-induced Clustering in W–Re and W–Re–Os Alloys: A Comparative Study Using Atom Probe Tomography and Nanoindentation Measurements. Acta Mater. 2015, 87, 121–127.
  • Alloyeau, D.; Prévot, G.; Le Bouar, Y.; Oikawa, T.; Langlois, C.; Loiseau, A.; Ricolleau, C. Ostwald Ripening in Nanoalloys: When Thermodynamics Drives a Size-Dependent Particle Composition. Phys. Rev. Lett. 2010, 105 (25), 255901.
  • Ivanskii, B.V.; Vengrenovich, R.D. To the Theory of Ostwald Ripening in Metallic Alloys. The Phys. Metals Metallogr. 2016, 117, 756–765.
  • Tang, Q.; Müller, M.; Li, C.Y.; Hu, W. Anomalous Ostwald Ripening Enables 2D Polymer Crystals via Fast Evaporation. Phys. Rev. Lett. 2019, 123 (20), 207801.
  • Michalak, N.; Ossowski, T.; Miłosz, Z.; Prieto, M.J.; Wang, Y.; Werwiński, M.; Babacic, V.; Genuzio, F.; Vattuone, L.; Kiejna, A.; Schmidt, T. Ostwald Ripening in an Oxide-on-Metal System. Adv. Mater. Interfaces. 2022, 9 (17), 2200222.
  • Zimmerling, T.; Mattenberger, K.; Döbeli, M.; Simon, M.J.; Batlogg, B. Deep Trap States in Rubrene Single Crystals Induced by ion Radiation. Phys. Rev. B. 2012, 85 (13), 134101.
  • Belloni, J. Nucleation, Growth and Properties of Nanoclusters Studied by Radiation Chemistry: Application to Catalysis. Catal. Today 2006, 113 (3-4), 141–156.
  • Dhara, S. Formation, Dynamics, and Characterization of Nanostructures by ion Beam Irradiation. Crit. Rev. Solid State Mater. Sci. 2007, 32 (1-2), 1–50.
  • Lescoat, M.L.; Ribis, J.; Chen, Y.; Marquis, E.A.; Bordas, E.; Trocellier, P.; Serruys, Y.; Gentils, A.; Kaïtasov, O.; De Carlan, Y.; Legris, A. Radiation-induced Ostwald Ripening in Oxide Dispersion Strengthened Ferritic Steels Irradiated at High ion Dose. Acta Mater. 2014, 78, 328–340.
  • Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A. Comparison of the Neutron and ion Irradiation Response of Nano-Oxides in Oxide Dispersion Strengthened Materials. J. Mater. Res. 2015, 30 (14), 2210–2221.
  • Chen, T.; Gigax, J.G.; Price, L.; Chen, D.; Ukai, S.; Aydogan, E.; Maloy, S.A.; Garner, F.A.; Shao, L. Temperature Dependent Dispersoid Stability in ion-Irradiated Ferritic-Martensitic Dual-Phase Oxide-Dispersion-Strengthened Alloy: Coherent Interfaces vs. Incoherent Interfaces. Acta Mater. 2016, 116, 29–42.
  • Ribis, J.; Leprêtre, F. Interface Roughening in Irradiated Oxide Dispersion Strengthened Steels. Appl. Phys. Lett. 2017, 111 (26), 261602.
  • Ren, F.; Guo, L.P.; Shi, Y.; Chen, D.L.; Wu, Z.Y.; Jiang, C.Z. Formation of Zn–ZnO Core–Shell Nanoclusters by Zn/F Sequential ion Implantation. J. Phys. D: Appl. Phys. 2006, 39 (3), 488.
  • Lucas, S.; Moskovkin, P. Simulation at High Temperature of Atomic Deposition, Islands Coalescence, Ostwald and Inverse Ostwald Ripening with a General Simple Kinetic Monte Carlo Code. Thin Solid Films 2010, 518 (18), 5355–5361.
  • Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The Stopping and Range of Ions in Matter. Nucl. Instrum. Methods Phys. Res., Sect. B 2010, 268 (11-12), 1818–1823.
  • Crocombette, J.P.; Van Wambeke, C. Quick Calculation of Damage for ion Irradiation: Implementation in Iradina and Comparisons to SRIM. EPJ Nuclear Sci. Technol. 2019, 5, 7.
  • Dhal, S.; Das, P.; Patro, A.; Swain, M.; Hota, S.R.; Sahu, D.; Chatterjee, S. Tuning Surface Wettability of Molybdenum Oxide Nanorod Mesh by low Energy ion Beam Irradiation. Radiat. Phys. Chem. 2021, 188, 109649.
  • Dhal, S.; Chatterjee, S.; Manju, U.; Tribedi, L.C.; Thulasiram, K.V.; Fernandez, W.A.; Chatterjee, S. Adhesive Hydrophobicity of Cu2O Nano-Columnar Arrays Induced by Nitrogen ion Irradiation. Soft Matter 2015, 11 (47), 9211–9217.
  • Möller, W. TRI3DYN–Collisional Computer Simulation of the Dynamic Evolution of 3-Dimensional Nanostructures Under ion Irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B. 2014, 322, 23–33.
  • Dhal, S.; Das, P.; Rajbhar, M.K.; Möller, W.; Chatterjee, S.; Ramgir, N.; Chatterjee, S. Superior Electrical Conduction of a Water Repelling 3D Interconnected Nano-Network. J. Mater. Chem. C. 2018, 6 (8), 1951–1958.
  • Dhal, S.; Chatterjee, S.; Facsko, S.; Möller, W.; Böttger, R.; Satpati, B.; Ratha, S.; Hübner, R. Discrete Single Crystalline Titanium Oxide Nanoparticle Formation from a Two-Dimensional Nanowelded Network. Cryst. Growth Des. 2017, 17 (5), 2660–2666.
  • Chourpa, I.; Douziech-Eyrolles, L.; Ngaboni-Okassa, L.; Fouquenet, J.F.; Cohen-Jonathan, S.; Soucé, M.; Marchais, H.; Dubois, P. Molecular Composition of Iron Oxide Nanoparticles, Precursors for Magnetic Drug Targeting, as Characterized by Confocal Raman Microspectroscopy. Analyst 2005, 130 (10), 1395–1403.
  • Song, K.; Lee, Y.; Jo, M.R.; Nam, K.M.; Kang, Y.M. Comprehensive Design of Carbon-Encapsulated Fe3O4 Nanocrystals and Their Lithium Storage Properties. Nanotechnology 2012, 23 (50), 505401.
  • Li, Y.S.; Church, J.S.; Woodhead, A.L. Infrared and Raman Spectroscopic Studies on Iron Oxide Magnetic Nano-Particles and Their Surface Modifications. J. Magn. Magn. Mater. 2012, 324 (8), 1543–1550.
  • De Faria, D.L.; Venâncio Silva, S.; De Oliveira, M.T. Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides. J. Raman Spectrosc. 1997, 28 (11), 873–878.
  • Bueno, P.V.; Hilamatu, K.C.; Carmona-Ribeiro, A.M.; Petri, D.F. Magnetically Triggered Release of Amoxicillin from Xanthan/Fe3O4/Albumin Patches. Int. J. Biol. Macromol. 2018, 115, 792–800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.